Part 11
Can there be a (stable) Small C Multielectron State of The Newpde?
Yes, It is Composite 3e, 2Pz at r=ru

Ultimate Occam’s razor theory implies ultimate math-physics theory
Summary: This
Theory is 1 The rest is a (r=121) definition.

Theory Reatz | definition
Postulate 1/|is defined algebraically if z=1 and z=0 (plugged) into z=zz+C eql
gives some C=0 constani(ie 30) So

can phug (C0& Z=0 into €ql iteration(to get @LIC)z=t2D(complex) Mandelbrot set C)\(=C (fractal scale N)
this iteration also results in a Cauchy sequence confirming 1 is a real® comes from our above '1" definition.)
plug (308 Z=1 intoeql z=t2D Diracaguation ((N=1)='observer) perturbing N=0 (z=1) "observables”
combine DOth 2D+2D=4D Newpde using (éx;+idx;),—p ~(dx3+idxy) _, =dr-idt &dr 3D orthogonalization

therefors (So w= zat all of physics and -1 alzzbra and Real#math(1 such C)\f iteration is Cauchy)
postulate 1-> Newpde evervthing that s Dh}‘stcaI:nO morza, no less. 322 backups at caviemaksr.com 2g..1n introcuction”

Ultimate Occam's razor postulate so vltimate physics theory, So undarstand vniverse complataly
Davidmaker

Postulate re#1 is defined algebraicaly if z=1 and z=0 (plugged) into z=zz+C eql gives some
C=0 constant(ie dC=0). So

3C=0, Z=0=2,=2" To find all C substitute z' on left (eql) in the into right z'z' repeatedly and
get iteration zn+1=znzn-C. Constraint 8C=0 requires we reject the Cs for which -0C=0(zn+1-znzZN)
=8(00-00)#0.The Cs that are left over define the Mandelbrot set Cy. €g.52’=10*N5z, N=integer
So N>1 fractal scale(=observer) z=0 perturbs N<0 smaller =observable (z=1) with its own 6z. So
z=1 in 2’=1+06z in eq.1 get 6z+6z20z=C (3) so dz=(-1+V1 + 4C) /2=dr+idt if C< -Ya(complex) (4)
The iteration also results in a Cauchy seq. confirming 1 is a real#comes from our ‘1’ definition

3C=0, Z=1 in =145z in eql gives for required observer N>1 so [0z|>>1 (observable N<0) that
0C=0= (plug in eq3)=0(0z+06z0z)= 86z(1)+352(0z)+(02)d56z~d(525z)=0=(plug in eq.4)=
S[(dr+idt)(dr+idt) ]=8[(dr?-dt?)+i(drdt+dtdr)]=0 (5)
=2D (Minkowski metric, c=1)+i(Clifford algebra—eq.7a) (=Dirac eq)
Factor eq.5 real  §(dr’-dt*)=8[(dr+dt)(dr-dt)] =0=[[&(dr+dt)](dr-dt)]+[(dr+dt)[8(dr-dt)]] =0 (6)
so -dr+dt=ds,-dr-dt=ds=ds|(—>*e) Squaring&eq.5 gives circle.in e,v (dr,dt) 2"¢,3"quadrants (7)
& dr+dt=ds, dr-dt=ds, dr£dt=0, light cone (—>v,v) in same e,v (dr,dt) plane 1%,4"quadrants (8)
& dr+dt=0,dr-dt=0 so dr=dt=0 defines vacuum 9)
Quadrants give positive scalar drdt of eq.7 (if not vacuum) imply the eq.5 non infinite extremum
imaginary=drdt+dtdr=0=y'drydt-+yidty dr=(yy+yly))drdt so (yy+yy)=0, i%j(from releqs yiy'=1)(7a
Thus from eqs5,7a: dr’-dt>=(y'dr+iy'dt)?
Both z=0,z=1 together using orthogonality to get (2D+2Dcurved space). Thus (z=1)+(z=0)=
(dxi+Hidx2)+H(dxs+idx4)=dr+idt given dr-dt?>=(y"dr+iy'dt)%if dr’=dx*+dy>+dz? (orthogonality)so that
Y dr=y*dx+yYdy+y“dz, yy+yy=0, i#j,(y)*=1, rewritten (kii from N=0 Cwv perturbation ofN=1 eq.7)
(V" Vicadx+y? Vig,dy+y% Viedz+y! Viaddt)?= kudx>+ &, dy>+ k..dz2- kidt?= ds. Multiply both sides by
1/ds? and 8z%=y? use circle -i06z/6r=(dr/ds)8z inside brackets( ) get 4D y* (i) /= (w/c) wr
=Newpde for e,v,Koo=1-10/r =1/Ksr, rr=e>X10*N/m (N=. -1,0,1.,). Also Cm/E=rn=



