Cauchy completeness and physics

David Maker
Abstract All mathematicians know that the real numbers (ie .rationals \& irrationals) can be constructed from Cauchy completeness i.e. real\# sets as rational Cauchy sequence limits. So all we did here is show we postulated real\#0 by using it to derive a associated rational Cauchy sequence. We did this because that same postulate (of real\#0) math also implies fundamental theoretical physics (eg.,the Newpde in 'results')

List $1 \equiv 1+0$ and (list) $\mathbf{0} \equiv 0 \mathrm{X} 0,1 \equiv 1 \mathrm{X} 1$ defined as $\mathbf{z}=\mathbf{z z}$: the simplest algebraic definition of $\mathbf{0}$ and 1 . So Postulate real number $\mathbf{0}$ (so real1) if $\underline{\mathbf{z}^{\prime}=\mathbf{0}}$ and $\underline{\mathbf{z}^{\prime}=\mathbf{1}}$ is substituted (plugged) into $\quad z^{\prime}=z^{\prime} z^{\prime}+\mathrm{C} \underline{\mathbf{e q} \mathbf{1}}$ results in some $\mathrm{C}=0$ constant(ie $\delta \mathrm{C}=0$). Thus
\bullet Plug in $\underline{\mathbf{z}}=\mathbf{0}=z_{0}=z^{\prime} \underline{\text { in }} \underline{\mathbf{e q} 1 . T o ~ f i n d ~ a l l ~} \mathbf{C}$ substitute z^{\prime} on left (eq1)into right $z^{\prime} z^{\prime}$ repeatedly andget iteration $\mathrm{Z}_{\mathrm{N}+1}=\mathrm{Z}_{\mathrm{N}} \mathrm{Z}_{\mathrm{N}}-\mathrm{C}$. Constraint $\delta \mathbf{C}=\mathbf{0}$ requires we reject the Cs for which $-\delta \mathrm{C}=\delta\left(\mathrm{Z}_{\mathrm{N}+1}-\mathrm{Z}_{\mathrm{N}} \mathrm{Z}_{\mathrm{N}}\right)=\delta(\infty-\infty) \neq 0$. The Cs that are left over define the Mandelbrot set $\mathrm{C}_{\mathrm{M}}=\mathrm{C}$ with asubset $\mathrm{C}=0$, fractal scales $\delta z^{\prime}=10^{40 \mathrm{~N}} \delta z, \mathrm{~N}=$ integer These fractal scales having their own δz then perturb that $\mathbf{z}=\mathbf{1}$ so put $\mathrm{z}=\mathbf{1}+\delta \mathrm{z}$ in eq. $\mathbf{1}$ to get $\delta \mathbf{z}+\delta z \delta z=C$ (3) Define $\mathrm{N} \leq 0$ as 'observable'fractal scales. Thus define the'observer'fractal scales as $\mathrm{N} \geq 1$ implying $|\delta z| \gg 1$ Then solve equation 3 as a quadratic equation so $\delta z=(-1 \pm \sqrt{1+4 C}) / 2 \equiv d r+i d t$ if $\mathrm{C} \leq-1 / 4$ (complex) (4) Note the Mandelbrot set iteration (ie., $\mathrm{Z}_{\mathrm{N}+1}=\mathrm{Z}_{\mathrm{N} \mathrm{Z}_{\mathrm{N}}-\mathrm{C}}$) for this $\delta \mathrm{C}=0$ extremum $\mathrm{C}=-1 / 4$ is a rational number Cauchy sequence $-1 / 4,-3 / 16,-55 / 256, \ldots, 0$ thereby proving the hypothesis of our above postulated real\#0 math and so also real 1 since $\mathbf{1}=1+0 \equiv 1 \cup$ real\#0.
