Part II 7z=0 eq.14

2P3/2 at r=ru solutions
Review from partl: Summary: PostulateO->Newpde
Summary postulateQ: “z=zz+C implies rea/#0”. (C constant so 6C=0 and z=zz+C is eql)
where z=zz needed for multiplicative properties of 0. Thus plugging 1=1+0 into 1=1X1 gives the

required relations 0X1=0, 0X0=0 part of appendix M4 ‘list number-define symbol’ math method

itself implying z=1+8z into eql results in 5z+828z=C (3) so—— ¢ f*“ =dz=dridt (4) for C<-Ya.

So C is generally complex in this complex plane. But the definition of real0 implies that Cauchy
sequence “iteration” so requires plugging the eq1 iteration (zn+1-znzx=C) into 8C=0. Given
real(0, 1=1+0 then creates these other rational number eq4 Real; and Realx(timesi) components of
C that then requires two Cauchy sequences or a single (Real;,Real,i) complex iteration (recall
Zo=0)implying 8C=0(zn+1-Znzn)=0(00-0)#0 for some C=(Real;,Realzi). The Cs that result instead
in finite complex zes(so 6C=0)define Mandelbrot set figl. So if max(imdz)=v1 + 4C/2 = i1.0703
then C has to be min(relC)=-1.4..=Cwm So extreme (-1.4.., -'4) solve reldC=0. Note figl zoom at:
-1.4=CM yields lemniscates with powers of 10*NXCw scaling.For observer huge Nscale |©7] >>1/4
-4 rational Cauchy sequence (zn+1-znzn=C) =-1/4, -3/16,-55/256, ..0. So 0 is a real number QED
Those CM Lemniscates are ae continuous C? along the dr axis and so |idt|>0 ae continuously
between -Y4 and -1.4..allows derivatives imdC=(0C/ot)dt=0 there. So (the postulate’s) ‘C as a
constant’(0C/ot=0)at all scales requires pulling out only the figl lemniscates from the zoom.Also
IT Plug eq1 into SC=0 using eqs3,4: §C=5(52+6282)=86z(1)+2(58z) »~8(828z)=5((dr+idt)?)
= §[(dr’-dt?)+i(drdt+dtdr)] =0= Minkowski metric+Clifford algebra =Dirac eq. (See y*s in eq7a)
2D Mandelbrot+2D Dirac=4D Dirac Newpde=y"(\ic,,)dy/0x,=(w/c)y for v, Ae=e(eqs20,24,B2)
K00=€ P22 _rp/r, 1=1/(1+2Ag-1n/r); tn=Cm/E=€*X10N/m (fractal jumps N=. -1,0,1.,)

Newpde=y"(Vic,,)y/0x,=(w/c)\y; 1-ra/r=Koo=1/kx if n0 object B, ra=CM/m=¢?10"/m (figl)
Newpde separation of variables (12) gives Half Integer Spherical Harmonics, baryons 2P3/; at=rn
(We don’t need QCD) implying 2S1,2,t,1S121 lepton Schrodinger equation limit Kiode equation.
The only nonzero proper mass particle solution to the Newpde is the electron m. ground state.
The only multiparticle stable state is the 2P3/; at r=ru 3e state.

Stability(bound state) of 2P at r=ri.SP? See figure3

At r=ru. we have stability (dt’*>=Koodt*=(1-ru/r)dt>=0) since the dt’ clocks stop at r=ry. After a
possible positron (central) electron annihilation that 2 y ray scattering off the 3™ mass (in 2P3/2)
the diagonal metric(eq.17) time reversal invariance is a reverse of the y ray pair annihilation with
the subsequent e* pair creation inside the ry volume given o=nru’~ (1/20)barn making it merely a
virtual creation-annihilation event. So our 2P3 composite 3e (proton=P=D/2) at r=ry is the only
stable multi e composite. Also see Partll davidmaker.com. For 2P3/> ground state 3me
representation the interior curved space ultrarelativistic nature of 2P3. at r=ry allows for only a 2
positron 2me and one central electron bound state allowing for a reduced mass representation of
the 2 positron bound state. D/2=m;, with very high y (=917) due to B flux quantization at r=ru
(D=BA= (uoi/2rn)(nru?) =mh/e; i=e/ty, c=2nru/ty. m=3 for 2P3; part of SP2.

7.1 Comparison with QCD



The Newpde 2P3/2 trifolium 3 lobed, 3e, state at r=rn the electron spends 1/3 of its time in each
lobe (fractional (1/3)e charge), the spherical harmonic lobes can’t leave (just as with Schrodinger
eq (asymptotic freedom), we have P wave scattering (jets) and there are 6 P states (udscbt). The
two e positrons must be ultrarelativistic (due to interior B flux quantization, so y=917) at r=ru so
the field line separation is Lorentz contracted, narrowed at the central electron explaining the
strong force (otherwise postulated by qcd). Thus the quarks are merely these individual 2P3»
probability density stationary lobes explaining also why quarks appear nonrelativistic. So protons
are just 2 Newpde positrons and electron in 2P3); at r=ry states. Quarks can be discarded.

Stable Newpde State 2P3,; at r=ru: Composite 3¢
Table of Contents
Ch.7 Small C stable state of New pde is Composite 3e at r=ru 2P32 h/e flux quantization z=0
Excited state Small C Paschen Back ortho (s,c,b) and para (t) energy levels
Ch.8,9 Frobenius series solution r perturbation of each individual Paschen Back energy
level ortho, para (s,c,b; t) getting the particle multiplets at each level
Ch.10,11 New pde high energy Cross-sections and Nuclear Binding energies
Ch.12 Comparison and contrast of 2P3; at r=ry with mainstream toy model gauge theories

7.3 Eq.11 B Field Flux Quantization In This Enclosed Current Loop

In the Newpde 2P3); at r=ry state the positrons are moving in circles. Note if a charged particle
moves in loop in a field free region that surrounds another region, there is trapped magnetic

flux ¢ in that region. Also we can include minimal interaction E&M momentum/h =k—k+eA/k
=eBr/h for uniform B field. If y phase is a unique function on the loop then phase kr=
(eBr/h)r=(eBrr/h)= e(Barea)/h=e®/h=n2n. ®=(h/e)=4.13X10"> for half integer spin. Then upon
completing a closed loop the particle’s wave function will acquire an additional phase

factor exp (%). But the wave function must be single valued at any point in space. This can be
accomplished if the magnetic flux @ is quantized: e®/h= nn, n=0£1,£2,43, so 2d,=2h/(2e).
From NIST:2X 2.067833848X10 Wb =2, for half integer spin’s. Half integer spin
2®,=2(h/2e)=h/e for the one positron.

7.4 Ultrarelativistic Rotator.
Ortho state Side View z=0.

2
From the side of the rotator the Fitzgerald contraction goes as: r’'u=ry f; /2 1- Z—Z sin@deo.

c2sin20

=er;/2 1 —— sinfdo=

2
=1y f;)/z cosOsinfdo = ry f01 xdx =1y x? |5 =10/2=2.8X10"m=r'y  (7.1)
or the ortho 2P state observer (i.e,2P3/2, 2Py;) in the horizontal plane and ru/2=r”. We must repeat
this integration on the end para states, the radius is shrunk by t+2(e+Ag) and so is nearly a point
source Sy, state (for the observer above the circle as for the deuterium central electron sect.10.7).
We next show that the jump from ortho to para must then correspond to the jump from € to t

fractal quantum state given t is separable and so a orthogonal state transition.
2rp=2(2.81X10"1°=2¢%/(mcc?), Side view Y4(2rn)=ru,



Radius Of Proton: So for the side view 2.8F/2=ryp/2=r=2.8X10'5/2=1.4X10"'> m. For high
energy neutron scattering from all angles from all directions do the side average times the top
average to estimate the (total cross-section barns#) area. Then take the square root to get the

. . . . . 0))?2 . .
radius. Again take vertical circle diameter D Lorentz contracted ’1 — (C(CZ—Z)) D=Dsin6 so sine

average from top to bottom 0—m/2 view (so 6=0 degrees, end scattering for 0 radius Fitzgerald

/2 . /2
. 0d6 —cosb —o—(—
contracted object.). So <° = ) = Zcos8ly _ o) _ 2

/2 /2 s . So for average (cross-section)
area estimate over 0—/2 polar angle scattering angles associated with (circle) scattering radius

. 2
= \/areasmall square = \/AreasquareX (M) = J(1.4X10‘15 %) %=

squareArea

=7.8X10"1m~.8F =r,. Actual =.8F
Top view 2ry.z=1
So only New pde e (z=0 &=Ae=m.) is stable. The only way to get multi e particle stable large &
is with the Newpde composite 3¢ 2P3, at r=ry state. That is because we have stability (dt’>=(1-
ru/r)dt?) clocks stop at r=ry. That 2 y ray scattering off the 37 mass (in 2P3/2) diagonal
metric(eq.14) time reversal invariance also reverses the y ray pair annihilation with the
subsequent e* pair creation inside the ry volume given o=nru?~ (1/20)barn making it merely a
virtual creation-annihilation event. So our 2P3»> composite 3e (proton) at r=ry is the only stable
multi e composite.

Magnetic Flux ortho state Quantization For Current Around Loop 2P3. at r=ru
Our Newpde IV—I quadrant eq.12 rotations (appendix A4) gave us Maxwell’s equations and
E&M so we can apply B fields here. We also derived quantum mechanics from that Circle

equation (giving eq.11). Thus we can have quantization of the B field flux¢$ BedA =d\N

B dA I'| § hardly changes in going out of plane of the coil
é ll' O but B ®dAchanges a lot. So there is some location jjust out of the
I . x
}—3"* e plane that makes B average in the plane.

Just above (and below) the coil plane toward the edge of the coil the B direction changes and the
magnitude of B goes up. So some B edA =A® minimum deviation from BdA for some constant
|E4)| above the coil plane. Given B is perpendicular to dA at the center and the radius ry of the
coil cancels out (eq.2 below) this A® flux could be over the center where the relevant y is

needed. Thus we must write for the 2 electrons SA®=0=BA= B> with the B at the center of
the coil for z=0 (appendix). So effective ry slightly bigger (making B smaller) but ry cancels

anyway. So BA = (gr—ol) (nr#) = 3@y (3 lobed trifolium flux ® 2Ps quantization level) (1)
H 2

Also ru=e*/mec?, g/t=i. g=e=1.6X10"° C, single electron ®¢= 2X(h/2¢)=(NIST)

=2X2.067833848X10"°Wb, 1/y dilation of r in the current i and ry get canceled out here. The

time t dilation v is in the current ’i” moving frame of reference. Recall that for circular motion:
c=D/t=2nru/t=2nru/ty with ru relativistic effects canceling out in eq.2 below. So:



t = 2mry/yc, so i=(2né,,) . current =i/2 for a single electron. Recall 3 loop v antinodes for ?P3/
yc
for 3 trifolium lobes at r=ry on the B flux current loop so N=3. So 3®¢= (h/e)3= for single
electron (so not a quasi particle)

_°
(5
B=p01/2ry is the minimum B inside the loop, and given ru cancels out in eq.2, can be taken as a
variational principle optimization of the energy B2. So doing the cancelations in eq.2:
1(no/4)ec=(h/e)3. Recall also 2P3» +1S1» where 1S, already is a populated state (Hund’s rule)
ISy, (w) =.1125=p/P so added to 2P3, required from sect 9.10 that we have used in our N=3 case
and also used in the derivation of the Kioda equation. So we add it in (For example recall in the
hydrogen atom that the 1S states fill before the 2P states.). So, given also eq25 ratio of
muon/proton):

[ h
@zBAz%(nrg)zz"r—:< )(nrﬁ):CDoN:?)CDO:ZS )

y=3g 1+ “—Olec (Note that 4 cancels the 4 in po=47X10 7 Wb-m/Amps.)
4
., 2X2.0678X10715(1+p) _ 1.2407X1071*X(1.11255) _ 1.380X1071%
y=3 mX10~71.6X10-193X108 1.5086X10~17 © 1.5086X10~17 914.64 )

We must add in the rest mass .511 for each electron (915/938).511=.5

914.64+.5=915.14

2P32 at r=ry implies also twice our 2 positron y result will be the proton mass.
2(915.14)mec>=1.5006X101°J=936.704Mev. Add the central electron rest mass .511(.5) and the
two Opt energy eq.9.22 electron masses (figl below) where there are 5 electrons all
together(recall Kioda). Get 936.704+3(.511)=

938.237

Actual proton mass= 938.272Mev=m,. .004% difference. =ortho state

Thus we have a stable big £/2 of eq.13 -

d Creation

/ Wi \\\ <? central electron

— g —9 | H— N £ .
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\ \ 20)barn=nr3 Proton is back

N B o \\141 iy ;xn/ roton is bac
\\_/// S~ ﬁgl

So we have discovered here only one eq.13 big £/2=D/2 stable composite 3e . Note the flux
quantized because the positrons gain mass (explaining the proton mass) by their rapid motion
thereby contracting their E field lines seen at the center area thereby explaining the strong
force.

In Ch.9 we perturb the Newpde 2P/, at r=ry state using a Frobenius series formulation. We then
note that the Meisner effect J=0, N=0 Frobenius zero point energy 9.23 must add an extra " to
that u~ to get the n~ casel J=0 (Thus this later Frobenius solution (J=0, N=0 solution)
formulation requires an (implicitly assumed) additional charge e*.)figl

2 body positron-positron dynamics implying ortho and para states Clebsch Gordon
coefficients

It is well known that (and also implied by the new pde) for the composite system of two
electrons |1>]2> you get, from the analysis of the invariance of the resulting Casimir operator
J2, the resulting state |Ja,Js,J,M> with combined operator Ja+Jg=J. Using the resulting Clebsch
Gordon coefficients we find the decomposition 2®2=3@®1, m=1,0,-1 ortho triplet state SB|| and



singlet para state SBL, which indeed are well known(eg., Zeeman or Paschen Back line
splitting).
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SB.L and SB|| State Listing Para end-to-end and Ortho side by side states

Here Thomas LS LST= -(Lgr*(Sar or Scr))K+gs perturbation is subtracted off the Paschen Back
energy for both the SB. and SBy cases. The 0™ order ortho state is just the m, above.

2®2=3®1

2 SBLS, +S, = 0,2 body positron-positron dynamics so ortho(s,c,b)

states on the r=ry shell near 6=90° from equation 9.14. List of 3 Ortho SB.
States

S1 SP hybrid zero point energy eq.9.22: P state so ~ S1eS> #0, ortho. Equation 9.14 is the direct
Newpde solution

J=" , N=-1 solve eq.9.14 so with m, medium E level. Note added S must cancel added L to
keep net J='%. So m=1 has twice the energy of m=0 etc., hence the 2 inside the brackets under the
square roots below

J12 + 1(1.0905) = 1.446 (1.446).938=1353Mev £9 = 1314Mev
J((1446)2)? + 1(1.0905) = 3.07 (3.07).938=2900Mev 50 = 2967Mev
J((B.07)2)% + 1(1.0905) =6.228 (6.228).938=5830Mev £9 = 5945Mev

Note in 9.14 we treated each of =, Zc and Zy. as if each of these was a proton but with the larger
mass N=m, (in eq.8.1) with a whole new Frobenius series (so repeat eq.8.1-eq.9.23 with the new
N=my,) to also get multiplets for each of =, Zc and Zp. The N=0 is just the ortho proton with

N=1 giving the =s No larger Ns can be used in the Frobenius method since /ﬁ ~1-— ;—C fails

then. Ground State Pyq=(1)938 Sp?
Exterior B field energy cancelation due to Meisner effect zpe pions so don’t need to add [B2dV
energy. See appendix for another ortho particle that exists only in magnetars, black hole poles
and possibly high energy accelerator COM para state collisions in which this cancellation does
not occur.



