Cauchy completeness and physics

David.Maker

Abstract It is well known to all mathematicians that the real numbers (ie rationals \& irrationals) can be constructed from Cauchy completeness i.e. real\# sets as rational Cauchy sequence limits. All we did here is show we postulated real\#0 by using it to derive a associated rational Cauchy sequence. We did this because that same postulate (of real\#0) also implies important fundamental theoretical physics;see results
In that regard the simplest algebraic definition of 1 (and $\mathbf{0}$) is $\mathbf{z}=\mathrm{zz}$. So $\mathbf{z = 1 , 0}$; given also the list $1 \equiv 1+0$, $0 \mathrm{X} 1 \equiv 0$, etc as definitions of their respective symbolic relations; (eg., $\mathrm{c}=\mathrm{a}+\mathrm{b}, \mathrm{c}=\mathrm{ab}$) with that $\mathbf{1} \equiv 1+0 \equiv 1 \cup 0$ implying that if 0 is real then so is $\mathbf{1}$. Thus given the algebraic definition of 1 is $z=z z(z=\mathbf{1 , 0})$
postulate real number 1 holds when $\underline{z=1}$ and $\underline{z}=\mathbf{0}$ are substituted (plugged) into $z^{\prime}=z^{\prime} z^{\prime}+C$ eq1 results in some $\mathrm{C}=0$ constant(ie $\delta \mathrm{C}=0$). Thus

- Plug in $\underline{\mathbf{z}=\mathbf{0}}=\mathrm{z}_{0}=\mathrm{z}^{\prime}$ To find all \mathbf{C} substitute z^{\prime} on left (eq1) into right $\mathrm{z}^{\prime} \mathrm{z}^{\prime}$ repeatedly and get iteration $\mathrm{Z}_{\mathrm{N}+1}=\mathrm{Z}_{\mathrm{N}} \mathrm{Z}_{\mathrm{N}}-\mathrm{C}$. Constraint $\delta \mathbf{C}=\mathbf{0}$ requires we reject the Cs for which $-\delta \mathrm{C}=\delta\left(\mathrm{Z}_{\mathrm{N}+1}-\mathrm{Z}_{\mathrm{N}} \mathrm{Z}_{\mathrm{N}}\right)=\delta(\infty-\infty) \neq 0$. The Cs that are left over define the Mandelbrot set $\mathrm{C}_{\mathrm{M}}=\mathrm{C}$ with asubset $\mathrm{C}=0$, fractal scales $\delta z^{\prime}=10^{40 \mathrm{~N}} \delta z, \mathrm{~N}=$ integer So $\mathbf{z}=\mathbf{0}$ fractal scales have their own δz that perturb that $\mathbf{z}=\mathbf{1}$ so put $\mathrm{z}=\mathbf{1}+\delta \mathrm{z}$ in $\mathbf{e q .} \mathbf{1}$ to get $\delta \mathrm{z}+\delta \mathrm{z} \delta \mathrm{z}=\mathrm{C}$ (3) Then solve equation 3 as a quadratic equation so $\delta z=(-1 \pm \sqrt{1+4 C}) / 2=\mathrm{dr}+\mathrm{idt}$ if $\mathrm{C}<-1 / 4$ (complex) (4) Thus Mandelbrot set iteration for extremum $\mathrm{C}=\mathrm{C}_{\mathrm{M}}=-1 / 4$ is a rational\# Cauchy seq. $-1 / 4,-3 / 16,-55 / 256, ., 0$ confirming the real\#0 Cauchy completeness. Thus also 1 in above $1 \equiv 1 \cup 0$ is a real \# verifying postulate 1 Define $\mathrm{N} \leq 0$ as 'observable'fractal scales. Thus define the'observer'fractal scales as $\mathrm{N} \geq 1$ implying $|\delta \mathrm{z}| \gg 1$ \bullet Plug in $\underline{\mathbf{z}=\mathbf{1}}$ in $z^{\prime}=1+\delta z$ in eq1, So $\delta \mathbf{C}=\mathbf{0}=($ eq1 implies eq 3$)=\delta(\delta z+\delta z \delta z)=\delta \delta z(1)+\delta \delta z(\delta z)+(\delta z) \delta \delta z=$ $($ use $|\delta z| \gg 1) \approx \delta(\delta z \delta z)=0=($ plug in eq.4 $)=\delta[(d r+i d t)(d r+i d t)]=\delta\left[\left(d r^{2}-d t^{2}\right)+\mathrm{i}(d r d t+d t d r)\right]=0 \quad$ (5)

$$
=2 \mathrm{D} \delta[(\text { Minkowski metric, } \mathrm{c}=1)+\mathrm{i}(\text { Clifford algebra } \rightarrow \text { eq. } 7 \mathrm{a})] \quad(\equiv \text { Dirac eq })
$$

