This Theory Is 0

David Maker

Abstract All mathematicians know that the limit of a Cauchy sequence of rational numbers is a Cauchy real number (Cantor 1872). So all we did here is show we postulated real#0 by using it to derive a rational Cauchy sequence with limit 0. We did this because that same postulate (of real#0) math *also* implies fundamental theoretical physics (eg.,the Newpde 'solutions'below) making this a Ultimate Occam's Razor postulate(0) implying the ultimate math-physics theory, a important result indeed. Nothing is more 'Occam' than postulate0.

Theory But we need to define the algebra first and use it to write the postulate. So define 1)*numbers* 1=1+0 and 0=0X0, 1=1X1 as *symbol* z=zz: the *simplest* algebraic definition of 0. So 2)**Postulate** *real* number 0 *if* $\underline{z'=0}$ and $\underline{z'=1}$ *plugged* into z'=z'z'+C (eq.1) results in *some* C=0 constant(ie $\delta C=0$).

This is our *entire* Ultimate Occam's Razor **postulate(0)** theory

Application: (i.e., <u>plug</u> z=1,0 into eq.1 as required by above theory.)

•<u>Plug</u> in <u>z=0</u>= $z_o=z'in$ <u>eq1</u>. The equality sign in eq,1 demands we substitute z' on left (<u>eq1</u>) into right z'z' repeatedly and get iteration $z_{N+1}=z_Nz_N$ -C so *numbers* z_N possibly larger than 1, eg: 1+1=2, 1+2=3, etc (*defined* to be a+b=c) and *define* rules of algebra on these *numbers* like a+b=b+a (eg.,ring-field) with no new axioms. So postulate 0 also *generates* the big *numbers* too and thereby the algebra we then now use:

Constraint $\delta C=0$ also requires we reject the Cs for which $-\delta C=\delta(z_{N+1}-z_Nz_N)=\delta(\infty-\infty)\neq 0$. The Cs that are left over define the fractal **Mandelbrot set** $C_M=C=\delta z'=10^{40N}\delta z$, N=integer with that required subset C=0. These fractal scales having their own δz that perturb that z=1 so put $z=1+\delta z$ in eq.1 to get $\delta z+\delta z\delta z=C$ (3)

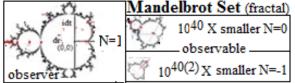


fig1 If N is the 'observers' fractal scale then define

M<N as the 'observables' scale M. eg., define the fig1 'observer' fractal scales as N≥1 implying $|\delta z|>>1$. Also must solve equation 3 as a quadratic equation $\delta z=(-1\pm\sqrt{1+4C})/2 \equiv dr+idt$ if C≤ -¼ (complex) (4) Note the Mandelbrot set iteration (ie., $z_{N+1}=z_Nz_N-C$) for this $\delta C=0$ extremum C=-¼ is a rational number Cauchy sequence -¼, -3/16, -55/256, ...,0 thereby proving our above postulated *real#0* math. QED

•<u>Plug</u> in <u>z=1</u> in z'=1+ δz in <u>eq1</u>, So $\delta C=0=$ (eq1 implies eq3)= $\delta(\delta z+\delta z\delta z)=\delta\delta z(1)+\delta\delta z(\delta z)+(\delta z)\delta\delta z=$ (observer $|\delta z|>>1$) $\approx\delta(\delta z\delta z)=0=$ (plug in eq.4) = $\delta[(dr+idt)(dr+idt)]=\delta[(dr^2-dt^2)+i(drdt+dtdr)]=0$ (5) =2D $\delta[(Minkowski metric, c=1)+i(Clifford algebra \rightarrow eq.7a)]$ (=Dirac eq)