7.5 SB||=end-to-end para State 5’1 * §2 = 1 para top view applies to only the (non radial) zpe

rotators since those side view ortho states don’t even exist for para states. 1+e+Ag Normalize

1+&+Ae

. . Ae .
out the € and 2¢ (recall muon motion in ry created a 2" muon ¢) —. = 1+ foruniform
T&

Frobenius ground state. But Ae—¢(Meisner object)—e917

Recall again the pion m zpe rotation (Faraday law rotation current) outside ru also contributing to
§1 * §2 = 1.

Also the para state ru, so Compton wavelength, is Fitzgerald contracted (shrunk) by vy since the
frame of reference is now perpendicular to the rotation velocity vector with y=917

Para State ZPE(outside: t; inside: €, 2¢) Shrink

y=e'® is the most fundamental zpe Dirac eq motion of all (appendix A).We can normalize out &
.E+Ae

8z = 1) = e 1%¢ where the low energy electron transitions are prevalent in the flat interior

equatorial plane. At high enough positron energies the positron Ag becomes a single muon €

moving inside ru:

ugBA eh h 1 9.27234X1072* (4(2.0678X10715) 7.669X10738
A 2myenr? 206.65 < 2.481X10-2° ) ~ 5.126X10-%7

=1.5X10"1J=93.364Mev~muon. §z = ) ~ e'¢ is the fundamental Dirac state with the electron
as usual the Newpde ground state even as in atomic physics. So the muon ¢ produces a second

muon € so the 2muon 2¢ is also the fundamental 26 X917 para state inside ra So §z = P is
1+2&e+2Ae

1+2¢
In the appendix we show B isn’t canceled above about 20GeV COM collision (Electron ugB at
r=ry flux quantum state stops it.)

E=pupgB =

=1+ % is fundamental too. But Ae—2¢g(Meisner object)—>2e917. Ae—>2e—2€917.

Inside ru €917/(1£¢) or 26917/(1+£2¢). muon shrink and 2muon shrink
Outside ru 9177 pion shrink

Inside ru

Muon shrink: 917(¢/(1+¢)) weak interaction.

917(e/(1+€))= Zo, 80 Gev

917(e/(1-€))= W4, 91 Geyv;

2 Muon shrink: 917(2¢/(1£2¢)) the fundamental para state
917(2¢/(142¢))=t, 173Gev. So the top is two para parallel p
917(2¢/(1-2¢))=207GeV. I call this J=0 particle the James.

Outside ru

Pion Shrink: 917n

917 =H, 125Gev. H is merely a para parallel , outside zpe for the para solutions

There should also be a 2pion shrink 91712 =250Gev explaining the asymmetry of that part of the
CMS curve centered at 200Gev.

S) state data from cms
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Single Ortho state perturbations

Chapter 8 Frobenius Series Perturbation To Each Paschen Back = State
Introduction

Here we start with the ground state magnetic flux energy(u/d) set my=1, move on to the three
orthos (s,c,b) with larger my s (£) and finally to the very high para (t). We are actually perturbing
the motions at ry by these r in equation 9.5 and so are taking into account the constituents

of the proton in this way.

Also there are then 6 magnetic flux quantization 2P3. states. Each flux quantization level has
its own m, and associated Frobenius solution. So we have ground state my=1, (appendixC
938Mev result) and excited states: mp=1.5=E;, and also =, =p, each having it’s own Frobenius
solution sets.

8.1 Solution to eq.2 Using Separability: Gyromagnetic Ratios And Low
Energy Particles (energy<3GeV) Derived For ground state Magnetic Flux

r~ry Application: Gyromagnetic Ratios
After separation of variables the “r” component of equation 9 can be rewritten as:

| (55 Vicoamy ) +mp | F = e (Vie, ==+ 222) f = 0 8.1)
[(g KOOmp) - mp] f+ hc( Krrdd_r - %) F=0. (8.2)

Because the koo =1-ru/r is point source the object B ambient metric is local and so the vacuum is

not infinite density (see also sect 6.11) as in the QED ambient metric which is homogenous.

Comparing the flat space-time Dirac equation to equations 8.1 and 8.2:
(dt/ds)Vicoo=(1/k00)Vkoo=(1/Vkoo)=Energy=E  (8.2a)

Using the above Dirac equation it is easiest to find the gyromagnetic ratios gy for the spin polarized

F=0 case. Recall the usual calculation of rate of the change of spin S gives dS/dtecmocgy] from the

Heisenberg equations of motion. We note that 1/g, rescales dr in

(\/KTT % + H:/Z) f in equation 8.1. Thus to have the same rescaling of r in the second term we

must multiply the second term denominator (i.e.,r) and numerator (i.e., J+3/2) each by 1/g. and
set the numerator equal to 3/2+J(gy), where gy is now the gyromagnetic ratio. This makes our
equation 8.1 compatible with the standard Dirac equation allowing us to substitute the gy into the

standard dS/dtecmocgy] to find the correction to dS/dt.

Thus again:
[1/ge]( 3/2 +1)=3/2+Jgy, Therefore for J= % we have:
[1Nge]( 3/2+5)=3/2+Ysgy= 3/2+5(1+Agy) (8.3)

Then we solve equation 8.3 for gy and substitute it into the above dS/dt equation.

S States: Recall € and Ae and S states from eq. 6.4.13. These are zero point energy states €
(eq.9.22) that must also be the source of the Meisner effect canceling of those large B fields. Noting
in equation 6.4.13 we get the gyromagnetic ratio of the electron with g=1/(1+Ae/(1+¢)) and =0
for electron. Thus solve equation 8.3 for Vga=V (1+Ag/(1+¢€))=V (1+Ae/(1+0))= V (1+.0005799/1).
Thus from equation 8.3



[1 (1+.0005799)](3/2 + Y2)= 3/2 + Y4(1+Agy). Solving for Agy gives anomalous gyromagnetic
ratio correction of the electron Agy=.00116

Going to higher energies (so €#0 in equation 8.3) we get the anomalous gyromagnetic ratio
correction of the muon. From the momentum representation of eq.8.1,8.2:

2P3); states: Recall the 2P3; states from chapter 3. Note also that k can be positive or negative
since 4mk=Zo in our Lagrangian with a positive k meaning at least one charge is not canceled.
Therefore 1/gx =1tk/r+e (using our Frobenius solution expansion near r~ry of €q.9.5 below
multiply through by zero point energy, € Meisner effect (1+e/4)((1+e+..) =1+.08=1+¢’ so a pion
mass is then added to the protons) from the *nature of Zo.. Therefore we have two cases from
equation B3 at the boundary r=k

CASE 1 1/gw =1+k/k+e charge 1 (core case)
CASE 2 1/gn =1- k/k+e charge 0 (use m from case 1)

Note: € (9.22) is required because it is the zpe here (like kw4 is the zpe of 1D SHM) external to
the 3e region. So through the Fzero point energy araday’s law Meisner effect pops up to cancel
that huge 10'*T internal B field, hence the origin of the mesonic field. So the ¢ in case 1 and case
II is the artifact of that large internal B field of section 8.1.

Also the effect of a zero charge is to make metric component goo (=1/g:r) contribution zero in
case 2. With N=-1 the effect of nonzero charge is to increase the dimensionality by adding a
metric component in eq.2. This provides the reason that Kaluza Klein theory (adding a 5%
dimension) is so successful at injecting E&M into general relativity. But Kaluza Klein theory is
not required here because finite Cum in eq.12 is really responsible for charge and E&M. 2D is
sufficient as we showed in Chapter 1. The extra 2D degree of freedom is associated with that
extra real term 03z in the amazing equation (Newpde).

CASE 1: Plus +k, therefore is the proton + charge component. 1/g, =1+k/k +& =2+ ¢ . Thus

from equation 8.1, 8.2 /24 & (1.5+.5)=1.5+.5(gy), gy=2.8 (8.4)
The gyromagnetic ratio of the proton (therefore that above r~ k stability was indeed proton
stability as we concluded) mass=m, . dt/dsVgoo =1/Ngoo =E=m,

CASE 2: negative k, thus charge cancels, zero charge:
1/gw =1-k/k +e=¢ Therefore from equation 8.3 and case 1 1/g =1+k/k+e

Je (1.5+.5)=1.5+5(gy), gy=-1.9, (8.5)
the gyromagnetic ratio of the neutron with the other charged and neutral hyperon magnetic
moments scaled using their masses by these values respectively.

Chapter 9
The composite 3e Energies For particle energy <3GeV Derived



Using Frobenius Series Solution (at first Paschen Back m, level)
Perturbation)

9.1 Series Solutions y Ansatz Near r=ru
my=1 here. m, determined from Paschen Back energy level (next Paschen Back level my=2 for s)
Recall equations 8.1, 8.2:

[/ dt d | J+3/2 _

_(E Koomp) + mp] F — Ac (\/KW;-I- - )f =0
rrdt d j—1/2

(G5 veams) = ma | + e (i =) F = 0

Recall from the eq.A10 goo=1-k/r-(¢+Ag). Also recall our Dirac doublet (equation 7 sect.l) must
have a left handed zero mass component (sect.C8) will be called case 1 and case 3 respectively
below. Also we need the equivalent of the singlet equation 2 is our below case 2. Also in equation
2 at r=ry the eigenvalue is Ae+e+1=2m, for that principle quantum number which then must be the
same for the 2P3/; state as we found in the sect.Ill Kioda section. Here we write out the left handed
(sect.C8) Dirac Doublet Eq.2 in the general representation of the Dirac matrices. Also recall from
chapter 8 that the 2P3/; state plus the 1Sy, zero point energy (eq.9.22,9.14 used also in eq.23 sect.l)
and its required sp? hybrid in that Kioda section, for this new electron Dirac equation gives a
azimuthal trifolium, 3 lobe shape and thus a A/3 spherical harmonic wavelength so that for covalent
bonding r’~ru/3 in keo=1-1’/r. This A/3 also is used to calculate P wave scattering (called “jets”
by quark people.)

To use the f & F components of the equation 8.1, 8.2 Dirac equation we write the Dirac equation
for free particle motion along the symmetry axis z (r=ratio of momentum to energy) to find the
chirality of the components in the general representation of section 1.6. We then compare this z
motion free particle Dirac equation eigenfunction structure with radial component structure to
arrive at a sense of which components of the radial equation are left handed and which aren’t. This
step is a little more complicated here because we are not using the chiral representation of the
Dirac matrices, but the standard representation instead. In any case given that the electron is
positive energy, then (as we see below) for the positron -E gives left handed f and F implying
that this object must have a positive charge since this left handedness(doublet, Ch.3) results from
the fractalness (There is a corresponding argument for G and g). The proton indeed is positive
charged. So:

—(E Koomp) +my,|g —hc(\/x_rr%+

ds

J+3/2

)G =0. — ucturtcpus-Epu

[~ (% fitgomy) = my| 6 +he (Vi £~ 42) g =0 - cpur- peus-Epuy

ds dar r

- (E Koomp) +m,|f —hke (\/KW % - ]_1/2) F=0 — pc’u-cpus-Epur

ds T



[— (% Koomp) - mp] F + hc (\/K_rr;—r + ]+3/2)f =0 — -cpuz-pucius-Epug

T

where to get correspondence from these two Dirac equation structures

1 0 r 0
we see that at +E: uf= (r) =g, u'= (1) =f; -E: No (v®= (1) here), vt= (r)
0 —r 0 1
ig u®
=F, Note in general (with r=0) here: g = :z =¥ . So we have the

F v
solution that in the standard representation of the left handed doublet is
given by F and f only for —E of the electron (here a positron needed

below for + proton hadron excited states) at the horizon. Dirac matrices
qt, m#0,— E, forF

9.4)
q=0,m=0,+E, forf

F
So for the left handed doublet: [f] we have respectively

L

Or more succinctly equation 2 in the Dirac doublet form implies in section B2: Note our
postulate implies C—0 so we are on the dr axis thus dt’=0 so dt’>=(1-ru/r)dt? (sect.0.1 of Ch.1).
Thus r=ru=k is a stable point since the clock stops since dt’=0 and the is the Meisner effect
formalism for canceling out that huge B field at a distance and a;so making it so the protons mass
is mp, and not much larger. .

CASE 1 1/ =1+k/k+e =1+ tam+1/r+ tHM/T +€ (core case)
CASE 2 1/ =1- k/k+e =1+ rgm+1/t+ ram/t +¢

Normalize out 1+ ram+1/r. That just divides by 2 since we (at r) are already near the event horizon
CASE 1 1/xre =1+k/k+e =1+ ram/r +¢ charge 1 (core case)
CASE 2 1/xn =1- k/k+e =1+ ram/r +e charge 0

So if |[ram+1/t|=[ram/t | (use m from case 1) then negative ram/r means zero charge (so
ram+1/T=ram/t s0 charge sources cancel out) and positive means charged. (see also above
sect.B2).

Note in sect.1.5 we can have a zero and nonzero charge in the 3™ quadrant (where dt=dr)
massive Proca boson case given the possibilities in sign we have for +&’/2 in

((-&/2) £&’/2)dr-((-€/2)xe’/2)dt.

In the first quadrant ds=0 again (section 1.4) so they have to add to zero. +dr+e/2+dt-¢/2 and —dr-
¢/2-dt+€/2 solutions. Multiply the second equation by -1, then add the two resulting equations,
then divide by 2 and get dr+e/4+e/4+dt-e/4+e/4 so that e/2—¢/2+e/2. So we multiply each of the
two ds? cases (above |dr+dt| discussion) by its own dz, each with its own kn=1/(1-¢//r) —1/(1-
(e/2+¢/2)/r) (sect.4.7) implying 2 charges &/2-¢/2=0, &/2+¢&/2=¢ and so two Proca equation
massive W,Z.

See B2. .See above B2:



CASE 1 1/gn =1+k/k+¢ F charge 1, m=1 (core case) 2P3/2
CASE 2 1/gn =1- k/k+e F charge 0, m from case 1) 2P1/2
CASE 3 f charge 0, m=0

We solve these equations only near r=ky since that is where the stability is to be found (and also
fortunately were these equations are /inear differential equations). Thus our first step is to expand
g about this radius and drop the higher order terms.