*small (min) C so big &=y boost so z=zz so postulate 1. So we really did just postulate 1. So
Postulate | >Newpde
Results of N=1 r=ru: Newpde composite 3¢ 2P3/ state = baryons and the 4 Newpde e,v extreme
(quadrant)rotations are the 4 W*,y,W~,Z,, SM Bosons. Also N=-1 is GR & big y=£=t+u from Cum
So “postulate 1 gives Newpde (i.e., all of physics) and real#math, no more, no less (everything)

Small C’ boost in composite 3e is the subject of partll

| Equation 1implies small observable C so postulate 1( observablei Observer N=1 Observable N=0 z=0.z=1
68 740 = . COﬂ]pOSltCJE A,.'- Stable Solution B bare )
Observable N= 0 . : . Eq3 &+&&C te. rapid For r= H (z=0, 11b) baryonsp

Forr=< rH (z=1,11a) leptons

(4 }Cl)b erver N=1 ?Z:‘TFC ;::‘“? 7!1+u=mass=v2(';’me+r‘me) =mp
Qf5= o ——
&& b THL=mass=2(YMe+me)

Gs  _ ; T3
Rl TeLe €@ T CE R T
- Gu Newpde 3= model of each Eq3 &+&& EI=C

Energy ¢ L L = my %12 Mandelbulb e=e+e-e
increaselyy LM —>§T—%—Ss eSSyt 1a12 112 S0 Cr>
t beervable since r<rH so]=8=1/2
L:L¢ _\m’( Lallo\ u‘;nzbi‘\.au ‘lgcl IT.‘—-LSCI 2 ;Iél:ll C(&g) boost a—]l c
S12 1] g 'I-H,l =511 50 z=2z
0 Electron=&=1=L in 7/ Vi)W oy | ~ "and|postulate |
LeCIIX e Solution e,V (Newpds) Newpde Mandelbulb model N=1 observable e

ds2 local circle at 4§ = Fill in states (us2 Pauli principle) from low enerzy E to high. snersyE
So these Newpde Mandelbulbs on 2D flat space are the leptons. The Mandelbulbs on the 2P3/2
r=ru 2D shell are baryons. Mesons are baryon J=1,J=0 excited states (see Frobenius solution
ch.9). The multiplets are Paschen back ortho para excited states.

Small C stable Newpde State 2P3; at r=ru: Composite 3¢
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level ortho, para (s,c,b; t) getting the particle multiplets at each level
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Ch.12 Comparison and contrast of 2P3; at r=ry with mainstream toy model gauge theories

Newpde Composite 3e 2P3; at r=rg Model: small C realized
Note that we derived y,Zo,W-+,W- in Appendix A Of Part I So we derived the E and B fields.
7.3 Eq.11 B Field Flux Quantization In This Enclosed Current Loop
Note if a charged particle moves in loop in a field free region that surrounds another region, there
is trapped magnetic flux ¢ in that region. Also we can include minimal interaction E&M
momentum/h =k—k-+eA/h =eBr/h for uniform B field. If y phase is a unique function on the
loop then phase kr= (eBr/h)r=(eBrr/h)= e(Barea)/h=e®/h=n2r. ®=4.13X10""° for integer spin.
Then upon completing a closed loop the particle’s wave function will acquire an additional phase
factor exp ( ) But the wave function must be single valued at any point in space. This can be

accomplished if the magnetic flux @ is quantized: e®/h= ntn, n=0£1,1+2,£3, so ®,=h/(2¢). From
NIST: 2.067833848X10 Wb =®,. half integer spins. Integer spin 2®,=2(h/2¢e)=h/e for the
two positrons.