Factor real eq.5 $\delta(dr^2-dt^2) = \delta[(dr+dt)(dr-dt)] = 0 = [[\delta(dr+dt)](dr-dt)] + [(dr+dt)[\delta(dr-dt)]] = 0$ (6) so $-dr+dt=ds, -dr-dt=ds=ds_1(\rightarrow \pm e)$ Squaring&eq.5 gives circle.in e,v (dr,dt) $2^{nd}, 3^{rd}$ quadrants (7) & dr+dt=ds, dr-dt=ds, dr±dt=0, light cone $(\rightarrow v, \bar{v})$ in same (dr,dt) plane $1^{st}, 4^{th}$ quadrants (8) & dr+dt=0, dr-dt=0 so dr=dt=0 defines vacuum (while eq.4 derives space-time) (9) Those quadrants give *positive* scalar drdt in eq.7 (if *not* vacuum) so imply the eq.5 *non* infinite extremum imaginary=drdt+dtdr= $0=\gamma^i dr\gamma^j dt+\gamma^j dt\gamma^i dr=(\gamma^i \gamma^j + \gamma^j \gamma^i) drdt$ so $(\gamma^i \gamma^j + \gamma^j \gamma^i)=0, i\neq j$ (from real eq5 $\gamma^j \gamma^i=1$) (7a) Thus from eqs5,7a: ds²= dr²-dt²=(\gamma^r dr+i \gamma^t dt)² Note how eq5 and C_M just fall (pop) out of eq.1, amazing! We square eqs.7 or 8 or 9 ds₁²=(dr+dt)(dr+dt)=(-dr-dt)(-dr-dt = [dr²+dt²] + (drdt+dtdr))

 $= ds^{2} + ds_{3} = ds_{1}^{2}.$ Circle= $\delta z = dse^{i(\Delta \theta + \theta o)} = dse^{i((\cos\theta dr + \sin\theta dt)/(ds) + \theta o)}, \quad \theta_{o} = 45^{\circ} \text{ min of } \delta ds^{2} = 0 \text{ given}$ eq.7 constraint for N=0 δz ' perturbation of eq5 flat space. We define k=dr/ds, $\omega = dt/ds$, $\sin\theta = r$, $\cos\theta = t$. dse^{i45°}=ds'. Take ordinary derivative dr (since flat space) of 'Circle' $\frac{\partial \left(dse^{i\left(\frac{rdr}{ds} + \frac{tdt}{ds}\right)}{\partial r} \right)}{\partial r} = i\frac{dr}{ds}\delta z$ so $\frac{\partial \left(dse^{i(rk+wt)} \right)}{\partial r} = ik\delta z$, thus $k\delta z = -i\frac{\partial \delta z}{\partial r}$ (11). N=0 small $\delta z' = C_M/\xi$ is a rotation on that circle at 45° so modified eq.7: $(dr-\delta z')+(dt+\delta z')\equiv dr'+dt'=ds$ (12) Define $\kappa_{rr} \equiv (dr/dr')^2 = (dr/(dr-\delta z'))^2 = 1/(1-r_H/r)^2 = A_1/(1-r_H/r) + A_2/(1-r_H/r)^2$. The partial fractions A_I can be split off from RN and so $\kappa_{rr} \approx 1/[1-r_H/r]$. (13) From eq.7a $dr'dt' = \sqrt{\kappa_{rr}} dr' \sqrt{\kappa_{oo}} dt' = drdt$ so $\kappa_{rr} = 1/\kappa_{oo}$ (14) •Both $\underline{z=0, z=1}$ together (in eq1. Use 3D orthogonality to get (2D+2Dcurved space)). Thus $\delta z' + \delta z = (dx_1+idx_2)+(dx_3+idx_4)\equiv dr+idt$ given $dr^2-dt^2 = (\gamma^r dr+i\gamma^r dt)^2 if dr^2 \equiv dx^2+dy^2+dz^2$ (3D orthogonality) so that $\gamma^r dr \equiv \gamma^x dx + \gamma^y dy + \gamma^z dz, \gamma^j \gamma^j + \gamma^j \gamma^j = 0, i \neq j, (\gamma^j)^2 = 1$. From eq.12,13,14 ($\gamma^x \sqrt{\kappa_{xx}} dx + \gamma^y \sqrt{\kappa_{yy}} dy + \gamma^z \sqrt{\kappa_{xz}} dz + \gamma^r \sqrt{\kappa_{tr}} dt'^2 = \kappa_{xx} dx^2 + \kappa_{yy} dy^2 + \kappa_{zz} dz^2 - \kappa_{tr} dt^2 = ds^2$. Multiply both sides by $\frac{h^2}{ds^2}$ and $\delta z^2 \equiv \psi^2$ use eq.11 inside brackets() get 4D QM $\gamma^{\mu}(\sqrt{\kappa_{\mu\mu}}) \partial \psi/\partial x_{\mu} = (\omega/c) \psi \equiv \text{Newpde}$ for e, v, $\kappa_{oo} = 1-r_H/r = 1/\kappa_{rr}$, $r_H = C_M/\xi = e^2X10^{40N}/m$ (N=. -1,0,1.,). Postulate 0-Newpde