The Frobenius series solution method can now be used to solve equations 8.1 and 8.2 at r=ru. See
for example Mathematical Methods of Physics, Arfken 3 ed. Page 454. First we solve the fin
equation 8.1, plug that into equation 8.2 and then have an equation in only F. There we substitute
a series solution ansatz F= ) anr" in the resulting combined equations. We can then separate out
the results into coefficients of respective rn and get recursion relations that will give us series
that must be terminated at some N. Note the energy Eigenvalue ‘E’ will be in this series as
dt/dsVgeo so we can then solve for the mass energy of these hadrons at specific J. We will need
an indicial equation for the first term to start out this process. Also in this Frobenius solution
method ‘n’ turns out to be a multiple of ’% and the series must start at n=-1. Finally to get the
charge zero case the charged case must be done first and its constant masses used in the
uncharged state calculations.

Here in Ch.9 we perturb the Newpde 2P3/; at r=ry state using a Frobenius series formulation.
We then note that the Meisner effect J=0, N=0 Frobenius zero point energy 9.23 must add an
extra ¢” to that p~ to get the ™ casel J=0 (Thus this later Frobenius solution (J=0, N=0 solution)
formulation requires an (implicitly assumed) additional charge e*.)

9.2 CASE 1 charged: Excited States for F, m=0, qt 2P3/2

Again case 1 is one of the equation 8.1 possibilities. Therefore let R=ku-r, r<<R (for stability) we
can write in 8.1:

Vo=~ R _ ©.1)

14TH o JR+Ty+Re
R
-r

NTH—T

Jra—r+rg+(rg—r)e

VYg—T

Jra2+e)-r(1+¢) -

(9.2)

(9.3)




Note taking the first term of this Taylor expansion of the square root makes this an
approximation (<2GeV.). Note that including the above 1+¢/4 the compensating (1+e/4) in the
next r term has the effect of a multiplying the derivative terms by 1£€/4. This rescales r to allow
us to still say that the stable boundary is still at ru. Thus we could use it to also rescale t in the
first term of equations 8.1 and 8.2 or note that (1+&/4) (1+&)=1+5/4¢ thus renormalizing 1+ € to
1+4/3¢ =1+¢” everywhere. Also the 31%/32ku? terms must be included. We drop these
perturbative terms until the end. Therefore substituting in equation 9.5 we find that equation 8.1
reads:

iy = = ©.1)

= \/1+%H+5 = JR+rg+Re
VYg—T _
Jra—-r+rg+(rg—r)e - ©-2)
VYg—T _
Jra2+e)-r(1+¢) - ©-3)
r TZ
V2 1_#+1;j2 t. '
H

1-2 r 3r? 1_%

4 __r _ ~ H
<\/E> (1 po + 3212 ) 7 9.5)
Therefore

_ he T d (1+é)(j_%) o .
f= —hcm (1 - E) Tar o~ F  substituting into
therefore _
3
r d J+3 _

(B +mp|F —he( (1-15) 5o+ rw)f =0 9.7)

We find solving for f and substituting back in:

r
sl (1) L)1)
P 4ry) \2dr Ty

hc _( r) d (1+E)(]_§)

- + F=(E+m,)F +
E—-m 4ry) \2dr Ty ( mp)

p
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+'§Z); (1+ 3G+ G- | F=
3v/, 1 1
(he)* (+2)0-2) (-2
([E+m ( Zrﬁ 2) _ \/frjz Fy
1 1
(a0 6=
m(—Z\/_ ) . 2 4 45 )rF+
(ho)? 1\dF
(E—my)V2 4rH\/_ ) )E-}_
(hc)? 3 3\ dF
<E—mp)ﬁ(r,,16f o)

(he)?
(E—;p)\/f< : )dr2 +

(ke)? -1\ d’F
(E - mp)\/i<2\/ErH>r dr?

Here r=2ky is a regular singular point. Next substitute in F= X ,a,™ with again half integer n
allowed as well:

s <[E ]+ l(hC)Z (_ (j+§21§f—§) _ (\;?)D e+, (98)

- 2 INA A A N
;(5 Eh;)p)\/i<_ (1 +r123) (J 2) +(4r;2)> 4"+, (9.9)
N ., 3
(he)? 1 (i+3) )
;w—mp)ﬁ(‘ W, )“‘“)amr + (910
ke’ L 3(+3)\
;(E —mp)\/?<16\/§n3 * 4r52 )na"r * (9.11)

(he)? 1
Z (E-m )\/—< )(" +2)(n+ Danr™ +. (9.12)
p



i (he)” ( 1 )( +1) n= 9.13
M(E—mp)\/f i n na,,1r" = 0. (9.13)

Note from equation 9.12 that this series diverges. To terminate the series we now take 9.8 and 9.11
together and 9.10 and 9.13 together (since they have the same a,). For example combining the

equation 9.8 and 9.11 terms
(he? (_ 1+3)0-2) (- %))‘
1

(E+my)+ F— 2 - 7

(he)? ( 1 j(“%))n

(E-m,)V2\16v2r7 47

Replacing the normalization mp—mp(1+e ) (from section 4.8):

0+39)0-2) -2\ _1( 1 3(+3)

EZ _ m2 + — + N=20
( 2 T V2r2 | N2\1evZrz A
Therefore after rearranging:
E= \/mg + = (j2 + 1.7071j — 1.10355 — (J. 5303 + .8269)N) (9.14)
TH

We have for a general Laurent series ansatz:

wtra g va P var’ va,r vart +. = F

Note also that equations 9.8-9.13 imply that the coefficients of a given 1" are independent. Thus
adding together the coefficients of r for equations 9.8-9.13 at a given n:

9.9(-2)an-11(9.849.11)a,+(9.10+9.13)(n+1)an+1+9.12(n+2)(n+1)an2=0 (9.15)

Method of Solving Equation 9.15
For the outside observer an F=0 finite boundary condition at infinity applies for flat vacuum
value n=0, j=% and for r°, r'”, r'! and for complete vacuum for N=0, J=0.

Here then the generalized Laurent series ..+a_ 7~ +a_,,r "> +a,r’ +a, r'"> +ar +.=F

reduces to ..+a_ 7~ +a_ ,,r~"'> +a,r’ = F. Thus either set 9.9(j-/5)an.1 =0 or
(9.10+9.13)(n+1)an-1+9.12(n+1)(n+1)an2 =0 separately in eq.9.15 or set both equal to zero:

J= 1, sets q.9.9=0

1) N=-1, inequation 9.14 gives mass eigenvalue for =
Exact solution for all possible a,, sets none of them to zero.

2) N=0, inequation 9.14 gives mass eigenvalue for nucleon. dr°/dr=0 so all
derivative of F terms are then zero and this solution applies inside as well.

N=0 flat J=0 allowed flat vacuum gives nn* and with free e, j= % muon.

3) N=-l, in equation 9.14 gives mass eigenvalue of two X s since a plus and

minus square root of r.



These 9.9=0 cases have case 2 zero charge representations as well.

N=-1, Principle QM number Also a =0

1) J=0, in equation 9.14 gives mass eigenvalue for K

2) J=1,  gives deuteron mass eigenvalue (bonding) given N=0,J=0 fills first (i.e.,
pion). Thereafter use nuclear shell model-Schrodinger equation many
body techniques with these nonrelativistic lobes with this (bound state)
force acting like a outer layer surface tension, finite height square well
potential . Get a aufbau principle that then gives the D,F,G,..nuclear shell
model states. Alternatively can fill that first S state in with free 1Sy (next
state to filled state) and we have j=3/2 () filling in some (i.e., uds) of
the 2P3; states (see Ch.9) and thereby also deriving from first principles
Gell Man’s 1963 eight fold way for hyperon eigenvalue classification (to

finish that effort need case II zero charge and case III A, as well). M is
replaced by 2 in ¢ hyperons, by 4 for b hyperons as indicated in f fig. 16-1
for how to fill in the cbt 2P harmonic states given the requirement to use r? then.

Also, to include higher order r expansion term effects in equation 9.5 we must include those
perturbative 1+¢/4 and 3r?/32kn® contributions which gives a n(n-1)/6.4 added to the “n” term
component inside the radical of equation 9.14.

In our new pde dJ=o through LS spin-orbit coupling so the three spin’ss and the L=1 add to a
minimum. 1-%2-%+Y5 =Y =S for the proton with possible Pauli principle non S=% possibilities
for larger mass eigenvalue.

Details of Above Solutions for Case 1

Thus besides the ground state (N=0 Fgroundstate= 2.ant™ = aor-°=F( proton) we have the two solutions:
Fnx=1 =2 an™ = a-ir''=F., j= %, 0., Fx=s =2 ant™ =a., 1> =F,. For j="%. 0.

Note the energy eigenvalues (E) can be found from the solution to equation 9.14 and kx =1 with

E=1=938MeV. Thus

N=0, j= "4 then 9.14 gives +Nucleon (ground state) mass eigenvalue. Note that for the N=0, (with

J= Y and also J= 0 in section 9.5) ground state that the charge density is uniform (i.e., p=Kocr? )

for r<k.

N=-%, j=% two valued because of the two square root solutions. Equation 9.14 then gives X+

(charged sigma particle) 1184Mev particles, F2 eigenfunction(s). Actual 1189Mev

N=-1, j= "2 gives one charged E particle. Therefore the energy from equation 9.14 is 1327 Mev

(actual 1321), F; eigenfunction.

Case 2 and case 3 give the neutral hyperons and A, respectively (see case 3 below).

9.5 Nucleon Wavefunction: J=1, q#0, N=-1 of Case 1

Here we recall case 1, section 9.3 above and compute energy eigenvalues for J=0 and J=1.again
using equation 9.14 in case 1.

J=0

N=-1, j=0 E=490 MeV from equation 9.14 case 1. K* . Substitute into strangeness equation 9.34
case 1 we obtain strangeness =1.

N=0, j=0 then from equation 9.14 E=139.7 MeV (9.22)



case (note again m=1+e=1.061 in 9.14 for outside). This is the nontrivial F zero point energy is
(and so has a fundamental SP hybrid state harmonic) for r<k=¢ at r=ry. since the square root in
equation 20.1 becomes imaginary then. Thus the mass of n* is now the vacuum ambient metric
(e.g., note Focr® for N=0 here) e‘at r=ru so really is the muon ambient metric component modified
by being next to that 2P3/; at r=r, object. Also this explains why this fundamental harmonic result
for 7 is used in all the successful nuclear force theories such as in the Skyrmion Lagrangian for
example. Note that:

m z+=139Mev=1.3(105.6MeV) =1.3e=.08=¢"
Recall zero point energy N=0 for a spring where N=0 means it has a smallest E=(1/2)hw
oscillation energy. Here this N=0 smallest oscillation is the pion eigenstates that can freely
participate in a Meisner effect cancellation of that large *P3» B field (since every 10-'%sec a
positron and the central electron exhibit virtual annihilation- creation).

We Must Apply Faraday’s law

Note B=Sk and so Emf = — Z—Ij = %S =gy G) so simply adding or subtracting %2 (gy) can

reverse the rate of B flux change. Note an extra spin’s B field is thereby rapidly created in the 3
particles (by one of the 2 created particles at the positron, the other is canceled by the positron’s
B field.). In that regard the nearby net spin’% 3e zero point (eq.9.22) energy (ZPE) particle S= /2
+Y2 2=, can then counter that rate of B flux change with an opposite spin’2 of its own creating
a counter B flux according to Faraday’s law S= "2 +'2 -}2-72=0 spin turning our ZPE particle into
the spin 0 ©* =¢ that is implied by that J=0. Given the nearness of these two identical electron 3e
triplets this becomes the only way that Faraday’s law can work here and works continuously
because of that frequent virtual creation annihilation process. This counter B field thereby creates
a Meisner effect canceling on the outside of rg of the huge B field created by the positron
circular motion and results in a permanent pion (Yukawa force) cloud Klein Gordon equation
(Yukawa force) cloud around the proton.

Inside r just outside r
_ zero point energy 3e object eq.9.22
AT PR B=Sk S=1/2+1/2--1/2
gamma ray from O <+: ~ += positive e and spin up(or vice versa)
pair annihilation -=negative e and spin down(or vice versa)
—  e=1.6X10"19 C $=1/2
.r"“. |
Az Faaéaday's law
i i o = - 95 _
increase in B O 5t = EMF= 3t _gy1/2

due tonet 1/2=S creation O (.
) S=1/2+1/2--1/2-1/2 =0

\ ' Opposite spin in zero
——point energy induced cancels
increase in B flux in Faraday's law

pair
creation

So 0 point energy spin 0 So zero pt energy object
pion¥, spin S=0
N=-1,J=1 case 1. Recall for J=1 we have y oc rsinf ocY!; (0,4) double lobe y*\ along the z axis:
From equation 9.14 we find with these inputs that E=1867Mev (9.23)



implying that (because E~2m, and J=1) this eigenstate is responsible for the spin 1 deuteron (state).
The L=1, 2P state solution(s) are symmetric and so of the form (1/N2)(w1y2 + y1y2) =ys and
have positive parity even if the 2P w1 and y2 each has negative parity. The Deuteron thus has +
parity (Enge, 1966).

Recall if we include the background metric in eq.6.4.11 Koo=1+rn/r+2¢’+A€ and
kn=1/(1+ru/r+Ag). So rescaling r—r-¢’ =r’for r near ru allows us to use our above solutions
again. So in equation 8.1 (1/Nkw)y=1N(1+ru/r’+Ae)y~1/N(1+ru/r)y+(e/2)y. Note if we again
rescale our numerator J=1—1+(g’/2)2 so that we have perturbed our Y spherical harmonic with
a (g/2)Y» giving a measure of the oblate, non spherical structure (e.g quadrupolar yp and higher.
€’/2 =.04 from 9.22 therefore the nonspherical component of y is approximately 4% of the total
vy and is often called the tensor component of the Deuteron eigenstate (Enge, 1966). This
simplest multiparticle state represents the deuteron state and this is then the explanation for the
deuteron tensor component of the nuclear force.

Also the energy of the Deuteron is given just outside the ry boundary (so €’ —ig in 6.4.11) by
Ep=Rel 1876/Vkoo=Rel 1876/\(1+ig’)+..=1876(1-ie’/2+ (3/8)(ie’)*+..). So the added real term
due to the €’ is equal to 1876(3/8)c’?=1876(3/8)(.08)>=4MeV. In free space £’=0 and just outside
the nucleus it gives this contribution to the Deuteron energy. Thus this (3/8)¢’? is the binding
energy of the Deuteron.

Note from the equation 9.15 discussion for N not -1 we can only use J=1/2 and J=3/2 thus are
restricted for two particles to S and P states (i.e. /2 + /2 =1) which then gives us the hyperons. For
N=-1 we can use other J and can thereby construct large nuclei.

The multinucleon nuclei really are the solutions of the indicial equations of 9.15.

Recall in the shell model a hard shell nuclear outer wall is assumed with free space oscillations
allowed inside this shell. The solutions to the Schrodinger equation are then spherical Bessel
functions with corrections for spin orbit interaction, finite well height and tapered wells (Herald
Enge, Introduction To Nuclear Physics, P.145). In any case an infinite mean free path for these
oscillations is assumed to exist inside this shell. So how can there be an infinite mean free path
inside this extremely high mass density region?