Factor real eq. $5 \quad \delta\left(\mathrm{dr}^{2}-\mathrm{dt}^{2}\right)=\delta[(\mathrm{dr}+\mathrm{dtt})(\mathrm{dr}-\mathrm{dt})]=0=[[\delta(\mathrm{dr}+\mathrm{dt})](\mathrm{dr}-\mathrm{dt})]+[(\mathrm{dr}+\mathrm{dt})[\delta(\mathrm{dr}-\mathrm{dt})]]=0 \quad$ (6)
so $-\mathrm{dr}+\mathrm{dt}=\mathrm{ds},-\mathrm{dr}-\mathrm{dt}=\mathrm{ds}=\mathrm{ds}_{1}(\rightarrow \pm \mathrm{e})$ Squaring\&eq. 5 gives circle.in e,v (dr,dt) $2^{\text {nd }}, 3^{\text {rd }}$ quadrants (7)
\& $\mathrm{dr}+\mathrm{dt}=\mathrm{ds}, \mathrm{dr}-\mathrm{dt}=\mathrm{ds}, \mathrm{dr} \pm \mathrm{dt}=0$, light cone $(\rightarrow \mathrm{v}, \bar{v})$ in same $\mathrm{e}, \mathrm{v}(\mathrm{dr}, \mathrm{dt})$ plane $1^{\text {st }}, 4^{\text {th }}$ quadrants (8)
$\& \mathrm{dr}+\mathrm{dt}=0, \mathrm{dr}-\mathrm{dt}=0$ so $\mathrm{dr}=\mathrm{dt}=0$ defines vacuum (while eq. 4 derives space-time) (9)
Those quadrants give positive scalar drdt of eq. 7 (if not vacuum) imply the eq. 5 non infinite extremum imaginary $\equiv \mathrm{drdt}+\mathrm{dtdr}=0 \equiv \gamma^{\mathrm{i}} \mathrm{dr} \gamma^{j} \mathrm{dt}+\gamma^{\mathrm{j}} \mathrm{d} t \gamma^{\mathrm{i}} \mathrm{dr}=\left(\gamma^{i} \gamma^{j}+\gamma^{j} \gamma^{i}\right) \mathrm{drdt}$ so $\left(\gamma^{i} \gamma^{j}+\gamma^{j} \gamma^{i}\right)=0$, $\mathrm{i} \neq \mathrm{j}$ (from real eq5 $\gamma^{j} \gamma^{i}=1$) (7a) Thus from eqs5,7a: $\mathrm{ds}^{2}=\mathrm{dr}^{2}-\mathrm{dt}^{2}=\left(\gamma^{\mathrm{r}} \mathrm{dr}+\mathrm{i} \gamma^{\mathrm{t}} \mathrm{dt}\right)^{2} \quad$ Note how eq5 and C_{M} just fall (pop) out of eq.1, amazing! (4 Boson SM derived using the $4 \mathrm{e}, v$ quadrant rotation extreme)
-Both $\mathbf{z}=\mathbf{0}, \mathbf{z}=\mathbf{1}$ together (in eq1. Use orthogonality to get ($2 \mathrm{D}+2 \mathrm{Dcurved}$ space)). Thus $(\mathrm{z}=1)+(\mathrm{z}=0)=$ $\left(\mathrm{dx}_{1}+\mathrm{idx} 2\right)+\left(\mathrm{dx}_{3}+\mathrm{idx}_{4}\right) \equiv \mathrm{dr}+\mathrm{idt}$ given $\mathrm{dr}^{2}-\mathrm{dt}^{2}=\left(\gamma^{\mathrm{r}} \mathrm{dr}+\mathrm{i} \gamma^{\mathrm{t}} \mathrm{dt}^{2}\right.$ if $\mathrm{dr}^{2} \equiv \mathrm{dx}^{2}+\mathrm{dy}^{2}+\mathrm{dz}^{2}$ (3D orthogonality) so that(1) $\gamma^{\mathrm{r}} \mathrm{dr}=\gamma^{\mathrm{x}} \mathrm{dx}+\gamma^{y} \mathrm{dy}+\gamma^{2} \mathrm{dz}, \gamma^{\mathrm{j}} \gamma^{\mathrm{i}}+\gamma^{\mathrm{j}} \gamma^{\mathrm{i}}=0, \mathrm{i} \neq \mathrm{j},\left(\gamma^{\mathrm{i}}\right)^{2}=1$, rewritten ($\kappa_{\text {ii }}$ from $\mathrm{N}=0 \mathrm{C}_{\mathrm{M}}$ perturbation of $\mathrm{N}=1$, eqs 7,13) as $\left(\gamma^{\mathrm{x}} \sqrt{ } \kappa_{x x} \mathrm{dx}+\gamma^{y} \sqrt{ } \kappa_{y y} \mathrm{dy}+\gamma^{2} \sqrt{ } \kappa_{z z} \mathrm{dz}+\gamma^{\mathrm{t}} \mathcal{K}_{t t} \mathrm{ddt}\right)^{2}=\kappa_{x x} \mathrm{dx}^{2}+\kappa_{y y} \mathrm{dy}^{2}+\kappa_{z z} \mathrm{dz}^{2}-\kappa_{t t} \mathrm{dt}^{2}=\mathrm{ds}^{2}$. Multiply both sides by $1 / \mathrm{ds}^{2}$ and $\delta z^{2} \equiv \psi^{2}$ use circle - $\mathrm{i} \partial \delta \mathrm{z} / \partial \mathrm{r}=(\mathrm{dr} / \mathrm{ds}) \delta \mathrm{z}$ inside brackets() get 4D QM $\gamma^{\mu}\left(V_{\kappa_{\mu \mu}}\right) \partial \psi / \partial \alpha_{\mu}=(\omega / c) \psi \equiv$ Newpde for $\mathrm{e}, \boldsymbol{v}, \kappa_{\mathrm{oo}}=1-\mathrm{r}_{\mathrm{H}} / \mathrm{r}=1 / \kappa_{\mathrm{rr}}, \mathrm{r}_{\mathrm{H}}=\mathrm{e}^{2} \mathrm{X} 10^{40 \mathrm{~N}} / \mathrm{m}(\mathbf{N}=.-1,0,1 .$,$) So \kappa_{\mu \nu}$ carries the covariance \& Postulate $1 \rightarrow$ Newpde