7.4 Ultrarelativistic Rotator.
Side View z=0.

2
From the side of the rotator the Fitzgerald contraction goes as: r’'u=ry f; /2 1- Z—Z sin@deo.

c2sin20

=er;/2 1 —— sinfdo=

=1y f;)/z cosOsinfdo = ry f01 xdx =1y x2_2 |5 =m/2=2.8X10"Pm=ry  (7.1)

or the ortho 2P state observer (i.e,2P3/2, 2Py;) in the horizontal plane and ru/2=r”. We must repeat
this integration on the end para states, the radius is shrunk by t+2(g+Ag) and so is nearly a point
source Sy, state (for the observer above the circle as for the deuterium central electron sect.10.7).
We next show that the jump from ortho to para must then correspond to the jump from € to t
fractal quantum state given t is separable and so a orthogonal state transition.
2rp=2(2.81X10°15=2¢%/(mcc?), Side view Y4(2rn)=ru,

Radius Of Proton: So for the side view 2.8F/2=ru,/2=r=2.8X10"1%/2=1.4X10"'> m. For high
energy neutron scattering from all angles from all directions do the side average times the top
average to estimate the (total cross-section barns#) area. Then take the square root to get the

. . . . . 0))?2 . .
radius. Again take vertical circle diameter D Lorentz contracted ’1 — (C(CZ—Z)) D=Dsin® so sine

average from top to bottom 0—m/2 view (so 6=0 degrees, end scattering for 0 radius Fitzgerald

/2 sinfdo /2

. —cos6 —0—(- .
contracted object.). So < g ) = ZCo0ly _ (0 _ 2 . So for average (cross-section)
/2 /2 /2 T

area estimate over 0—/2 polar angle scattering angles associated with (circle) scattering radius

. 2
= \/areasmall square = \/AreasquareX (M) = J(1.4X10‘15 %) %=

squareArea
=7.8X1071m~.8F =r,. Actual =.8F
Top view 2ry.z=1
So only New pde e (z=0 &=Ae=m.) is stable. The only way to get multi e particle stable large &
is with the Newpde composite 3¢ 2P3, at r=ry state. That is because we have stability (dt’>=(1-
ru/r)dt?) clocks stop at r=ru. That 3™ mass also reverses the pair annihilation virtual pair creation
inside the ru volume given c=mnru?~ (1/20)barn making it merely a virtual creation annihilation
event. So our 2P3» composite 3e (proton) at r=ry is the only stable multi e composite.

Magnetic Flux Quantization For Current Around Loop
Our Newpde IV—I quadrant eq.12 rotations (appendix A4) gave us Maxwell’s equations and
E&M so we can apply B fields here. We also derived quantum mechanics from that Circle

equation (giving eq.11). Thus we can have quantization of the B field flux$ BedA =®\N

B dA ! B, hardly changes in going out of plane of the coil
é ll' O but § ®dAchanges a lot. So there is some location jjust out of the
J : Y
E"L wie plane that makes B, average in the plane.

Just above (and below) the coil plane toward the edge of the coil the B direction changes and the
magnitude of B goes up. So some B edA =A® minimum deviation from BdA for some constant



|E4)| above the coil plane. Given B is perpendicular to dA at the center and the radius ry of the
coil cancels out (eq.2 below) this A® flux could be over the center where the relevant y is
needed. Thus we must write for the 2 electrons SA®=0=BA= Brnrj> with the B at the center of
the coil for z=0 (appendix). So effective ry slightly bigger (making B smaller) but ry cancels

anyway. So BA = (%)(mﬁ) = @,(#2positronMotion). (1)