In that regard the above 2, J=1, N=-1 2P deuteron state can also be viewed as yet another
Bogoliubov pairing interaction (such as in the SC section 4.5) giving this infinite mean free path
of the electron pairs comprising a pion acting as a Cooper pair, just as in SC In the context of the
section 4.5 pairing interaction model A(dv/dt)/v? is no longer as small but dv/dt becomes very
large to due to the ultrarelativistic motion of the electrons inside the nucleons. In any case this
infinite mean free path for these oscillations (recall Cooper pairs have an infinite mean free path)
is thereby explained here as a new type of superconductivity.

Spin Orbit Interaction In Shell Model

Recall the derivation of the shell model from first principles in section 6.12. If equal numbers of
Neutrons and Protons gyromagnetic ratios then gyp-gyn =2.7-1.9 =.8.

Since more neutrons in heavier elements: (1/1.1)(.8)=.7.

R=ry =2 Fermi measured from singularity at 1-2=" .

From 2P3); at r=ry Fitzgerald contraction discussion in section 2.2: r—>R=Y5(1-%2) = ¥4 Fermi =
Rv(r-ru) so Ry(r-rq)—>Kr. From Chl,sect 4.16 V=1/(r-ru). Spin orbit interaction=
a02(1/r)(0V/or)(seL)=



, 1 v (o) = 7 -1 (se0) =
aoRV(r—rH)a(RV(r—rH))s ~ Ry(r—ry) (RV(r—TH))Z ’ -

= 7)o DY = 7605 e )Y = 21V 0y -
o s ror s rar_a”rars -

45*E&M spin orbit interaction.

Thus the a;=1Fermi. Thus the nuclear spin-orbit interaction is much larger than the E&M spin
orbit interaction because the nucleons are much closer to ru than to r=0 and the Fitzgerald
contraction of the nucleon 2P3, state is on the order of 5.

At close range there are higher energies available so the 4mev (=be) in equation 9.3 (if we include
12 contributions) becomes the binding energy for the deuteron in geo=1-k/r+be in 8.1
particles, F> eigenfunction(s). Actual 1189Mev

=-1, j= "> gives one charged E particle. Therefore the energy from equation 9.14 is 1327 Mev
(actual 1321), F; eigenfunction =Es the fundamental structure for m=1.5. So we reapply the
analysis all over again for mp->1.5 insteard of 1.
Case 2 and case 3 give the neutral hyperons and A, respectively (see main Frobenius series solution
paper).
The multinucleon nuclei are the solutions of the indicial equations of 9.15.
Recall in the shell model a hard shell nuclear outer wall is assumed with free space oscillations
allowed inside this shell. The solutions to the Schrodinger equation are then spherical Bessel
functions with corrections for spin orbit interaction, finite well height and tapered wells (Herald
Enge, Introduction To Nuclear Physics, P.145). In any case an infinite mean free path for these
oscillations is assumed to exist inside this shell. So how can there be an infinite mean free path
inside this extremely high mass density region?
In that regard the above 2, J=1, N=-1 2P deuteron state can also be viewed as yet another
Bogoliubov pairing interaction (such as in the SC section 4.4) giving this infinite mean free path
of the electron pairs comprising a pion acting as a Cooper pair, just as in SC In the context of the
section 4.5 pairing interaction model A(dv/dt)/v? is no longer as small but dv/dt becomes very
large to due to the ultrarelativistic motion of the electrons inside the nucleons. In any case this
infinite mean free path for these oscillations (recall Cooper pairs have an infinite mean free path)
is thereby explained here as a new type of superconductivity.

Particle Lifetimes
Recall from section 1.1: ko0=1-ra/r SO r-rKeo=tn analogous to dr-ctie,=ds so ru=ds=|dZ|. From
section 6.7 there are three Dirac equation contributions with one being the ultrarelativistic my
contribution. For that contribution we put Dirac as into dr+idt=dZ the free space Dirac equation.
Dividing by ds gives mass on the right side in that Dirac equation. Because the motion of the my
=leV (Ch.3) particle is ultrarelativistic in these hadrons we apply figure 1-1 dr=dt so 6=45° and
so dZ/ds =e'™*dr/ds for the ultrarelativistic my (on earth contribution of Ch.3). Note that (e™*)*=i.
We add another contribution (for spin 2, N=-1) to get zero charge case II below. For added 2P,
(K,£m mesons) there are 3e in ru below (sect.10.3). Thus we obtain:

hyperons, Kaons and +n: e™42e?/myc*= e’ y=Ru
Recall that domain r=ruy was the most stable, the proton state. This stability condition can be
restated in terms of excess energy above the proton rest mass. Next substitute this m and



ultrarelativistic my in the ry in equation 9.14 with this 1’y in the relativistic solution of equation 2
described in Ch.1,sect.1.

E= \/m; JrRiz(j2 +1.7071-1.10355— (/.5303+ .8269)N)

H

2 12
2m,r'y

. (n (/4 (7> +1.7071 -1.10355 - (;.5303 +.8269)N)J

Add to above to 9.14 result to get for the total energy:

=N (1Y) (72 +1.70715-1.10355 - (.5303 + 8269)N )
m1+(e j+(_jj 7071/ 1. J- :

p 2
r'y Ty 2m;,

Plug (he/e? )? =(1/a)? back in eq.8.1 and normalize myc? to 1/hz with 1/h. Next plug into the time
propagator et and get for the r’u (decay) term:

2
- expl{((mpcz /)4 (e Y (m,c® 1 h) 2 (72 +1.7071 —1.10355 - (/.5303 + .8269)N)J(h—czj }

m, 2e

.2 . .
_expi (mpcz /h)+i(mvc2 /h)m" l(] +1.7071; 1.103552 (].5303+.8269)N) ; (9.23)
m, (2c)

=exp z(((m pcz /h)+ iA))‘ giving hyperon, Kaon, +7 decay times.

The second term A is also the excess mass above the proton mass.

For neutrons (939Mev) the excess mass above the proton mass (938Mev) is m,/1000 and

Ru—1000RH, A—-A’

Bt
1000* (1000R,,)

gives the neutron decay time.

(/> +1.7071/ -1.10355— (;.5303 + .8269)N)

For my muons j="2, N=0 and the excess mass is m/8.87=m,.

1 1
E*=m? 2 +1.70717 —1.10355—(7.5303 +.8269 )N
ERNYIE (8.87R,, )’ (] ’ / U ’ ) )

gives time for muon m, decay.

For n°® decay time m,—m. (E&M decay) along with 8.87—7=m,/m.0 in the above equation.

For resonances my—m. (E&M decay) in 9.23 gives time of decay.

Note the second term here contains a ii=-1 and so it is a exponential decay term e £t with
.693/E=t the “half life”.

Thus we get °, £, K mesons and hyperon, muon, neutron, resonance half lives from (these
modifications of) equation 9.23.

9.7 CASE 2 Excited State F, charge=0. 2P1/2

Recall from 9.4 that case 1 implies Eq—m in case 2 (in 9.4). Also



1/gn~1-kn/kute= ¢ for -e. Net charge=Zero. Thus let R=ku+r, r<<R , r’=kpe+r

Kﬂ goom}+m}F—hC(,1gW di+ ]+3/2)f:0
s r

ds
ds dr 7
Recall equations 8.1, 8.2:
[ (dt d | J+3/2\ , _
_(E Koomp) +mp]F — fic (\/KW;-I- - )f =0
rrdt d j—1/2
(G Rooms) = my | 1+ e (i g =) F =
1 vR Ty +T
K = ~ = I~
T \/1_%1-}-8 \/R—T‘H+R8 \/T‘H+T—T‘H+(TH+T)E

Vrutr o NTH _ VTH
Jrge+r(1+e) Nrye+r T/
Also (%) /Koo = E. in the Dirac equation 18.1. Therefore equation 19.1 reads: r’=kpe-+r

.. 3
_ rmd I ) e
[E + m]F hc(\/:dr+m+r>f—

., 3
md Jts
[E + m]F — hc A 2
r'dr ry+r

.. 3
_ _ tH d ERLA PAF) WP
[E m]F hc (J: drr + (1 rH) TH>f =0. and
.1
_ tmd _(1_Tr\I2\p
E m]f+hc<\/:dr (1-7) rH>F‘0 Thus
}c _ __ke ™H d _ (1 — L) =) F Therefore
(E—m) rr drr TH TH

3
d J+5 . ,
[E + m]F —hc( ’:—’f;+ (1 —%)T—Fj)f = 0 using r=r’+rue

.3 A |
Ty d r'—eryg\\J T 7\ —hc Ty d r' — J—>5

(E+m)F —he| |[2—+(1- il Z [ Sk 12 Vi
r' dr Ty ry |E—m\~N7r'dr Ty Ty

Multiplying both sides by |E-m,| we obtain:

f=0




E? —m? Ty d (r' —ery) j+% Ty d T —Tye j—%
SR e - (1- F=0
(he)? r dr Ty Ty r' dr Ty Ty

YA .1 .. 3
E-m® 429 (+2)0-2) S T ) +(1+S)(J+7) T 4
(hc)? 17 r'\ rg Ty r' dr'

2
(r—Hd— - 1r—“i) F =0 Multiplying both sides by 1’2 we obtain:

rrdr2  2r4/2 drr

., 3
E? —m? O3\ /. 1\ /[r? Jt3z) .., d
(l—(hc)z T l—(1+2£)<]+§)< —E)<E>>F+(1+s) Now r3/ pEa

S S BT P
T gz | T T gy T Gy

Defining r’=r? and doing the derivatives in the new variable:

dFF dF dr 1 dF
= =——"— and

&’ dr dr® 2r dr
sz_ld[ldFj 1( ldFj 1 1 d°F _

dr 2rdr\2r dr ) 20\ 277 dr ) 2r 2r a@?
2
— % dar Lz ar Substituting these expressions for the derivatives in:
4> dr  4r

[%TW+S)<,-+;)<-_;)(g)]”

lr_H d? TH le_ Th?' g ) 3)(ﬂ>dF Ty d

dr' 4r dr

r3 ,
4 dr'? Ardr +a(1+8)<]+§ 2r

3 1
(E -m )_(1+28)( -Iz_ )(]_7) Zanrn+4+%12(n_1)nanrn—2_

(hc)? Ty

.3
g T, 1 Jt5 T
2N na,rm? — Q(} - E) z a, "3+ (1+¢) (2\/_2) z na,r"t! — ZHZ na,r"? =

B2 om’ 142 (+2)(-3) m NG D+ 2)ansr”
('h:C)z ( 8) TI_% Zan—él—r 4 Z(n )(n )an+2r

%’Z(n+2)an+2r —@( ——)Zan Nk +(1+s)( )Z(n+1)an o

Ty .
ZZ(n + 2)ap " =0

Combining terms noting simplification due to combining the as+2 terms



3

. : 1
% — (1 +2¢) U 7)@(] ) Z AngT™ + %Hz(n — D+ Dag,r™ +

3
V(. 1 (i+3) _ n_
;- (] 2)2 A,_31r™+ (1 +¢) —ZMZ(n Da,_;r"=0. ?

Next we write the individual eigenfunctions as:

3y 1
%_(1+28)(1+2)T§(J 2) S e =

Thus since these series terms add to zero:

2
Th

E = jmz + (hc)?(1 + Ze)% (9.24)

3

j+s _ _ 2
23 (n—1)a,_,r" =0 Herer’=r*sor >'* ="' [

(1+£)2ﬁ

%“z(nz —1Da,, =0 (9.25)

_Ez(j - %) Yan s =0.  (9.26)

TH
J=1/2 with N=1 solves the indicial equation implied by 9.24-9.26. Recall from 9.4 that m=proton
in this case (case 2). The energy in 9.24 is then that of a neutral particle (q=0) with the mass of
the neutron so E =Eq; =m=mn. See equation 9.23b for neutron lifetime and 2P3/2 for neutron
spherical harmonic state, section 10.3) But in case 2 and equation 9.23 then the previously derived
charged spin 2 hadrons my, m= can also be put back into the Dirac equations for ‘m’(instead of
the proton). Thus the charged, my, m= from equation 9.14 can be put into the “m” in 9.24 which
gives the neutral E=m=mn, mz.. my has a N=1/2 and so does not satisfy the above equations and
so does not exhibit a stable neutral 2. Recall the Q- (which is J=3/2) is not J= % so doesn’t have
a neutral counterpart as does the proton and these other J= 2 hyperons.
Recall the iterated Dirac equation is the Klein Gordon (in ¢ with J=0) equation eigenstate
transitions.
J=0, q=0 Case 2
Recall J=0 is allowed in every case.
m=1 proton, j=0 in equation 9.24 means K Long. Equation 9.23 gives K long mass eigenvalue:
1+(0+3/2)(0-1/2)/1=1/4. Thus V.25 =.5. Thus .5X938X1.06=497 MeV=Kjone. Note case 2 is zero
charge and note also from section 9.8 that the Strangeness=2[\.5|=2*.707 ~1 as in strangeness
equation 9.34 below.
m~1 for Neutron then in 9.24 we have K short, if m=mz and J=0 then D° Long.
If m=mz j=0, and neutral then 9.24 gives D° Short.

9.8 CASE 3 m=0, so y, f state, charge=0 (lower case of equation 9.5).



In case 3 there is no central force therefore N=0 and j="% in f. This is the m=0 left handed
doublet case of Chapter 3. Let R=ku-r, r<<R for stability we can write:

1 VR
Vi = ~

\/1+%‘I+£ JR+Ty+Re

VYg—T

Jra-r+rg+(rg—r)e

rg—r _
Jra2+e)-r(1+e¢) -

2
(1_5) 1+t
4 "H 8Ty

2
V2o |t

arg 1ery

r

I (1- L+ )~
v2 4ry  32rf RN

Therefore equation 9.1 reads:

r d j+§
[E +m,|F — ke (1—E)mr+m_2r>f:0

1+ ) (j+3
[E — mp]F — ke <1 — 4:H) \/Eddr + ( THBH( 2) f=0
[E—mp]f+hc<\/x_wj—r—§>F=o (9.27)

From the above equation 9.27 if (and j= 2) m,=0 then

L) d (1+i)(j_%)

V2dr Ty

[E—mp]f+hc (1— F=0

4ry

Therefore (with j= '5) from equation 9.27 for small r. In any case:

hc ( r ) d + (1+é)(j+g)

¢ E+m _E vzdr TH
14

F=~h

.. 3
T d Jt+3 _
[E + mp]F — hc ((1 - E) _\/Edr + TH—T>f =0
Solving for f'and substituting back in 9.27



1
ry d (1 + %) (j B f)
[E m ]f+hc (1 4TH)\/§dr "
3
hc r d (1 + ) (] + 2)
Frmp| i)t P E
(kc)? r d r\%2 d? (1 4:‘
(E +m,)V2 <_ <1 B E) ryd4N2dr * <1 - 47”H) V2dr? "
2 3 1
(he)? 3y, 1 4 (1F %) +3)0-2)
E +m, <_<1+E)<]_§)\/§r},dr_ T2 /
Eom s | 0 (]+§)(, 2), 042\,
(E + mp) T \/irl-%
(he)? )_0+3)\,,,
(E + mp)\/i 4rg
R /AN
E-I-m )\/E kH \/5 d”
(he)?
(E +my,)V2 4\/_rH TH
( (he)? ) 2 df
(E +my)V2/) \ 16V2r? rH 4TH Tar
( (he)? ) dzf
(E +my)V2 arz '
(@ mye) 2
(E + mp)\/_ 2\2ry) dr?
Next substitute in F= > panr™
( E(i;; (j+52§11'—5) +E]r:i,2>l> .
Zu (EJ(j‘::,)\/— (2 = r,?,) 2) - (i?)) An-a7" +9.28)




Zi ((Ef:)z)\/— ( 4\/—TH ) (n+ Day, r" (9.29)

Zh <(Ef:::,)\/‘) <16\/1—rH (4 )> na,r™ + (9.30)
Zn (ﬁ) (_) (n+2)(n + Dap,r™ + (9.31)

sV <(Ef:22) ﬁ) (57) ( + Dnag,ar™ = 0932)

We now take 9.27 and 9.30 together and 9.29 and 9.32 together (since they have the same an).
Thus there are 4 independent series (with 9.28 and 10.31) here. The equation 9.27 and 9.30 nth

terms give:
e, ( (f+%>o%>+o+%>> )

2
-m, 147 V2r?