Results: of (merely plugging $\underline{z}^{\prime}=0, z^{\prime}=1$ into eq.1) postulate1:
(1) backups: davidmaker.com

Newpde: $\mathrm{N}=0$, stable $\mathrm{r}=\mathrm{r}_{\mathrm{H}}$ composite(part II) $3 \mathrm{e} 2 \mathrm{P}_{3 / 2}$ is baryons(QCD not required), SM is the exteme of $4 \mathrm{e}, \mathrm{v}$ quadrant rotations. $\mathrm{N}=-1$ is GR. Expansion stage of $\mathrm{N}=1$ scale $\delta z^{\prime}=\delta z \mathrm{e}^{\mathrm{iwt}}$ Dirac eq zitterbewegung oscillation is the cosmological expansion, the $3^{\text {rd }}$ order Taylor expansion component (1) of $V^{\kappa_{o o}}$ gets the anomalous gyromagnetic ratio so don't need the renormalization infinities. So we get the physics here.
Math: We use that $\mathbf{1}+\mathrm{c} \equiv 1 \cup \mathrm{c}$ to define above list-define (ring-field) algebra and note again that iteration gives a Cauchy sequence limit of real\# eigenvalues, so we get the rel\# math as well with no new axioms.
Thus (with the math\&physics) we understand everything (eg GR, cosmology, QM,e,v SM, baryons, rel\#). - So the simplest idea imaginable 1 implies all fundamental math-physics. no more, no less(eg simply 4D) Conclusion: So by merely (plugging 0,1 into eq.1) postulating 1, out pops the universe, BOOM! easily the most important discovery ever made or that will ever be made again. We finally figured it out.

Reminder: The algebraic definition of 1 is $\mathbf{z}=\mathrm{zz}$ (note $\mathbf{z}=\mathbf{0}, \mathbf{1}$) if $\mathrm{C}=0$ in the below definition:
Summary: This
Theory is 1 The rest is a (rel\#1) definition.

Theory Real\# 1 definition

Postulate 1. is defined algebraically if $z=1$ and $z=0$ (plugged) into $z=z z+C$ eq1 gives some $\mathrm{C}=0$ constanı(ie $8 \mathrm{C}=0$)
can plug $(8 \mathrm{C}=0$ \& $) \mathbf{Z}=\mathbf{0}$ into $\mathbf{e q 1}$ iteration(to get $\boldsymbol{a l l} \boldsymbol{C})_{\text {get } 2 \mathrm{D}}$ (complex) Mandelbrot set $\mathrm{C}_{\mathrm{M}}=\mathrm{C}$ (fractal scale N) (this iteration also results in a Cauchy sequence confirming 1 is a real\# comes from our above ' 1 ' definition.) plug $(\delta C=0 \&) \mathbf{Z}=1$ into eq1 get 2 D Dirac equation $(\mathrm{N}=1) \equiv$ 'observer) perturbing $\mathrm{N}=0(\mathrm{z}=1)$ "observables"
combine both $2 \mathrm{D}+2 \mathrm{D}=4 \mathrm{D}$ Newpde using $\left(\mathrm{dx}_{1}+\mathrm{idx}\right)_{z=0}+(\mathrm{dx} 3+\mathrm{idx} 4)_{z=1}=\mathrm{dr}+\mathrm{idt} \& d \mathrm{dr} 3 \mathrm{D}$ orthogonalization

