This Theory is 0

All QM physicists know about *real* eigenvalue (Dirac eq), observables. All mathematicians know that the limit of a Cauchy sequence of rational numbers is a Cauchy *real* number. So all we did here is show we postulated *real*#0 by using it to derive a rational Cauchy sequence with limit 0. We did this because that same postulate (of *real*#0) math *also* implies the *real* eigenvalues we get from a generally covariant generalization of the Dirac equation that does not require gauges (Newpde), clearly an advance over previous such physics pdes.

So next we first must define 0:

Algebra of 0: numbers 1=1+0 and *list* 0=0X0, 1=1X1 defines symbol z=zz

real#0 implied if plugging z=0 into z=zz+C, eq1, gets *some* constantC(ie δ C=0) [ie **postulate**0] Eq1 iteration z_{N+1}=z_Nz_N+C *defines* bigger numbers z_{N+1} and so we can *define* additional symbols

(eg., fields, rings and δC calculus) without axioms [except 0]

Table of Contents

 $\underline{\delta C=0}$ implies we only need the 2 real <u>extreme of C (fig1)</u>

I) <u>Lower extremum iteration</u> of eq1 from $z_0=0$; We must reject the Cs for which $\delta C = \delta(z_{N+1}-z_N z_N) = \delta(\infty - \infty) \neq 0$ The Cs that are left over are the **Mandelbrot set** C with *lower* δC extremum CM= - 1.4..Next larger fractal scale (fig1: N=1, 'observers') called big C. Also $z=1+\delta z$ into eq1 implies $\delta z+\delta z\delta z=C$ (2)

II) <u>Upper extremum from quadratic equation</u> eq2: $\delta z = \frac{(-1\pm\sqrt{1+4C})}{2} = dr + idt$, C<-1/4. Thus that rational Cauchy sequence is $z_{N+1} = z_N z_N + C = -1/4$, -3/16, -55/256,..0. So 0 is a real number QED Eq2 also implies for big C (N=1, 'observer') $\delta z << \delta z \delta z \approx C$. Thus $0 = \delta C \approx \delta (\delta z \delta z) = \delta ((dr + idt)^2) = = \delta [(dr^2 - dt^2) + i(drdt + dtdr)] = 0$ =Minkowski metric+Clifford algebra= Dirac equation. So these *Real*#s are real eigenvalues because:

III) <u>2D Mandelbrot</u> C δz (fig1) perturbs independent <u>2D Dirac</u> dr getting 4D <u>eigenfunction</u> ψ in **Newpde**= $\gamma^{\mu}(\sqrt{\kappa_{\mu\mu}})\partial\psi/\partial x_{\mu}=(\omega/c)\psi$ for e,v, $\kappa_{00}=e^{i(2\Delta\varepsilon/(1-2\varepsilon))}-r_{H}/r$, $\kappa_{rr}=1/(1+2\Delta\varepsilon-r_{H}/r)$; fractal $r_{H}=C_{M}/\xi=e^{2}X10^{40N}/m$ (N=. -1,0,1...); $\Delta\varepsilon=0$ for neutrino v, N=-1 or no object B. So

$Postulate(0) \rightarrow Newpde$

Appendix <u>A,B,C</u>: N=1 fractal scale ²P_{3/2} Baryon Newpde objects A,B,C. We are inside object A

Spherical Harmonic Solutions to Newpde: 2P _{3/2} , 1S _{1/2} , 2S _{1/2} at r=r _H Stable 2P _{3/2} at r=r _H
N=0 at r=H 2P32 3e baryons (QCD not required) Hund's rule 1S1, µ,2SAT leptons (Koide)
4 SM Bosons from 4 axis extreme rotations of e_{v}
N=-1 (i.e., e ² X10 ⁻⁴⁰ =Cm ²). κ _θ is then by inspection the Schwarzschild metric g _i (For N=-1,Δe<<1). So we just derived
General Relativity(GR) and the gravity constant G from Quantum Mechanics(QM) in one line.
N=1 Newpde zitterwegung expansion stage is the cosmological expansion.
N=1 Zitterbewegung harmonic coordinates and Minkowski metric submanifold (after long M
time expansion) gets the DeSitter ambient metric we observe. $=-1.4$
N=0 The third orderTaylor expansion(terms) in Vie gives the anomalous gyromagnetic ratio Mandelbrot Set (fract
and Lamb shift without the renormalization and infinities. CM 1040 X smaller N=
So Kee provides the general covariance of the Newpde.
So we got all of physics here by mere inspection of this Newpde with no gauges! fig1 1040(2) X smaller N=

Conclusion: So by merely *postulating* **0**, out pops the whole universe, BOOM! easily the most important discovery ever made or that will ever be made again.

*Thus our concept is: **Ultimate Occam's razor postulate0** \rightarrow **ultimate math-physics** so simplest 0 definition(1=1+0; list 0=0X0,1+1X1 is z=zz, not z=zzzz) and we have from our (obviously required) real0 postulate thereby *real* eigenvalues *and so* Hermitian operators (observables) with their eigenfunctions ψ provided by the Newpde.