’ 1
( (he)? ) 30-9)\
(E-m,)V2)\ 16v2r? 41 '

At some value of n=N we have for a solution
3\ 1 3 1
(E? —m3) + <— (]+2)£] ) + (]+2)> + i( . il 2)> N=0 therefore rearranging:

Th \/frfl V2 16\/51”13 4r1?1

E= \/mg + %((}' +3/2)(j — 1/2) +.7071j + 1.0607 + (.0156 — (j —.5).5303)N)  (9.33)

[E+m]

Recall from the equation 9.4 ‘f* case that we have my=m=0, and zero charge therefore no central
force thus N=0 in focr® in equation 8.1. Therefore since there is small r and dr’/dt=d1/dt=0 in the
equations just above equation 9.27 along with 9.33 then the 9.27-9.32 equations add to zero and
thus are solved. Also the j=3/2 (so L=1) case is not allowed since that requires a central force to
give L#0, j= Y4 and of course j=0 is allowed here. Thus

N=0, j= ', m=0 then from 9.33 we have E=1115.8 Mev A,

N=0, j=0, n mass and also gives m=.56 (with m=0) in 9.33 used in gyromagnetic ratio
calculation for f. Recall ¢=.08 (with m=0) for F in 9.14. This is the nontrivial f state zero point
energy for r<k since W=y+y from our observability definition. Note Kaons then give no strange
bound states because this mass is real (in contrast to the imaginary pion mass in 9.22).

9.9 Strangeness

Recall that in 9.14 (which applies to Case 1 and Case 2) the energy is E>=mo>+ (j*+1.7071j-
1.10355- (j (.53033))+.7642))N)/kn>. Now m,” and E is conserved (m, is a constant) here and thus
it appears that energy conservation implies that the square root of j*+1.7071j-1.10355)-
(j.5303+.7642)N =S must be conserved. Therefore E>=m? +S? then and “S” is conserved for the
charged core states and thus for the neutrals given that in section 9.8 that Eq—m then (for f state
m=0 we also have S~E for A). We could also write E>=m? +C? for the next 2P state eigenstates
(call C charm if you want) which would also have their own associated production (since <[> not
zero). Thus, as an example, normalizing to a factor of 2X:



2XSQR[(.5(.5303)+.7642)(0)]=0=Snucicon, 2XSQRI[( .5(.5303)+.7642)(-1)|~2=Sx,
2XSQR|[.5(.5303+.7642)(-%%)]| ~1=Ss, 2X SQR|[(1.5*+1.7071(1.5)-1.10355-
(1.5(.5303+.7642)))(-1)]|~3=Sa. (9.34)

Strangeness is only an approximate conservation law in the examples in 9.34 but there is enough
conservation at least for the “associated production” and we have not yet included the weak
interaction here. This is a direct derivation of strangeness, instead of just having postulated it as
it is in the standard model and QCD. Strangeness isn’t strange anymore.
Charm, bottom, top: In chapter 9 equation assuming hard spherical shell. We obtain other (less
stable, resonances) particle groups using equation 9.5 by taking the quadratic approximation of g
(i.e., include the (3/32)(r/ku)? term in 9.5) Using 10.8 instead of just the linear approximation we
used above. Recall that the perturbative (3/32)(r/kn)?> term had to be included since it gave a
~20Mev correction to the hyperon masses.
C Meson Mass Derivation From Potential Of Chapter 10 And The New Pde eq.9
C Spherically Symmetric Wave Function Required
PROGRAMFracsN
DOUBLE PRECISION A,B,C,D,E,F,H,LI1,J,KK
DOUBLE PRECISION K1,K2,K3,K4,N1,N2,N3,N4,R,W.X,Y.Z
DOUBLE PRECISION Y1,E1,E2.MM1,MM2 MM3,EE.JJ
integer N,M,M1
DIMENSION EE(400)
Variational principle on E with respect to [ and Y1,
RungeKutte on D equation 8.1. Y=2 width Deuteron
pion oscillation resonance modeled between 0 and Y=2.
H=0.001
mH=2 harmonic number for oscillation inside Y=2.
C  mN=I gives pion 0 and K+-,mN=2 gives pi+- and Ko resonance
ep=0.08*mH !pion Ist and 2nd harmonic resonance added to Y1
W=1.0+ep !pion mass added to nucleon.
J=0.0 !spin 0 mesons
X=0.0001 !mass energy increments
11=100000000.0
A=0.0
B=0.0
C=0.0
E=0.0
KK=78.8 !gives MeV energy units
JI=T*1.
Y1=2.0+ep !pion increases Y1.
50 D=.0000001
11=0.0
F=.0000001
Y=Y1
60 R=Y
V=1.0/(1.0+ep-R) !chapter 14 potential for spin 0
E1=E

ONON@!



K1=((W-E-V)*F)+(((J-0.5)/R)*D)
NI1=((E+W+V)*D)-(((J+1.5)/R)*F)

R=R+(0.5*%H)

V=1.0/(1.0+ep-R)
K2=((W-E-V)*(F+(0.5*H*N1)))+(((J-0.5)/R)*(D+(0.5*H*K1)))
N2=((E+W+V)*(D+(0.5*H*K1)))-(((J+1.5)/R)*(F+(0.5¥H*N1)))
K3=((W-E-V)*(F+(0.5*H*N2)))+(((J-0.5)/R)*(F+(0.5*H*K2)))
N3=((E+W+V)*(D+(0.5*H*K2)))-(((J+1.5)/R)*(F+(0.5¥H*N2)))

R=R+(.5*H)

100

200

310

312

315

320

V=1.0/(1.0+ep-R)
K4=((W-E-V)*(F+(H*N3)))+(((J-0.5)/R)*(D+(H*K3)))
N4=((E+W+V)*(D+H*K3)))-((J+1.5)/R)*(F+H*N3)))
E=El

F=F-+((H/6.0)*(N 1+(2.0¥N2)+(2.0*N3)+N4))
D=D+((H/6.0)*(K1+(2.0*K2)+(2.0*K3)+K4))
I=(F*F)+(D*D)

[=I1+(1*(R+(0.5*H))*(R+(0.5*H)))
IF((abs(R-1.0-ep)).LT.(0.9*H))THEN

Y=Y-(2.0¥H)

GOTO 60

ENDIF

Y=Y-H

IF(Y.LT.0.0)THEN

GOTO 200

ENDIF

GOTO 60

E=E+X

c=I1

IF(B.LT.A)THEN

GOTO 310

ENDIF

GOTO 312
IF(C.GT.B)THEN
ENDIF
IF(B.GT.A)THEN
GOTO 315

ENDIF

GOTO 320
IF(C.LT.B)THEN
print *.' '

print *'E="(E-X)*KK,' J='J,' max I'
ENDIF
IF(E.GT.8.0)THEN
GOTO 349

ENDIF



A=B

B=C
330 GOTO 50
349 print*,'program finished'
350 stop

End
C Results for spin 0,L=0 are
C For mN=1 get 135MeV 7° and 493K* for resonance with 1 meson.
C For mN=2 get 139Mev 7* and 497Mev K° for resonance with two
497Mev K° for resonance with two mesons in ordinary nuclear matter nucleus would split before
K energy created. In a neutron star however K s could be created.
This fortran computer program only requires a few seconds to run on a PC. On the other hand
lattice gauge theory programs (assuming a SU(3) lattice) require massive computing power and
really do not duplicate high energy liquid state strong interactions anyway.
Here the pion is a r=2Ry proton with no net rotation and the central electron in a m=0 state so net
spin =0 . 6>>1/20Barn so annhilation occurs outside ry and the pion decays.

9.10 Stability of 3e Composite

The postitrons are ultrarelativistic, y=917, so the field lines are Fitzgerald contracted so so the
E&M field lines are contracted resulting in our explanation of the strong force.
dt’>=ioodt>=(1-ru/r)dt> is zero if r=ry so clocks stop so stability. But some y must leak out so
some electron positron annhilation must occur. But as we show below virtual decay and
annhilation still results in stability

. Bcancellal:io_n
Virtual Annihilation and Creation © , Mesner effect

S ' 48/ pion eq.9.22,9.14
,/;,‘\raeocaneo X /—\q,;

Massive
obiect

2P3n q"}»@ )
I —£®

Annthilation

(rarely)

2P3n )
Iy —£9

stable orbi

P32 = £ central electron
1 ’ \‘*\x )
H @
Creation
(1 Z‘ﬁiibamznﬁ

Other positron
roton

Proton is back
interior B field

Fig3

So this is a virtual annihilation-creation process inside ru, implying that this two positron-
single electron state is stable (yet another reason for baryon stability). See eq.11 also. We
rigorously derive the low mass (<3Gev) hyperon eigenvalues using the Frobenious series
solutions to eq.11 near r=ry (from 3"pt, r~ry) in Ch.8-Ch.11.

B field Inside ru

That above eq.1 calculation used ru=e*/mcc?, q/t=i. g=e=1.6X10""° C,u,=4nX107, A=nry?,

BA=2X10"1"Wb=, BA = (gr—oi)nr,_%. This allows us to calculate B= 10''T inside ru Note this
H

creation and annihilation of this B field (above fig/3) must imply a Faraday’s law Meisner effect
zero point energy J=0 eq.9.23 pion cloud meaning there will be a constant cloud of moving
pions around baryons, thereby proving the existence of the well known pion caused Yukawa
force.(potential V=e7/r). One interesting consequence is that just after a typell supernova the
protons are most compacted (reaction force to the outward action push) and so the pion cloud is
squeezed out. So there is no Meisner effect and so the entire neutron star exhibits this huge 10!'T
B field (thereby explaining magnetars) But the star eventually radiates this (potential) energy



away expanding the star and so not squeezing out the pions anymore and so the Meisner effect
suddenly returns thereby with a sudden change of B flux creating a large Faradays law EMF
thereby explaining FRBs (energy=(B2/(2u,))X[(4/3)m(10%)*]=(10'")2/(2X4710-)X4X10'>=
1.4X10%*Joules FRB enough energy for a ms pulse to be detected anywhere in the (10'?Ly
radius) universe even by modest Jansky sensitivity RF receivers..).

Chapter 10

r=ry Application: 2P3/2 Half Integer Spherical Harmonics Solutions. This is
a continuation of Chapter 9

10.2 Overview of 2P3;» Solutions to Equation 9 (the New Dirac equation) at r=ry in the
Context of the Equivalence Principle (single charge e) Implication
Allowing this single charge ‘e’ to move near and inside that stable singularity radius r~2¢*/mc? in
the Vg in this new Dirac equation (equation 2) as we see below makes the motion relativistic but
stable requiring all the Dirac equation spherical harmonic solutions, not just the ones allowed by
the Schrodinger equation. Also the next order of approximation above the hard shell for our goo
horizon ry =2e¢?/m.c? is the harmonic oscillator V « ! giving the SU(3) SYMMETRY of the three
dimensional harmonic oscillator. The +/ in the exponent of V (instead of the inverse square law-
1) also reverses the sign on the exchange integral i/z//*m(r W E () V8 ) Winn(r )wi11(r”)d =J
designating the symmetric and antisymmetric states), making here then the J=3/2 state m=-3/2
and 3/2
(e, =232(6.8)+ U%732(6,¢) =2P3> eigenspinor) the first ground state that varies with
azimuthal angle(baryons) above the already filled 1S (in analogy with helium) on the energy ladder
instead of the expected 2 and —' (these Y4 s by the way give 2P, in the @™y of the next higher
P orbital slots) that vary with azimuthal angle (baryons).

Also recall the identity (exp(ig)+exp(-i$))/2 =cos¢. The %3, orbital is a exp(i3/2¢) and Y23
orbital is exp(-13/2¢) and thus from the identity the summed state is cos(3/2¢) with probability
density yw*y=cos’(3/2¢), the trifolium three lobed shape. Thus there are TWO +e s giving a net
charge of +2/3e in each lobe because the +electron charge ‘e’ is in each orbital lobe on the average
only 1/3 the time (FRACTIONAL CHARGE) giving the many scattering properties (such as jets)
associated with the angular distribution of multiple fractional charges interior to this horizon. The
lobe ‘structure’ can't leave (ASSYMPTOTIC FREEDOM) as in the Schrodinger equation case or
move so is NONRELATIVISTIC in contrast to its rapidly moving m. constituent.

Finally we solve the problem with the new pde using a computer program, set the boundary
conditions as if the Deuteron was a square well. See end of chapter 9 for the fortran program. In
any case we can build the hyperons and mesons with integer charges e, don’t need the fractional
charges.



10.3 Trifolium Diagram

TRIFOLIUM DIAGRAM
{(r=-1y; - STRONG FORCE)

Single charge m-g g!. Equivalence principie motivated
T A X R e e

" Modified Dirac Equation (2P state solutions 10 Dirac-quaton]

Exchangoe integral impios (after filled
18+2e nexibound state = v ¥+ 33~

< :; ,2."% _m.(;;)

The Frobenius series solution to the new Dirac equation gives accurate hadron eigenvalues which
also reproduce all the properties of quarks (as individual lobes)

— M —
2P, . solutions to Dirac equation. \/"_lu" a—H{L—w\P:O Koo=11= "H Stability at
3/2 ax . rxry since
Ultrarelativistic LS coupling fills 2P, . first foo = R then k50=0
Exchange integral implies (after filled 1S +2e) next bound state —
32 i% —i%d) 3 ¢
3/2 —sla__ € + e — fes
— + = =cos(39)
W %.(3/2 ¢ 2 < Electron charge e spends 1/3
. of its time in each lobe making each
2.3 p PINT lobe (1/3)e charged on average
= cos(a¢)= (> trifolium . ge.
v ‘2 L m For two such electrons it is (2/3)e.