Also ru=e?*/mec?, g/t=i. g=e=1.6X10""" C, d®y= NIST: 2.067833848X10'>Wb, 1/y dilation of ry
in the current i but it and ru get canceled out here. The time t dilation y is in the current 1’
moving frame of reference. Recall that for circular motion: c=D/t=2nru/t so:
t = 2mry3/yc, so i=@ each electron is y/3 in mass.
yc
e

Y _u _ _h . .
BA O (mrf) = ﬁ<@> ri = ®gN = Z(ZPOSltTOTlMOthTl) (2)

T 2ry3

yc
B=p01/2ry is the minimum B inside the loop, and given ru cancels out in eq.2, can be taken as a
variational principle optimization of the energy B2.
Each of the 2 positron flux contributions around the circle(N1=2). But each positron moves
through all 3ys. So doing the cancelations in eq.2:
v(no/4*3)ec=(h/2e)(2positrons). 3)

So
1(Ko/4)ec=(h/2e)6, But there already is a populated state (Hund’s rule) 1Sy, (i) =.1125=p/P so
we add it in (For example recall in the hydrogen atom that the 1S states fill before the 2P states.).
So:

1

_h
Y_Ze 6(1 + 'u) %ec

2.0678X10715(6)(1+p) _ 1.2407X1071%X(1.11255) _ 1.38034X1071%

mX10771.6X10~193X108 1.5086X10~17 1.5086X10~17

We must add in the 3X.511=1.533 for the 3 electrons

915+1.533=916.533

2P32 at r=ry implies also twice our 2 positron y result will be the proton mass.
2(916.533))mec?>=1.50087X10-1°J=937Mev

Finally we must add that 1Mev binding energy between that p and the (Fitzgerald contracted) net
+e positrons and electron (Fitzgerald contracted to a point Coulomb source) from axial frame of
reference (sect.10.5) and get 938.23Mev.

Actual proton mass= 938.272Mev=m,,.

An exact answer!

Small C limit Finally Realized

Note we then we now have that small C limit from stable composite 3e because the positrons
gain mass (explaining the proton mass) by their rapid motion contracting E field lines seen at
the center area thereby (explaining the strong force).

m, in equation 9.6 (and the rest of ch.8 is this 938 proton mass normalized to 1.

Also from appendix A7 scissors r=r/cos0), eigenfunction perturbation (caused by object C in
A7, gives the Fermi G).

In Ch.9 we perturb the Newpde 2P/, at r=ry state using a Frobenius series formulation. We then
note that the Meisner effect J=0, N=0 Frobenius zero point energy 9.23 must add an extra e* to
that 1~ to get the n~ casel J=0 (Thus this later Frobenius solution (J=0, N=0 solution)
formulation requires an (implicitly assumed) additional charge e*.)

(Note that 4 cancels the 4 in po=4nX10 7 Wb-m/Amps.)

915 (4)



Ortho State Eq.9.22 Zero Point Energy € Implies Meisner Effect Nonzero Ortho States
m=1,0,-1. y;=¢/Ae

The magnetic field in one of these protons is about 10! T (=p.i/(2rx), so large that any spatially
oscillating charge is going to be forced to induce a counter current that tries to cancel the change
in flux produced by the charge motion (Faraday's law) relative to the proton. The Frobenius
series method applied to the new pde has this J=0, N=0 zero point energy solution eq.9.22 SP
hybrid state of the proton whose oscillation provides a Cooper pair oscillation counter current in
that huge 10''T field that cancels it out. So at close range there are many pions &/Ae. (up to 7)
and more distant, where the B field drops you only need one: Hence we have just derived the
multi pion interactions observed near the proton and resulting Yukawa force.

The ortho state with B orthogonal to A would not exist without this zero point SP state motion
since the (SP hybrid so) induced P state spinor has a horizontal component so has a dot product
with horizontal S nonzero spinor (for ortho).