Solutions of Newpde e,v:

stable $2P_{3/2}$ at r=r_H

N=0 Mandelbulbs: Free space: τ , μ , e leptons. OnSphere 2P_{3/2} at r=r_H 3e baryons (QCD not required) N=1 inside zitterbewegung oscillation r<r_CN=1 puts us in the cosmological expansion stage Other results (besides Newpde) from postulate0, eg., Copenhagen stuff and 10⁸² electrons e between consequitive fractal scales such as N=0 and N=1 cosmological r=r_H, 2P_{3/2} perturbation objects B,C

Object B N=0 perturbations of κ_{00} and κ_{rr} in the Newpde **E&M**, N=-1 gravity GR **Object C** N=0 " "weak, both SM

That eq1 **iteration generates** (rel0)& possibly larger *numbers* 1+1=2, 2+1=3.etc as *defined* symbols a+b=c and **algebra rules** (eg.,ring-field def. like $a+b\equiv b+a$) with no new axioms. . Thus (with the math&physics) we understand *everything* (eg GR, cosmology, QM,e,v SM, baryons, rel#). So the *simplest idea imaginable* 0 implies all *fundamental math-physics*. no more, no less(eg simply 4D)

•**Conclusion:** So by merely (<u>plugging</u> 0,1 <u>into eq.1</u>) **postulating** 0, out pops the whole universe, BOOM! easily the most important discovery ever made or that will ever be made again. We finally figured it out.

Note also that 0 is not the same as the null set \emptyset since 0 is a real number and \emptyset isn't. So when we postulate 0 we are also implicitly postulating the real# nature of 0.

Summary This Theory is 0 The rest is a real number 0 definition
We need to define the algebra first and use it to write postulate0. So define
numbers $1\equiv 1+0$, and $0\equiv 0X0$, $1\equiv 1X1$ as symbol $z=zz$ the simplest algebraic definition of 0. So
Theory Real# 0 definition
Postulate 0 if $\underline{z=1}$ and $\underline{z=0}$ (plugged) into $z=zz+C$ eq.1 gives some C=0 constant(ie $\&C=0$)
Can't be more Occam than postulate(0). All the rest is those 2 'plug in' applications . So must
1) plug z=0 into eq.1 (given the implied z=zz+C eq1 iteration) to get the 2D (fractal) Mandelbrot set to prove postulate real 0. Iteration numbers might be bigger $1+1\equiv 2, 1+2\equiv 3$ etc., with <i>defined</i> symbols
a+b≡c and algebra rules eg., a+b≡b+a. So the <i>postulate generates real</i> # <i>math</i> without extra axioms 2) plug z=1 into eq.1 and get 2D Dirac equation.
Both Mandelbrot and Dirac results together give 2+2=4D Newpde (plus some Copenhagen stuff)
Solve the differential equation (Newpde) to get the physical universe, no more, no less. backups: davidmaker.com
Conclusion: Ultimate Occam's razor postulate(0) implies ultimate math-physics.