Start with 1S state filled singlet =(1/2 -1/2) = Yg .Add 2P 35 and electron -e for bound state e.g., proton.

Add to this proton 2R, state -e and +e in filled 2B, and a third -e with spin down to get neutron(spin1/2)

Singlet = 10 with one of the electrons Ac in the first electron excited state e(muon).

Add -e and +e in filled 2R.~and a third +e with down sbin aet tt(spin0)
Figure 10-1 Trifolium diagram



2P3/2 fills first in Aubau principle for ultrarelativistic hard shell (Alfredo 1998).

Electron in limacon lobe added to trifolium lobe to give bound state: &m)e

-e+(2/3)e=-(1/3)e d. Add other two lobes (2/3)e u + (2/3)e u = uud=|Proton O

Fillinrest of P states same way. - e \-r(2/3)e
z axis y aX|s x axis uud

SEOKOK 0K 0L OF

6 P orbital slots at =l Fill states as nondegenerate energy (level) goes up ———

Possible SHM interaction between these lobes gives excited states.
LS coupling Lande' g-factor structure gives minimal LS energy for smallest L
So net spin 1/2 states preferred.

Fig2 Note we get a similar shape to the trifolium with lattice QCD theory.
Fig4

EField Representation of ¥
field intensily ahout a statios

rapidly moving charge. ig.3 Second diagram is the E field of a ultrarelativistic

charged particle (“Electronic Motion”, McGraw Hill, Harman)
Thus the neutron charge configuration allows for the creation of both the W and the Hy and the
proton charge configuration does not allow this.
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10.5 Deuteron is the J=1, y « rsin0 «Y'; (0,0) (at r=ru) solution of the Newpde.cq.9.14
Quaternions kr=eA" Instead of k= (dr/dr’)* in eq.14 45°+45° N=0

That 68z(1) being possibly nonzero for a very small (so high energy, N<<1) observer in eq.5
implies the possible perturbation of equation 12 8z' perturbation.

A1 Instead of the equation 13,15 formulation of «j; we for (z=1) for large 6z2’=45°+45° we use A:
in dr direction with dr>=x>+dy*+dz2 So we can use 2D (dr,dt)) E=1/Vkoo=1/\e!Ai = ¢--A2,

It is then a double lobed y*\y along the z axis at r=ru Deuteron state is derived from the
above Ch.9 above Frobenius series solution to the Newpde. From equation 9.14 we find with
these inputs that E=1867Mev (9.23)
|Equation 923 N=-1, J=1 Yl(e 0) sohution to the NewPde at r=r; |

Zbonds=B# ™, PE= ——l 06Mev ——L.r —h“(n-—) SHM=simple harmonic motion energy z=0

H =2.8X10- 15 mn2 Ctrcular motion Fitzgerald contraction from side
+et+e-e=7e Equipartition Of Energy N=SHM =LS =Angular velocity energy
Diatomic degrees of freedom=6. 3 translational plus 2 rotational
don't count in binding energy leaving f=6-(3+2)=1 .

(B#)PE=BE

(2)1.06= BE
2X1.06=2.12Mev= Deuteron Binding energy.

)
wobble




The potential energy between the central electron (for z=1) and the two +e is PEe=e*/r’n
=9X10°(1.602X1071%)%/(1.4X1071%)=1.7X10""*J. (Tabulated D charge radius=2.128X10"1°m)
1.7X10713/1.602X10°1°= 1.06X10%V =1.06Mev=B at r=r’, z=0 side view

(B#)B=BE =binding energy
Deuterium D  (2)1.06=2.2Mev
For many D (>3 rotating harmonic oscillators: Deuterons) use 3D harmonic oscillator as a first
approximation.We have proved the shell model and let it calculate all the higher atomic number
energies My e*?/rH model showed how the shell model works since that deuterium electron
undergoes a simple harmonic motion oscillation SHM in between the two protons. (As you
know the mainstream has no idea why the shell model works). Thus because of energy
equipartition all the deuteriums are going to oscillate with the same eigenvalues, as if there was
ONE big SHM oscillator as in the shell model.
Thus I derived the shell model so I do not need to do any more binding energies than deuterium.

Neutron

With the second proton missing a single electron has .78 Mev instead of our .5 Mev binding
energy (Neutron 3 decays hint at this number also.). The extra neutron mass energy beyond the
proton (2P1;) ~half the Deuteron BE =5SHM/2 =2.2/2 =1.1. For single bond=.78 plus the
electron where 2¢/ry =SHM. So half is .78+.511=1.3Mev the excess mass of a neutron above a
proton.

Summary

The shell model sect.6.12 also requires this average radius and so has that inner and outer metric
(sect.6.11, 3.1) as in sect 3.1 just like all solutions of

We actually understand the nucleus of the atom from first principles €q.9.23 Y!; at r=ry) N=-1,
J=1 solution to the Newpde here. We even got the Deuteron binding energy this way.

The shell model can now be understood with each Deuteron having the same SHM excited
states as every other deuteron in the nucleus given the equipartition of energy (recall the shell
model mysteriously uses the excited state of just one SHM oscillator in a vacuum. But there are
in general many oscillators here and the nucleus is not a vacuum!). So we finally understand
why the shell model works. For a history of the alternative Shell model, also see study by
A.E.S. Green in 1956).

Comparison with QCD SU(3)

Instead of the shell model one dimensional SHM rotating (that LS) we could use the equivalent
3D oscillator and directly transform between x,y,z oscillator modes. In that regard the 3D
components of the above SHM tensor Aj=(1/(2m))(pipjtm?w*xixj) and components of L satisfy
Poisson bracket relations SU(3). So by including as a perturbation the rotation, the 3D SHM
version gives SU(3) symmetry in the S derived from those Ajj (Herbert Goldstein, ‘Classical
Mechanics’ 2" edition, pp.425) which holds in both the classical and QM case then. In that latter
case SU(3) is gauged in by starting it out as a infinitesimal rotation, taking the limit to get it into
the exponent (as in appendixA). So we have also just explained the origin of the adhoc and
convoluted QCD SU(3) gauged alternative to that correct Frobenius series N=-1,J=1, Y1, r=ru
solution to nuclear physics.

10.8 High (>100Gev) Energy Solutions to the Newpde

Note at high energy the electrons in the 2P3» lobes (e.g., udd) would appear stationary, not
averaged blob (density distributions) anymore. We are back to having single ‘e’ (not fractional
“e”) scatterers again. Thus at very high energies (>100GeV) single e (not fractional charge) should



once again dominate scattering and we should no longer see these “jets” (which in the above
context is mere P wave scattering) caused by higher probability emission in these trifolium lobe
directions (QCD no longer gives correct answers because of this). Also note that 77 in ko, is a hard
shell and therefore Van der Waals type liquid equation of state at >100Gev energies. Note by the
way that the 6" 2P resonance is observable at these energies.

Let <A’| represent the outgoing scattering wave immediately after a incident plane wave scatters
off V. Let |A> be the 2P3/2 hyperon state for r=ry having the V. Thus at r=ru V itself will have
the 2P32*2P3» =y*y trifolium shape and thus commute with |A> since they constitute the same
structure (2P32 commutes with itself). So since V commutes with |[A> then <A’ also is a 2P3,
state or we have <A’|V|A>=0 and so no scattering into such states. Thus a type of ‘P wave
scattering’ results from an incident plane wave. Thus we explain the origin of the ‘jets’ that are
otherwise ascribed to scattering off quarks.

Note that when the mean free path d during the interaction time is very short (d<<(1/3) 2nry) there
is no more smearing between the 2P3» lobes and we have scattering off of independent point
particles and the 2P3/; state ceases to be relevant in the scattering and so the jets disappear. (jet
quenching). Thus at extremely high energy the scattering is from charge e (not 1/3e) again and
there are no more jets above top energy. LEP actually observed this effect just before it was shut
down.

10.9 Charge Independence Of The Strong Interaction

It is well known that the strong interaction is approximately the same magnitude between Neutron-
Proton, Neutron-Neutron and Proton-Proton pairs and thus is ‘charge independent’. Also note our
theory deals with electrons only which only has charge dependence if certain QM effects are
ignored. But recall the orthogonality of S and P states as in <S|P>=0, <S|S>=1, <P|P>=1 given all
the superscript and subscript substates (e.g.,S and m) are the same as well in the bra and kets. The
ordinary nuclear interaction here is due to a covalent bond (sharing electrons) which is also a very
strong interaction (bond) at r=ry and is dependent on the spin S and m state and not so much on
the sign of the charge. Thus these QM (valence, spin) effects are very strong at r=rg. Thus the
charge independence of the strong interaction is really an S state independence and 2P3/; state
dependence at r=ry of a 2P3; structure interacting with an S state.

Trigonal plnar
1200 __5P2

Fig.5

There are no gauges required in this theory and the QCD SU(3) is such a gauge. We have found

that hadrons are excited states composed of these half integer spherical harmonic lobes.

Chapter 11 Scattering Cross-Sections
From the energy component of polarized representation of equation 8.1, 8.2: and using iterated
(as in bosonic) section 9.13 E>=p’c*+m?,c* =

2
1 1 -
B> :[ J _ T 2 T vk (10.8.1)

l—rH r—ry, Ir—ry r—ry r—ry



Note the resemblance of E>=p?c?+m?,c* to the Schrodinger equation if the E> =k?>+1/(r-ry) +1 of
equation 10.8.1 is substituted into it. We interpret this equation as representing a bounded
volume with energy E=V-+k therefore allowing us to use that V in the usual Gauge theory
method and so substitute it into the ordinary Dirac equation as gauge force. term. So we use
1/(r-rn) instead of 1/r. in the Dirac equation S matrix.

We use the equation 4.1 source and proceed in the usual way of Bjorken and Drell (here 1/r—1/(r-
ru/2) to construct the one vertex S matrix for the new Dirac equation 9. Recall the %2 came from
the square root in equation 4.1. Thus the k in the integrand denominator is found from the result
of our V=-1/(r-ru/2) potential in equation 10.8.1 instead of the usual Coulomb potential 1/r in the
large r limit (so a free electron otherwise):

' 1 mz B . ooei(p,-—pf)x . wei(pf—p,-)x
Sy =iz /ﬁu(pf,sf)y u(p,.s,)| — dx* = if () d* (16.5)

0 o Y T =Ty
rescaling r—r1’+rp=r and t—>t’+(ru/c)=t to minimize the resonance energy in ps-pi. We then
obtain:

2 R i(]’ _Pi)x @© i(P’_Pi)x
Sy = iZ% ﬁﬁ(pf,sf)you(pi,si )e"r”qj%dx4 = if (u)e™™ J-de“For so:

0 o r
o i(py—p Nx=ry /2) w i(p,—p; Nty 12) » i(p fpl_)(X')
Sifsif(u)[je’—'dx“— [—— : ' dx‘*}if(u)e“’ﬂ’”q [——— f' d"* =27(r,))°
S Y o
(10.8.6)

Note that L_’(Pf Ny )7 “u(p,,s,)=(1- Bsin’ §)=Mott scattering term with the €24 our

resonance term. The other left side coefficients and reciprocal [x| part of Sij comprise the well
known Rutherford scattering term

do/dQ=[(Z1Z:€*)/(8teomv,?) [Pesc(9/2)=1.6X10%*(csc(¢p/2)/vo)*. (Note that equation 10.8.6
applies to the 2P12-2P3); state electron-electron interaction (i.e., neutron) below). Here ps-p=q.
Note in equation 10.8.6 the factor ie9=i(coskq+isinkq). Here we find the rotational resonances
at the 2P3/> r=ru lobes associated with maximizing the imaginary part which is icoskq to obtain
absorption scattering (at kq=m), which here will then be the masses exchanged in inverse beta
decay. Also a solution to the Dirac component is always a solution to equation 14.1 (but not vice
versa) if we invoke an integer spin in this resonance term. Here also the p part uses the old De
Broglie wave length to connect to the p=h/A. In that regard recall that hv/c= h/A=p and for a
DeBroglie wave fundamental harmonic resonance we have A.=27r for a stationary particle of
spin 1=L (ambient E&M field source gives L=1 De Broglie).

Coulomb scattering of electrons, taking account spin-spin scattering
do _ 4Z%a’m? (Bitm)  (pitm)
Q- 2|qlt O 2m "9 2m

do Z%a? (1 o 9)

— = — f°sin® =

dQ  4p?B?sin*(6/2) g 2

Mott scattering, relativistic correction to Rutherford scattering
Ultrarelativistic electron scattering: Electron rest mass m neglected.




do _ a? ((0052(9/2)) - (qz/(ZMz))(sinz(B/Z))>
dQ— 4E2\ (sin*(6/2))(1 + (2E/M))sin?(6/2)

(10.8.7)

do a? ((cosz(9/2))—((q2/(2M2))sin2(9/2)))

aq ~ 4E? ((sin*(8/2)))(1+(2E/M)sin2(6/2))

m/E<<1, m? -0, q*=(pepi)*=-4EE’sin?(0/2). Proton behaves like a heavy electron of mass
M. E—1/\koo =1/V(1-g-Ag-ru/r).
For forward scattering O~w/B*~0 in sin?(6/2)<<l in the below figure 6. So
do/dQ=d(1/E?)/dE?(1+tiny)/tiny=((d(1/t)/dt)(1+tiny)/tiny=-(1/t?)(1-+tiny)/tiny.
t=E?=(energy transfer)?.

Ultrarelativistic dependence of 10.8.7 new pde electron differential cross-section on 1/E2.
E=energy. Recall in this theory this should also be the energy dependence of ultrarelativistic
proton-proton scattering since protons are made of electrons (in my work) and at very high
energies(E>>150GeV) the electron cloud binding energies in the proton don't matter anymore
(that Paschen back binding energy starts becoming negligible at TeV energies): we have free
electrons hitting free electrons once again.
For energy transfer t on left side graph (fig.6) do/dtocd(1/E?)/dE*=d(1/t)/dt=-1/t>. t=E2. Energy
transfer 't is proportional to 1/p. But p? is proportional to area which is then proportional to
1/AE*=1/t. So o=Area oc1/AE?>=1/t. Ac/ANs=(1000nb-10nb)/1GeV. But this is my equation 1
in figure 6 (also eq.10.8.7) for near forward elastic scattering. For 1GeV~1vs then this Ac/(1) is
a measure of do/dt on the left side forward scattering elastic energy transfer graph since 1?=1.
But square root energy transfer Vt in a scattering event for a beam at a specific energy (let's say
at 13KeV) is also the abscissa of that big graph (on the left of the totem figure 6). So it is
possible to get from total cross-section & of electron scattering verse energy Vs: o/\s) to do/dt
vs t where t=(energy transferred)’ at least at (literally) ONE (1GeV) energy transfer.
The fact that LHC totem measures elastic forward scattering thereby made it possible to test this
theory (eq.2, 1.11, new pde) at 13TeV (and Vs=2), the very highest energy particles that mankind
can produce. I could estimate from LHC data the asymptotically infinite beam energy transfer
(curve) energy (red line) and compare it with my own o/Vs at Vs=2.From the graph of my
equation 1 (10.8.7):

1000nb at Vs=1.5GeV

100nb at Vs=2GeV

10nb at Vs=2.5GeV
But that curve of eq.1 in figure 6 is for one eq.2 electron scattering off of one equation 2 (new
pde) electron. Since there are 3 such electrons in each of the two protons you must multiply by 9
to get do/dt.
On my QED graph of my eq.1 had 6~100nb at about 2=\'s. So multiply by 9 and get Ac/As~
(1000nb-10nb)/((1.5-2.5)Vs)=10"mb/1GeV: But 12 =1 and there are 3 electrons per proton so we
multiply by 2: 9X10-°mb/12GeV?~10-mb/1°GeV? which is sitting in approximately the same t~2
spot on the left side do/dt vs t graph of Fig.6.
So we proved from the data that a ultrarelativistic proton-proton scattering event (~13TeV) is
equivalent to 6 free electrons scattering off each other with the electrons obeying (2Al) equation
9, the new pde. Thus the hadron theory that should be used is 2+2+2 at r=ry, not quark theory.