These two B fields (B, and By) are put into Paschen Back (eg.,msc?>=ugy.B(1+0+0+0))

S1@#S,=0

S2

P ®S270
Zero Point Ener;
SP hybrid orbital

eisner Effect Eq9.22

Para

Fitzgerald
Contraction

VS1@#S>70

S2

2h/(2e)=400
Flux Quantization

Figl
2 body positron-positron dynamics so ortho(s.c.b) and para(t) states
on the r=ru shell near 6=90°. Paschen Back dynamics

Summary Of Para and Ortho States: two ys: top view Para y=917, Ortho side view y=¢/Ag
S1 SP hybrid zero point energy eq.9.22: P state so ~ S1eS, #0, ortho: e m=+1,0B=(¢/A¢)B=B..
=(.06/.00058)2.02X10'"' =2.27X10"°T=B, (eg., m=upB(1+0+0+0))

S Flux quantization y top S; view both positrons so SieS; #0, para: yL-0=yB=Bj.
=917(4)2.02X10'' =7.5X10"T=B; (eg., m=upB|(1+1+1+1))

7.6 The two rapidly moving positrons: 2&®2=3®1 List of 1 Para SB and 3 Ortho SB_. States
Here Thomas LS LST= -(Lgr*(Sar or Scr))K+gs perturbation is subtracted off the Paschen Back
energy for both the SB1 and SBj cases.



SBj=State t non LS coupling para singlet state (the 1 single state in the 31 decomposition)
B|=7.448X10T,=B=y(2.02X10'")

0° I'H
Bjug(mLA+mSA+mLC+mSC)=PE LST PE-LST name  Pauli Principle. Lem S
=0 1 + 1 + 1 + 1 173 0 173 t even stable Singlet para

SB. State B total triplet b,c,s ground state u/d LS coupling triplet ortho state. LS coupling
B1~4.043X10"T (/A€)2.02X10''=2.27X10T

Sp==1 tent 2Py, = at r=ru. Here single PE= 1, PE=)4D bond='%; D=2. See sect.10.7
Biug(mMLA+mSA+mLC+mSC)=PE  LST =LST-PE name Pauli Principle

m=1 1+ 1+ 1 +1 5790 1.5+1 (2) b ortho
m=0 1+ 1+ 0 +0 2471 1.5-0 (2) Hs ortho
=1 1+ 1+ 0 +0 1314 1.5-1 (2) Hs ortho
Ground State Pwa=(1)938 1 Pwa 2P3» & 2Pip

So a total of 4 states for two positrons (3ortho, 1para). 6 2P3/; states if you include the central
electron. Since the proton is the core object for these states we can use the Frobenius solution
Ch.9 perturbations below for these r>ru deviations from the spin 1 flux quantization 2¢pe=2h/2e
above sect.10.13 and =.. We get four multiplets of the three = one P. Get ud. (Chapter 8). The
above are also boson energy transitions analogous to the principle quantum number photon
transition emissions of the hydrogen atom.

Other Ortho Consequences

We can reverse engineer this process by modeling a large decrease in the resulting strong
magnetic field:

Neutron 2Py, 1-ru/ru for charge 0 (case 2 Ch.8) is homeomorphically mapped into 1-¢ with
added outside particle KE Meisner effect additional outside charge (reducing that ru/ru charge so
preserving angular momentum a (and so KMQ) in the Kerr metric term (a/r)>. Note the negative
sign still indicates inside multibody charge is still 0.

Proton 2Pz, 1+ru/ra (case 1 in Ch.8) is then homeomorphically mapped into 1+¢ with added
particle KE. The positive sign indicates nonzero internal multibody charge. See eq.B4.

For 2P3n  xoo=(1-2¢)-Ae-[(Cm/me)r]. The starting point of PartIl. (B3)

vector ®p. So ultrarelativistic Thomas precession =n3m, =LS energy o is subtracted off from
Paschen Back energy wp. It adds to 0 in the ground state. Iso Lem=Nrpho/c=rX[(EXH)/c](nru’T)
angular momentum also cancels some of the total angular momentum of objects A,C and B.

For each ortho state we apply the Frobenius solution perturbation(Ch.9) . The next ortho value is
m,=2 (for s and later my=4 for ¢, mp=>6 for the b state) for the next ortho state.