\bullet Plug in $\underline{\mathbf{z}=\mathbf{1}}$ in $\mathrm{z}^{\prime}=1+\delta \mathrm{z}$ in $\underline{\mathbf{e q} 1, ~ S o ~} \delta \mathbf{C}=\mathbf{0}=($ eq1 implies eq 3$)=\delta(\delta z+\delta z \delta z)=\delta \delta z(1)+\delta \delta z(\delta z)+(\delta z) \delta \delta z=$ $($ observer $|\delta z| \gg 1) \approx \delta(\delta z \delta z)=0=($ plug in eq. 4$)=\delta[(\mathrm{dr}+\mathrm{idt})(\mathrm{dr}+\mathrm{idt})]=\delta\left[\left(\mathrm{dr}^{2}-\mathrm{dt}^{2}\right)+\mathrm{i}(\mathrm{drdt}+\mathrm{dtdr})\right]=0 \quad$ (5) $=2 \mathrm{D} \delta[($ Minkowski metric, $\mathrm{c}=1)+\mathrm{i}($ Clifford algebra \rightarrow eq. 7 a$)] \quad(\equiv$ Dirac eq)
Factor real eq. $5 \quad \delta\left(\mathrm{dr}^{2}-\mathrm{dt}^{2}\right)=\delta[(\mathrm{dr}+\mathrm{dtt})(\mathrm{dr}-\mathrm{dt})]=0=[[\delta(\mathrm{dr}+\mathrm{dt})](\mathrm{dr}-\mathrm{dt})]+[(\mathrm{dr}+\mathrm{dt})[\delta(\mathrm{dr}-\mathrm{dt})]]=0 \quad$ (6) so $-\mathrm{dr}+\mathrm{dt}=\mathrm{ds},-\mathrm{dr}-\mathrm{dt}=\mathrm{ds}=\mathrm{ds}_{1}(\rightarrow \pm \mathrm{e})$ Squaring\&eq. 5 gives circle.in $\mathrm{e}, \mathrm{v}(\mathrm{dr}, \mathrm{dt}) \quad 2^{\text {nd }}, 3^{\text {rd }}$ quadrants (7)
\& $\mathrm{dr}+\mathrm{dt}=\mathrm{ds}$, $\mathrm{dr}-\mathrm{dt}=\mathrm{ds}, \mathrm{dr} \pm \mathrm{dt}=0$, light cone $(\rightarrow \mathrm{v}, \bar{v})$ in same (dr, dt) plane $1^{\text {st }}, 4^{\text {th }}$ quadrants (8)
\& $\mathrm{dr}+\mathrm{dt}=0, \mathrm{dr}-\mathrm{dt}=0$ so $\mathrm{dr}=\mathrm{dt}=0$ defines vacuum (while eq. 4 derives space-time) (9) Those quadrants give positive scalar drdt in eq. 7 (if not vacuum) so imply the eq. 5 non infinite extremum imaginary $\equiv \mathrm{drdt}+\mathrm{dtdr}=0 \equiv \gamma^{\mathrm{i}} \mathrm{dr} \gamma^{j} \mathrm{dt}+\gamma^{\mathrm{j}} \mathrm{d} t \gamma^{\mathrm{i}} \mathrm{dr}=\left(\gamma^{i} \gamma^{j}+\gamma^{j} \gamma^{i}\right) \mathrm{drdt}$ so $\left(\gamma^{i} \gamma^{j}+\gamma^{j} \gamma^{i}\right)=0$, $\mathrm{i} \neq \mathrm{j}$ (from real eq5 $\gamma^{j} \gamma^{i}=1$) (7a)
Thus from eqs5,7a: $\mathrm{ds}^{2}=\mathrm{dr}^{2}-\mathrm{dt}^{2}=\left(\gamma^{\mathrm{T}} \mathrm{dr}+\mathrm{i} \gamma^{\mathrm{t}} \mathrm{dt}\right)^{2} \quad$ Note how eq5 and C_{M} just fall (pop) out of eq.1, amazing! (These e, ν quadrants merely illustrate the 4 Boson SM 4 rotation extreme of $\mathbf{N}=\mathbf{0}$ perturbed eq.7,so eq.12)
-Both $\mathbf{z}=\mathbf{0}, \mathbf{z}=\mathbf{1}$ together (in eq1. Use orthogonality to get ($2 \mathrm{D}+2 \mathrm{Dcurved}$ space)). Thus ($\mathrm{z}=1$) $+(\mathrm{z}=0)=$ $\left(\mathrm{dx}_{1}+\mathrm{idx}_{2}\right)+\left(\mathrm{dx}_{3}+\mathrm{idx}_{4}\right) \equiv \mathrm{dr}+\mathrm{idt}$ given $\mathrm{dr}^{2}-\mathrm{dt}^{2}=\left(\gamma^{\mathrm{r}} \mathrm{dr}+\mathrm{i} \gamma^{\mathrm{t}} \mathrm{dt}\right)^{2}$ if $\mathrm{dr}^{2} \equiv \mathrm{dx}^{2}+\mathrm{dy}^{2}+\mathrm{dz}^{2}$ (3D orthogonality) so that $\gamma^{\mathrm{T}} \mathrm{dr}=\gamma^{\mathrm{x}} \mathrm{dx}+\gamma^{y} \mathrm{dy}+\gamma^{2} \mathrm{dz}, \gamma^{j} \gamma^{i}+\gamma^{j} \gamma^{i}=0, \mathrm{i} \neq \mathrm{j},\left(\gamma^{i}\right)^{2}=1$, rewritten ($\mathbf{N}=-1$ eq. 12 implies the covariant κ_{ij} of eq.13,15) as $\left(\gamma^{\mathrm{x}} \sqrt{ } \mathcal{K}_{x x} \mathrm{dx}+\gamma^{y} \sqrt{ } \kappa_{y y} \mathrm{dy}+\gamma^{2} \mathcal{K}_{z z} \mathrm{dz}+\gamma^{\mathrm{t}} \mathcal{K}_{t t} \mathrm{dtt}\right)^{2}=\kappa_{x x} \mathrm{dx}^{2}+\kappa_{y y} \mathrm{dy}^{2}+\kappa_{z z} \mathrm{dz}^{2}-\kappa_{t t} \mathrm{dt}^{2}=\mathrm{ds}^{2}$. Multiply both sides by $1 / \mathrm{ds}^{2}$ and $\delta z^{2} \equiv \psi^{2}$ use circle - $\mathrm{i} \partial \delta \mathrm{z} / \partial \mathrm{r}=(\mathrm{dr} / \mathrm{ds}) \delta \mathrm{z}$ inside brackets() get 4D QM $\gamma^{\mu}\left(\sqrt{ } \mathcal{K}_{\mu \mu}\right) \partial \psi / \partial \chi_{\mu}=(\omega / c) \psi \equiv$ Newpde for $\mathrm{e}, \nu, \kappa_{\mathrm{oo}}=1-\mathrm{r}_{\mathrm{H}} / \mathrm{r}=1 / \kappa_{\mathrm{r}}, \mathrm{r}_{\mathrm{H}}=\mathrm{e}^{2} \mathrm{X} 10^{40 \mathrm{~N}} / \mathrm{m}(\mathbf{N}=.-1,0,1 .$,$) .$
Results: of (merely plugging $z^{\prime}=0, z^{\prime}=1$ into eq.1) postulate 1 :
So Postulate $1 \rightarrow$ Newpde
Newpde: $\mathbf{N}=0$, stable $\mathrm{r}=\mathrm{r}_{H}$ composite(part II) 3 e $2 \mathrm{P}_{3}$ is baryons (QCD of 4 e, v quadrant rotations. $\mathbf{N}=-1$ is GR. Expansion stage of $\mathbf{N}=1$ scale $\delta z^{\prime}=\delta z e^{i w t}$ Dirac eq zitterbewegung oscillation is the cosmological expansion, $\mathbf{N}=0$ the $3^{\text {rd }}$ order Taylor expansion component (1) of $V_{\kappa_{\mathrm{rr}}}$ gets the anomalous gyromagnetic ratio so don't need the renormalization infinities. So we get the physics here
Math: We use that $\mathbf{1}+\mathrm{c} \equiv 1 \cup \mathrm{c}$ to define above list-define (ring-field) algebra and note again that iteration gives a Cauchy sequence limit of real\# eigenvalues, so we get the rel\# math as well with no new axioms. Thus (with the math\&physics) we understand everything (eg GR, cosmology, QM, e, v SM, baryons, rel\#). -So the simplest idea imaginable 1 implies all fundamental math-physics. no more, no less(eg simply 4D) Conclusion: So by merely (plugging 0,1 into eq. 1) postulating 1, out pops the universe, BOOM! easily the most important discovery ever made or that will ever be made again. We finally figured it out

Reminder: Real\#0 math postulaties literally nothing(0) (except real1 since $1=1+0 \equiv 1 \cup$ real\#0.) The algebraic definition of 1 (and 0) is $\mathrm{z}=\mathrm{zz}$ (note $\mathrm{z}=\mathbf{0}, \mathbf{1}$) if $\mathrm{C}=0$ in the below definition: so there must be a small C limit at the end since here C is defined to be constant only at $\mathrm{C}=0$. This small C limit $\mathrm{C}=\mathrm{C}_{\mathrm{M}} / \gamma=\mathrm{C}_{\mathrm{M}} /$ mass $\equiv \mathrm{r}_{\mathrm{H}}$ frame of reference (γ from eq.5) makes us define both mass and charge $\mathrm{C}_{\mathrm{M}}=\mathrm{e}^{2}$.

Summary: This
Theory is 1 The rest is a (rel\#1) definition.