Note also the cusp is at the proton reduced mass here. It is where (~.5GeV) binding energy must
be added to break the electrons apart in the head on collision which takes away from the elastic
scattering energy transfer. So we must apply this theory at much higher energies (eg.,Vs=2).
Quark theory (QCD) implies some kind of exponential dependence which is not seen in this
scattering data.

Hard Shell Scattering Peak Of do/ds Implies Protons Made of Electrons, not Quarks

The electron radius at 2.8X10 “13(me/m)=8.1X10"?m provides the hard shell cross-section limit.
For colliding beams we have an additional factor of 2 here.

2(metmy)/me)mp= 6.91347TeV. (10.8.8)

There 3 are electrons in the proton so the proton energy is 3X6.913Tev=20.74TeV~21TeV. So
the do/ds should level off at proton energy 21TeV. This is in analogy with the Q=c/nr’cdo/ds

(1/sc)) r=A peak of Mie scattering theory.
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We thereby discovered that bomh the do'dr values and functional dependence imply a high energy proton acts ke
3free electrons of ¢q.9(in the context of collisions, not Brehmstrahlung). This iImples & prolon is really two positrons and an electron

Fig6
Analogy to Mie scattering
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Extinction efficiency (Qe) as a function of diffraction parameter x (= 2ntr/A).
Analogy of Mie scattering with Q=c/nr?. Here the lepton hard shell is at r=2X10'’m. Note
analogy of leveling off of do/ds A=r (i.e.,x=6) as at x=21TeV for LHC.
Totem
LHC totem forward scattering gives elastic scattering cross-sections for high energies and so
small scattering angles. We choose 0=1°.
(d_a) = (3) a® [1+cos*(6/2)  2cos*(6/2) (1+c0529)]=
aalg 8EZ | sin%(0/2) sin2(6/2) 2

1-.99985 2(.99985) 1+ .9997>

1.43X107%3 -
< 5.8X107° 7.6X107> * 2

= 1.43X1073(2.626X10* — 2.631X10* +.99985) = (1.43X107*3)52.788
=7.55X10*? =7.55X10"!* barns/steradian.
This result might be found in the totem data archives.

LHC totem forward scattering gives Coulomb scattering cross-sections for high energies for

larger (but still small) scattering angles. We choose 6=3°. So
ds _ z2a® (1 pagin2f)=

aa ) 4p2B2sint(0/2) (1 p*sin 2)

— (3) (1)5.33X107°

~ 74(1.04X10374.7X1077)
=8.17X10"'"barns/steradian. This result might be found in totem data archives data.

(1 —126.85X10~%) = 8.18X10~38m? =

Meson Multiplets
"tetra quarks" are merely two mesons bound together! They can bind together more deeply if the
components of the mesons themselves are bound individually to the components of the other
meson giving more mass, section 8.11.

In this theory (DavidMaker.com, Ch.9-10) this is called singlet and doublet states with one
bound with more binding energy than the other for those heavy upper 2P Paschen Back states.

So these look like heavy and light tetraquark states but they are not, they are merely two types of

meson binding states. You could predict the energies from the Paschen Back effect associated
with those large plate fields, section 8.11.
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11.1. W Compton Wavelength Region

Recall in appendix A me Source Term at r=ry Inside Angle C.

Analogously from 2AC we get with the eq.3 doublet ete the Proca equ (3) neutrino and
electron A ¢ at r=ru. As in sect.6.13 in Koo we normalize out the muon €. So we are left with the
electron Ag in koo =1-[Ag/ (1+28)]+[rH(1+ ((8+8)/2))/r] from the two above rightmost (Proca)

diagrams. So Source = Ey, = \/K_ J
00

and — is for W. So W (right fig.) is a single electron Ag+v perturbation at r=ry=A (since m. ultra
relativistic): So H=Hq+mec? inside V. Ew=2hf=2hc/A, (47/3)A*=Vy. For the two leptons VL =

1/2

Ve = Y3727 = Yy = s . Fermi dpe= 2G [ rvbovpaps AV = 26 [[[;" a2 iV =

2 (11" w126 = [} Wiz (2mec®)dV,, = [[)" w1 @mec?)pdV,. (A3)

What is Fermi G? 2mec?(Vw) =.9X10“*Mev-F> =Gr the strength of the weak interaction.
Derivation of the Standard Model But With No Free Parameters

Since we have now derived Mw, Mz, and their associated Proca equations , m,,m:,me, etc.,Dirac
equation figure 2 part.1), Gr, ke?, Bu, Maxwell’s equations, etc. we can now set up a Lagrangian
density that implies all these results. In thisFormulation M,=Mw/cosOw, so you find the
Weinberg angle Ow, gsinBw=e, g’cosOw=e; solve for g and g’, etc., We will have thereby derived
the standard model from first principles (i.e.,postulatel) and so it no longer contains free
parameters!

Thus we have the interaction & operating in W radius using the doublet of Ch.3.

In general then we have obtained an ortho triplet state here since we are merely writing the Clebsch
Gordon coefficients for this addition of two spin '2 angular momentums:

1%2,72,0,-1>,.. |'4, /2,0,0>,..|"2,7,,0,1>,.. or +W Z,, -W.

Anyway, this small S matrix involves the neutrino and so can allow spin 1/2 neutrino emission
jumps instead of just the usual E&M spin 1 jumps. 100km/sec metric quantization translates to a
neutrino rest mass of .165eV.

atr =1y, +is for Z

(1+s)\/_

1+2£ re(1+(£$£)/2)

11.2 Excited Z States

Put m. in Equation 6.4.1

The beautiful thing to be noted here is that for the doublet resonance with the 2P3/, lobe at r=ru
that minimizes energy you get the spin 1 W and Z and the value of the Fermi G! We have also
shown that this doublet interaction corresponds to the exchange of massive spin 1 particles (recall
spin %2 s forbidden by that j-1/2 factor).

11.3 Probability for 2Pz, Giving One Decay 1S Product at r~ray In W Region

In equation 4.12 we note that invariance over 27 rotations using (1+2¢)d?0 does not occur
anymore thus seemingly violating the conservation of angular momentum. To preserve the
conservation of angular momentum the additional angle &€ must then include its own angular
momentum conservation law here meaning intrinsic spin’. angular momentum in the S state case



and/or isospin conservation in the 2Pz, case at r=rn. In any event we must also integrate to C=¢.
Here we do the E&M component decay given by equation 3.2.

Plug in Sy, oce'®’?, Y5(1-y%)y=y into the 4pt. interaction integral. In that regard note that the
expectation value of y° is proportional to v oc Heisenberg equation of motion derivative of
2P3,0ce(®2) We integrate <lepton|baryon> over this W exchange region where we note
(~1/100)F for 90Geyv particle, so dV=((1/100)F)*)=VolW. Also ck,=¢=106Mev from section 2.1.
From Ch.3 on the vacuum constituents ¢ and v we note that J[[dt=Vol, y is defined as the
vacuum eigenfunction. Vacuum expectation sect.B2: X<|van>|¢|<vacm+1[>=<]

[Ify* ex.dV|>=<|Pot|>= gVolume of W. Recall also that appendix A implies that the W and the Z
are composites. This application of eq.2 for example applies to the 2Py, -2P3; electron-electron
scattering state inside the neutron <Proton2Ps3|Pot|Neutron2Py -2P3,>. Plug in Sy, oce'®’?, V5(1-
12)y=y Also we can get a weak, strangeness changing (second term below), decay from a 2P-
2P3»>m, to the S state branch equation. eq.2 expectation values in the 4pt..
=J3xlepton|vac>|e|<vac|baryon> =Fermi interaction integral =[/yi *yrwsk,cydV=

Mwr*@EVolW) ydV= [Jfyi*EVolW) zdV. Also dV=dAd¢=Kd¢.

So the square root of the probability of being in the final state is equal to the Fermi integral=
[fw1*(Pov) ydV =l fw1* waweAViydV=

=IK<ei¢/2 |(gAVW)‘1_(75iei(3/2)¢ )>dthV:jK{€(%y}<eim _7/5iei4/2¢>d¢

eVolW = J‘Klg(%f ]<ei¢/2 —yie* >d¢

i 5 i4
=KGF.[<ei¢/2 —}/5i€i4/2¢>d¢=KGF(£|§”+C _27.6 ’ gch (10.8.7)

i i4
with <initial|c|final>? ~ transition probability as in associated production with the separate 2P
proton ground state transition being the identity (AS=0). Factoring out the 2 and then normalizing

1 to .97 simultaneously normalizes the 1/4 to .24 in section 3.2. With this normalization we can
set cos0c=.97 and sinBc =.24. Thus we can identify 6¢c with the Cabbibo angle and we have derived
its value. We can then write in the weak current sources for hadron decay the VA structure:
|cosOc-y’sinOc|. Thus with the above Cabbibo angle and this CP violation and higher order (ru/r)"
terms in section 3 we have all the components of the CKM matrix. Note we have also derived the
weak interaction constant Gr here.

Given the role € plays here in decay we find the expectation value of energy € within the S matrix

scattering region in chapter 10.

Recall from section 1.2 the possible mixing of real and imaginary terms in that energy coming
out of that first order Taylor expansion. There we found the 1+x and 1-x solutions cancel and we
could ignore the 1+1=2 term as it is still a flat metric.

Also there are still extra terms provided by the ‘small” higher order r? terms in that Taylor
expansion so that "higher and lower" than the speed of light mixed condition still can exist (for
AG=0. See end of section 4.6 and 10.8.6). In that regard note for the next higher order Taylor
term at largest curvature d?(1/k.)/dr? is large negative and 12 is positive implying a net negative
term and therefore a neutral charge (see case 2, of section 19.6)! In that case the perturbative
squared r term appears to overwhelm the rest since the lower order terms then cancel. Note from
the above we put these neutral conditions also into that decay since net charge is zero in the



Cabbibo angle derivation. This then appears to be the beta decay condition where the neutrino
(higher than c) and the electron, (lower than c), decay from this neutral particle condition
(bottom of section 10.8). The beginning 2P3/» ground state still exists however in the respective
Cabbibo angle calculation. Thus those real and imaginary terms coming out of that Taylor
expansion provide the explanation for beta decay.

| . | SM=1/[(146) //A¢]
‘ dt ‘ dt dt e-e=Z,
€. LN -e+v =W~ % e v
T M=U[(-€) fAAe -
dr—- € t)/ dcr]_ : dr—1
< Ve 'v-e”v v, e’ v, ~+ v
V= ) " e+v—\\
"’\fzoﬁ M=1/[(1-¢) //Ae ] figs
Fig.7

m. Source Term Inside Angle
.See section 0.2 and B2 So W is a single electron Ag ,v perturbation at r=rH H=H,+2mcc? inside

V. Ew=2hf=2hc/A, (47/3)A3=Vy,. For the two leptons ﬁ =Y. = Y3, —7 ==Y, .
. %4 %4 1 1 \%4
Fermi 4pt= G[[f " w1y, sa dV = G [[[ " ¥1¢, Tz’ = I 126G =

[ 12 (2mec?)db,. (A3)

What is Fermi G? 2mec’(Vw)/F? =.9X10*Mev-F> =Gr the strength of the weak interaction.
Next we plug the respective s into i,y in sect.B2. In that regard the expectation value of > is
speed and varies with €% in the trifolium. The spins decay proton Sy oce!®?=ys1, the original
2P particle is chiral y=y>="4(1-y*)y="(1-y’e3*?)y. Initial 2P}, electron v is constant. Plug

these terms into equation B2 =/ Wi, (2mec?)dV,, = [fysin*(2mec?Vy))ydV=

i i4

K f (e [8eVy] (1 - v5e'%) ) do= kG PJ(e"7 = pliet )dg = KG, (2€ prec 2 ]
i i4
with VA <initial|c|[final>? ~ transition probability as in associated production. Factoring out the 2
and then normalizing 1 to .97 simultaneously normalizes the 1/4 to .24 in Ch.3. With this
normalization we can set cos0c=.97 and sinf¢ =.24. Thus we can identify 6. with the Cabbibo
angle and we have derived its value.
'=[G*(47N)] mi%P[™(x)]? , x=2m;/m; Eg. 1/1,=[G*m,/(1927%)](1-m¢?>/m,2)° .
r<ru Application: Rotational Selfsimilarity With pde Spin: CP violation

12.1 Fractal selfsimilar spin
The fractal selfsimilarity with the spin in the (new) Dirac equation 2 implies a selfsimilar
cosmological ambient metric (Kerr metric) rotation as well as in section 4.1. Thus there will be
2dsudsy rotation metric cross terms with the dt (without the square) implying time T reversal
nonconservation and therefore CP nonconservation since CPT is always conserved. We thereby
derive CP nonconservation from first principles: CP nonconservation is a direct consequence of
the fractalness. This adds another matrix element of magnitude ~1/3800 (sect.6.3) for Kaon
decays thus adding off diagonal elements to the CKM matrix.
Or for Kerr rotator use



ds* = p (‘%erez} (7> +a*)sin’ 0dg” - c

" (asin® 0d0 —cdr)
(13.1)

P (r.0)=r’+a’cos’0;  A(r)=r’-2mr+a’ o
ds? =dr? + dt?> +2dtdr +..