Calculation Of &;

We use the equation 1.2.7 energy normalization (me=1) for two reduced mass 2P3/2
ultrarelativistic positrons at r=ry with ansatz E—>xa, in Ee—>1 in &=E3+E+E,. So E=Cmé 1 2/EN2—>
BE1E1= Y5 [(x2+H(2+A)x+H(1+A))= (partial fractions)= Y ((1(-1/A)/(x+1))+ ((1(1/A)/(x+1+A)=
positronl +positron2. So for x—0 then A=1/3684 from the boosted magnetic flux calculation
2y=3684.



|Composite 3e Paschen Back |

Each level subdivides into Frobenius Series

sloafi~003: slo-t el energy levels below
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Fig.8
-Paschen Back composite 3e at r=rp New Pde solutions

 ortho and para splittiing two positron (two body) motion

para t giving ortho +para Clebsch Gordon
coefficient splitting

H
each of these ortho states is itself
perturbatively split by
Frobenius series solutions
upsilon
. - -—— Frobenius series
Ortl0 ——  c— = ¢ perturbation splitting

/

ground state

PN Fig.2

Chapter 8 Frobenius Series Perturbation To Each Paschen Back State
Introduction

Here we start with the ground state magnetic flux energy(u/d) set my=1, move on to the three
orthos (s,c,b) with larger my s () and finally to the very high para (t). We are actually perturbing
the motions at ry by these r in equation 9.5 and so are taking into account the constituents

of the proton in this way.

Also there are then 6 magnetic flux quantization 2P3. states. Each flux quantization level has
its own m, and associated Frobenius solution. So we have ground state my=1, (appendixC
938Mev result) and excited states: mp=1.5=E;, and also =, =p, each having it’s own Frobenius
solution sets.

8.1 Solution to eq.2 Using Separability: Gyromagnetic Ratios And Low
Energy Particles (energy<3GeV) Derived For ground state Magnetic Flux



r~ry Application: Gyromagnetic Ratios
After separation of variables the “r” component of equation 9 can be rewritten as:

[(g Koomp) + mp] F — #c (\/K_rr% + Hf/z)f =0 (8.1)
[(g KOOmp) - mp] f+ hc( Krrdd_r - %) F=0. (8.2)

Because the koo =1-ru/r is point source the object B ambient metric is local and so the vacuum is

not infinite density (see also sect 6.11) as in the QED ambient metric which is homogenous.

Comparing the flat space-time Dirac equation to equations 8.1 and 8.2:
(dt/ds)Vicoo=(1/k00)Vioo=(1/Vkoo)=Energy=E  (8.2a)

Using the above Dirac equation it is easiest to find the gyromagnetic ratios gy for the spin polarized

F=0 case. Recall the usual calculation of rate of the change of spin S gives dS/dtecmocgy] from the

Heisenberg equations of motion. We note that 1/g, rescales dr in

(\/KTT % + #) f in equation 8.1. Thus to have the same rescaling of r in the second term we

must multiply the second term denominator (i.e.,r) and numerator (i.e., J+3/2) each by 1/g: and
set the numerator equal to 3/2+J(gy), where gy is now the gyromagnetic ratio. This makes our
equation 8.1 compatible with the standard Dirac equation allowing us to substitute the gy into the
standard dS/dtocmocgyl] to find the correction to dS/dt.

Thus again:
[1/\ge]( 3/2 +1)=3/2+Jgy, Therefore for J= ¥ we have:
[1Nge]( 3/2+5)=3/2+Vsgy= 3/2+5(1+Agy) (8.3)

Then we solve equation 8.3 for gy and substitute it into the above dS/dt equation.

S States: Recall € and Ae and S states from eq. 6.4.13. These are zero point energy states (eq.9.22)
that must also be the source of the Meisner effect canceling of those large B fields. Noting in
equation 6.4.13 we get the gyromagnetic ratio of the electron with g,=1/(1+Ae/(1+¢)) and €=0
for electron. Thus solve equation 8.3 for Vga=V (1+Ae/(1+¢€))=V (1+Ae/(1+0))= V (1+.0005799/1).
Thus from equation 8.3

[14 (1+.0005799)](3/2 + Y2)= 3/2 + Y4(1+Agy). Solving for Agy gives anomalous gyromagnetic
ratio correction of the electron Agy=.00116

Going to higher energies (so €#0 in equation 8.3) we get the anomalous gyromagnetic ratio
correction of the muon. From the momentum representation of eq.8.1,8.2:

2P3); states: Recall the 2P3; states from chapter 3. Note also that k can be positive or negative
since 4mk=Zoo in our Lagrangian with a positive k meaning at least one charge is not canceled.
Therefore 1/g- =1tk/r+e (using our Frobenius solution expansion near r~ry of €q.9.5 below
multiply through by zero point energy,Meisner effect (1+¢e/4)((1+e+..) =1+.08=1+¢’ so a pion
mass is then added to the protons) from the *nature of Zo.. Therefore we have two cases from
equation B3 at the boundary r=k

CASE 1 l/gn =1+k/k+e charge 1 (core case)
CASE 2 1/gn =1- k/k+e charge 0 (use m from case 1)



Note: ¢ (9.22) is required because it is the zpe here (like kw4 is the zpe of 1D SHM) external to
the 3e region. So through the Fzero point energy araday’s law Meisner effect pops up to cancel
that huge 10'*T internal B field, hence the origin of the mesonic field. So the ¢ in case 1 and case
II is the artifact of that large internal B field of section 8.1.

Also the effect of a zero charge is to make metric component goo (=1/g:r) contribution zero in
case 2. Thus the effect of nonzero charge is to increase the dimensionality by adding a metric
component in eq.2. This provides the reason that Kaluza Klein theory (adding a 5™ dimension) is
so successful at injecting E&M into general relativity. But Kaluza Klein theory is not required
here because finite Cym in eq.1.11 is really responsible for charge and E&M. 2D is sufficient as
we showed in Chapter 1, eq.1.5. The extra 2D degree of freedom is associated with that extra
real term 80z in the amazing equation 1.6.

CASE 1: Plus +k, therefore is the proton + charge component. 1/g, =1+k/k +& =2+ ¢ . Thus

from equation 8.1, 8.2 /24 & (1.5+.5)=1.5+.5(gy), gy=2.8 (8.4)
The gyromagnetic ratio of the proton (therefore that above r~ k stability was indeed proton
stability as we concluded) mass=m, . dt/dsVgoo =1/Vgoo =E=m,

CASE 2: negative k, thus charge cancels, zero charge:
1/gw =1-k/k +e= ¢ Therefore from equation 8.3 and case 1 1/g =1+k/k+e

Ve (1.5+.5)=1.5+.5(gy), gy=-1.9, (8.5)
the gyromagnetic ratio of the neutron with the other charged and neutral hyperon magnetic
moments scaled using their masses by these values respectively.

Chapter 9

The composite 3e Energies For particle energy <3GeV Derived
Using Frobenius Series Solution (at first Paschen Back m; level)
Perturbation)

9.1 Series Solutions y Ansatz Near r=ru
my=1 here. m, determined from Paschen Back energy level (next Paschen Back level my=2 for s)
Recall equations 8.1, 8.2:

[(g KOOmp) + mp] F — hc (\/K_rr%+ ]+3/2)f —0

T

dt d j—1/2
[(& "oomv)‘mv]f ”*C( O - )

Recall from the previous section go,=1-k/r-(¢+Ag). Also recall our Dirac doublet (equation 7 )
must have a left handed zero mass component will be called case 1 and case 3 respectively below.
Also we need the equivalent of the singlet equation 2 is our below case 2. Also in equation 2 at



r=ru the eigenvalue is Agt+e+1=2m, for that principle quantum which then must be the same for
the 2P3/; state. Here we write out the left handed Dirac Doublet Eq.2 in the general representation
of the Dirac matrices. Also recall from chapter 8 that the 2Ps; state (and its sp? hybrid) for this
new electron Dirac equation gives a azimuthal trifolium, 3 lobe shape and thus a A/3 spherical
harmonic wavelength so that for covalent bonding r’=ru/3 in Keo=1-r’/r. This A/3 also is used to
calculate P wave scattering (called “jets” by quark people.)