In a polarized state (8 =0",180") in 25.3, 25.25 the off diagonal elements are proportional to
¢d=(¢+c)e™C. Thus if the charge e is conjugated (C, e changes sign), if dr changes sign (P, parity
changes sign) and dt is reversed (t reversal) then the ds quantity on the left side of equation 1.6 is
invariant. But if dr (P) changes sign by itself, or even e and P together (CP) change sign then ds
is not invariant and this explains, in terms of our fractal picture, why CP and P are not conserved
generally. P becomes maximally nonconserved in weak decays as we saw in above. The degree
to which this nonconservation occurs depends on the “a” (in eq.3.2.1) transfer <final lal initial>
(equation 3.2) which itself depends on the how much momentum and energy is transferred from
the Swm+2 to the Sm+1 fractal scales as we saw in this section. Recall chapter 5 alternative
derivation of that new (dirac) equation pde (eq.2) linearization of the Klein Gordon
equation(c=1, 7=1, m=1, eq.2):

—aii—aii—aii+ﬂ —aii—aii—aii+ﬂ = (13.2)
ax, Tox, 8x3 Yoy, oy, o '
2 0’ 2 62 52
@, ax_z_az o +,3 +2220@,0€V— 22,3105 ——. This equals
1 u=1 v=1 X,

=c’pl +c?pl +c’p; +m’ct = E*if the off dlagonal elements zero which is the condition used in

the standard Dirac equation derivation of the a s and . Note that the off diagonal elements

0 : . . . .
22 Za s —g + 22 fic,, are equivalent to the off diagonal elements in equation 5.1 (and
u=1 v=l1 u v u=l1
are corrections to 5.2 in fact) so are not zero for parity and CP NONconservation in this context

(in a rotating universe). So in the context of the Dirac equation the CP violation term
e. (dr)dt — (dr/ds)dt/ds)— pEy (after division by ds?). Thus CP violation goes up as the

square (pE) of the energy (so should be larger in bottom factories). The section 13.2 below Cabbibo
angle calculation (not rotation related however) is an example of how this method can give the
values of the other terms in the CKM matrix. They arise from calculation of <Z> between higher
order m harmonics.

This section is important in that we see that CP violation is explainable and calculable in terms
of perturbative effects on the ambient metric (and therefore the Dirac equation) of a rotating
universe with nearly complete inertial frame dragging (eq. A6 in the E&M form), CP violation
doesn’t need yet more postulates as is the case with the GSW model. In fact the whole CKM
matrix is explainable here as a consequence of this perturbation.

Note the orientation relative to the cosmological spin axis is important in CP violation.
Integration of the data over a 3 month time (at time intervals separated by a sidereal day) is
going to yield different CP violation parameters than if integration is done over a year.

Miscellaneous



12.2 GIM Derivation

Recall in the GIM (Glashow, Iliopoulos, Maiami) hypothesis that u,d were a pair of left
handed Fermion states as in V-A . d'=dcosO.+ssinf., s'=-dsinO.+scosO. where 0. is the Cabbibo
angle. Thus u,d are paired, s,c are paired, b,t are paired and we have the V-A transitions.
Here we identify the new pde 2P state for r=ry has Py, Py and P, states which split in energy due
to that Paschen Back effect given those ultrarelativistic plates, into paired spin up and spin down
states (Px,Px"), (Py,Py"),(P,,P.") analogous to the GIM (u,d),(s,c),(b,t). Here the spin orbit
interaction (LS) coupling energy term is much stronger than the SS coupling term. So we have
pairs of states J,M,M"™> with Px and Py being orthogonal, except for those weak interaction V-A
terms. The ds? to ds' transition is through the V-A term. Recall equation the 16.7 |Jx*Gyo dV|*=
=transitionprobability of a ds? to a ds. of €q.B2 (x=.5(1-y*)y with y in ds?, y in ds) for V-A
Cabibbo angle transitions (transitions inside Px separately from Py and separately from P,) where
|1]-]y°| replaces the cosO.+sinO.. So in analogy for transitions between Px and Py
Py'cosOc+PysinB:=Px', Py'=-Px'sinO:+Py'cosOc. This is a first principles understanding of GIM
thereby allowing us to derive the electroweak cross-sections (WS).
Recall that dz=-1,0 solution to eq.2 for C=0 implies dr<0 at least for small C. (low noise).
because -1 is on the real r axis.

12.3 Normed Division Algebra, Octonians, E§XES8 and SU(3)XSU(2)XU(1) Basis Change
Note from the above that the new pde fractal theory generated the electron 2AI with mass, the
near zero mass left handed neutrino 1.12. Recall also from above the K00=\/(1-8-rH/r). The W
was generated from a nonzero ambient metric € in that S matrix derivation part of the metric
coefficient k,v.Interestingly that Normed Division Algebra (NDAR) on the real numbers (as in:
1Z1]|*]|Z2||=(|Z]||) from equation 1 implies that octonians (and thereby the /argest normal Lie
group E8XES) are also allowed. Recall we have that SU(2) Lie group rotation for the 0° extrema
imbedded in a ESXES rotation since one of its subgroups being SU(3)XSU(2)XU(1). This is the
only subgroup we can use because it is the one that only contains that SU(2).

Eigenstates

Recall the m:=1 was separable at 45° from the rest (of the eq.1.15 diagonal states) since ds is
constant there for small rotations. So ds: can be normalized.

The B field rotations are here reciprocals of the rotations in the Mandelbulbs since koo=1-rn/r and
so ru/r—>E&dr for B field motion given smaller radius r means high energy Edr. So the ortho state
is the smaller € Mandelbulb eigenstate and the para state is the larger T limacon Mandelbulb
eigenstate.

Meta Theory Of Couplings In SM

From the 1.15 diagonal on the Mandelbrot set: m=mp=1+e+iAe=m+m,+me.

mvZ/ru=qvB (1)

nra’B=0o (2)

v=c. Solve Eq.1 and eq.2 for q:

g=mcnry/Do. (3)

The effect of the E field lines coming together by Fitzgerald contraction y imply a force increase
that can be realized by invoking an effective charge increase e—q’.or in V/dr’=Electric field with
r=ry in dr’?=kndr’=[1/(1-ra/r)]dr> (The charge e itself really does not change.).

For m=my, =¢ 2Pz state (So ultrarelativistic so E field line contraction.). From equation 3



q’= e, H>e?> E&M for the Nth fractal scale, Gravity for the N+1th fractal scale.

For m=m. +m¢ as meson. 2P3; state (so ultrarelativistic). From equation 3:

q’=46e, H-—>(46¢)?> Strong Force.

For m=m=iA¢ +v, v small, 2Py, dr’*=kdr’=1/(1-ru/r)dr>. So V/dr’=E small. From equation 3:
q’=ie/200, H—iq’V so y(t)=elViy(to)= e Viy(to).

exponential decay with a force q’>=40000X smaller than the E&M. Weak interaction.

dr® large allowing large uncertainty principle dr® for small nonrelativistic mass me in
(dr’emcc)>h/2). This occurs for small externally observed dr and mec in the 2P, state and 1S,
state at r=ry. But these are decay states (PartIl Sect.7.3). Given these strength and decay
parameters we can alternatively integrate over the rc volume our W and Z particles to get the
Fermi G 4pt coupling of weak interaction theory in the SM. W is then a virtual intermediary
here. So we just derived all 4 forces from that diagonal on the Mandelbrot set.

Calculations: So for the Kerr mass ortho state (2™ Mandelbulb) (a/r)*> =e+Ae (thus added to 1)
at r=ry , for (N+1): mgv?/r=qvB so mv/(qB)=(1-2¢)myc/qB=r. Thus (1-2¢)myc/q=rB=
(1-2€)(1.883X10728)(299792458)/(1.6022X101%)=.3525(1-2¢)
®o/(rB)=1,/[0.3525(1-2¢)|=Bnr?/(rB)=nr.
ra=1.359X10"5(2)/[(.3526)r(1-2¢)]=2.805X 10 > m=e2/mcc? for 2P states (eq.7.1).

Compare and contrast with the mainstream Toy Model
12.4 Derivation of Mainstream Toy Model Composite System |1>|2>|3>

Interpretation From Newpde 3e State

To explain the above composite 3e stability result sect.2 implies r=rup in dt’=0 in dt
Koodt?>=(1-rup/r)dt? (in the new pde, nucleon radius) and so dt’=0 so that clocks stop. So we have
complete proton stability in the new pde given eq. 11 2Pz, at r=rup fills first (see review section
just above).

2P3) is trifolium shaped y*y so the electron spends 1/3 time in each lobe (fractional charge),
lobes can’t leave (asymptotic freedom), P wave scattering (jets), 6 P states (6flavors udscbt)
explaining the major properties of quarks and so explaining the strong interaction. Note that
ds12#0 with dt=0 so V2ds?>=dr2+dt? implies, after eq.3.6 operator formalism derivatives are put in
(figure 4 2™ diagram from right), the Klein Gordon equation spin 0 mesons, the carriers of the
strong force. Also our Mandlebulb analysis implies that the proton mass is 937Mev (appendix C)
implying ultrarelativistic internal electron motion is needed to get this mass. Given this
ultrarelativistic electron (needed to obtain the much larger proton mass hard shell result P.
Alberto, R. Lisboa, M. Malheiro and A. S. de Castro, Phys.Rev. .... 58 (1998) R628) at ry the
field lines must be Fitzgerald contracted to a flat “plate” and thus be high density, field lines thus
explaining the strength of the ‘strong’ force.

2 __



2P3/2 fills first in Aubau principle for ultrarelativistic hard shell (Alfredo 1998).

Electron in limacon lobe added to trifolium lobe to give bound state: -5336

-e+(2/3)e=-(1/3)e d. Add other two lobes (2/3)e u + (2/3)e u = uud=|Proton @)

Fillinrest of P states same way. : e sm e
Z axis y axrs x axis uud ~u

SEOLOK OK O OF

6 P orbital slots at r= =Ijq Fill states as nondegenerate energy (level) goes up ———=
Possible SHM interaction between these lobes gives excited states.

LS coupling Lande' g-factor structure gives minimal LS energy for smallest L
So net spin 1/2 states preferred.

Note here we have three ultrarelativistic 2P3; electrons (2 positrons and one electron) needed to
create the proton (which as we noted above is much heavier) at r=ru. Given a central (negative)
electron the two outer positron 2P3 state plates (at 120°) only intersect at the center and so don’t
see each other at all and so don’t repel each other, explaining why the proton is still a bound
state even though the two positive positrons are both inside ry (along with that electron).
Possible (but low probability) positron-electron annihilation inside ru also implies, given the
momentum transfer to the third particle with strong field plate and large mass (quadruply
differential cross-section), that the resulting gamma ray will be short lived and pair creation will
occur almost immediately within ry, since 6=1/20 barn~mry? the cross-sectional equatorial area
of the proton, guaranteeing pair creation occurs) replacing the previous pair immediately.
12.4 Single Electron Probability Trifolium Statistics Inside ru

A single electron in the trifolium implies that on average each of the 3 trifolium lobes has (1/3)e
charge (hence the origin of hyperon fractional charge of the lobes). This allows for a toy model
in which we give these y*y 2P3, at r=ry lobes (not particles) names (quarks, the toys.).

Clebsch Gordon Coefficients For Newpde state: 2P3; at r=ru

It is well known that (and also implied by the new pde eq.11 with Cy) for the composite system
of two electrons |1>|2> you get, from the analysis of the invariance of the resulting Casimir
operator J, the resulting state |Ja,Js,J,M> with combined operator Ja+Jg=J. This is our para state
t and 3 ortho states below. For the third spin /% particle of far lower energy (the central electron,
object B) we have |1>|2>|3> and so the Clebsch Gordon coefficients imply the decomposition
(2®2)®2=(3®2)D(1®2)=4@2@2 so that three spin 1/2 particles group together into four spin
3/2 and only two spin zs, 6 states altogether, (the splitting u,d,s,c,b,t). Note then the majority
2P3. (trifolium core) states. Recall also that the 2P3; solution to new pde at r=ry gives a trifolium
shape, and 2P3, fills first. This fills in the broken degeneracy ortho states at the end of part I1.
The states close to the proton mass are filled in by the Frobenius solution below.

Eq.2 Single Electron Probability (trifolium statistics):

Consistent with the toy model and also the electron or positron moving between lobes, this time
using integer charge distributed over all three 2P3/; lobes at r=ru, just randomly put the lobe
charges (lobe,lobe,lobe) on top of one another Monte Carlo style to determine the probability of
a given charge in each lobe. For two positrons [(+1/3,+1/3,+1/3)+(+1/3,+1/3,+1/3)] and one
electron (-1/3,-1/3,-1/3) (2P3,2) the probability of seeing a +(2/3)e lobe is twice that of seeing a -



(1/3)e lobe so ((2/3,2/3,-1/3 or uud proton) eg.,proton, C and b are the - state components of
(2®2)®2. For (2P352) two positrons [(+1/3,+1/3,+1/3)+(+1/3,+1/3,+1/3)], an electron (-1/3,-1/3,-
1/3) and an outlier electron (2P12) (-1/3,-1/3,-/3) the probability of seeing a -(1/3)e lobe is twice
as high as a +(2/3)e lobe so (-1/3,-1/3,2/3) or ddu Neutron).

It is well known that (and also implied by the new pde) for the composite system of two
electrons |1>]2> you get, from the analysis of the invariance of the resulting Casimir operator
J2, the resulting state |Ja,Js,J,M> with combined operator Ja+Jg=J. Using the resulting Clebsch
Gordon coefficients we find the decomposition 2®2=3®1, m=1,0,-1 ortho triplet state and
singlet para state, which indeed are well known.(eg., Zeeman or Paschen Back line splitting,
Ch.8.).

But for a third spin 1/2 particle we have |1>[2>|3> and so the Clebsch Gordon coefficients imply
the decomposition (2®2)®2=(3®2)D(1®2)=4@2@2 so that three spin 1/2 particles group
together into four spin 3/2 and only two spin 2 s, 6 states altogether. Note then the majority
2P3p (trifolium core) states.

We could now quit and use the mainstream quark (our 2P lobes) applications but that theory is
inadequate (eg., neutron-proton binding energy, sect.10.7) and instead will proceed to directly
solve equation 2 using the Frobenius series method.

Arfken, Mathematical Methods of Physics, 3™ ed. Page 454

Enge, Harold, Introduction To Nuclear Physics, 1966, Addison Wesley, page. 45



Appendix A
Heaviest ortho particle exists only inside magnetostars
Found the 2P3/; ortho spectrum above. But what about the associated 1S1; particle?

eh 1.602X107191.054x10734
= =0.267X10**J/T
2M, 2X9.11x10731

2
Ortho side view so ru/2=r. So for 1S, then N=1 quasi particle CD=BA=BTC(T7H) =(1)(h/2e) So:

If Meisner effect turned off

1S1/2 version of Paschen Back gives ®=h/2e quasiparticle.

So N=1 two positron quantization of the magnetic flux (1)h/2e=BA=®, quasi particle, charged,

spinl.

If pion Meisner effect not possible (as just after a supernova compression) the B field will be

caused by the 3 electrons

E=3uzB=3""=3 . () n(;)z = (3)9.285X107241.8547X1072 (
2

9.29X107°/=58GeV. When the object expands there will be B recombination with 60GeV

gamma rays. Such an effect should be seen above black holes or magnetostars.

For 2 positrons the N-S pole annihilation occurs before the ordinary annihilation with no Meisner

effect pions created. This effect occurs outside the pole of a magnetostar or black hole pole

where the ambient B=10'T field is strong enough to keep them aligned and moving in unison

and not colliding with each other at ultrarelativistic speeds creating mesons and 60GeV gamma

rays because of their powerful N-S pole attraction. They are the “60GeV y ray excess” seen in

these regions by the Fermi Gamma ray observatory.

h . . 3
D, = P quasiparticle, the two positrons, so g =

eh

4(2.0678X10‘15)) .
2.481X10729 )