To use the f & F components of the equation 8.1, 8.2 Dirac equation we write the Dirac equation
for free particle motion along the symmetry axis z (r=ratio of momentum to energy) to find the
chirality of the components in the general representation of section 1.6. We then compare this z
motion free particle Dirac equation eigenfunction structure with radial component structure to
arrive at a sense of which components of the radial equation are left handed and which aren’t. This
step is a little more complicated here because we are not using the chiral representation of the
Dirac matrices, but the standard representation instead. In any case given that the electron is
positive energy, then (as we see below) for the positron -E gives left handed f and F implying
that this object must have a positive charge since this left handedness(doublet, Ch.3) results from
the fractalness (There is a corresponding argument for G and g). The proton indeed is positive
charged. So:

dt T d . J+3/2
- (o) o~ e (e +22)6 =0 > wucpoEp

\/K—W% _ -1z g =0 — cpui- uc’us-Epus

VEpy o= — ]_1/2) F=0 — pc’u-cpus-Epu

) f=0 — -cpu-uctus-Epus



where to get correspondence from these two Dirac equation structureg

0 1 0 r
we see that at +E: uf=|7| =g, u'=| 0 |=f; -E: No (v®=| | here), v'=|0
0 —-r 0 1
ig) (u®
if | _|u*
=F, Note in general (with r=0) here: |G| |v* |=¥ . So we have the
F vE

solution that in the standard representation of the left handed doublet is
given by F and f only for —E of the electron (here a positron needed

below for + proton hadron excited states) at the horizon. Dirac matrices
qt, m#0,—E, forF

(9.4)
q=0,m=0,+E, forf

F
So for the left handed doublet: ( j we have respectively

L

Or more succinctly equation 2 in the Dirac doublet form implies in section B2: Note our
postulate implies C—0 so we are on the dr axis thus dt’=0 so dt’>=(1-ru/r)dt? (sect.0.1 of Ch.1).
Thus r=ru=k is a stable point since the clock stops since dt’=0 and the is the Meisner effect
formalism for canceling out that huge B field at a distance and a;so making it so the protons mass
is mp, and not much larger. .

CASE 1 1/ =1+k/k+e =1+ tam+1/r+ tHM/T +€ (core case)
CASE 2 1/ =1- k/k+e =1+ rgm+1/t+ ram/t +¢

Normalize out 1+ rum+1/r. That just divides by 2 since we (at r) are already near the event horizon
CASE 1 1/xre =1+k/k+€ =1+ ram/r +¢ charge 1 (core case)
CASE 2 1/ =1- k/k+e =1+ ram/r +e charge 0

So if |[ram+1/t|=[ram/t | (use m from case 1) then negative ram/r means zero charge (so
ram+1/T=ram/t s0 charge sources cancel out) and positive means charged. (see also above
sect.B2).

Note in sect.1.5 we can have a zero and nonzero charge in the 3™ quadrant (where dt=dr)
massive Proca boson case given the possibilities in sign we have for £&’/2 in

((-&/2) £&’/2)dr-((-€/2)xe’/2)dt.

In the first quadrant ds=0 again (section 1.4) so they have to add to zero. +dr+e/2+dt-¢/2 and —dr-
¢/2-dt+¢/2 solutions. Multiply the second equation by -1, then add the two resulting equations,
then divide by 2 and get dr+e/4+e/4+dt-e/4+e/4 so that e/2—¢/2+e/2. So we multiply each of the
two ds? cases (above |dr+dt| discussion) by its own dz, each with its own kn=1/(1-¢//r) —1/(1-
(e/2+¢/2)/r) (sect.4.7) implying 2 charges &/2-¢/2=0, &/2+¢&/2=¢ and so two Proca equation
massive W,Z.

See B2. .See above B2:

CASE 1 l/gn =1+k/k+e F charge 1, m=1 (core case) 2P3/2
CASE 2 1/gn =1- k/k+e F charge 0, m from case 1) 2P1/2



CASE 3 f charge 0, m=0

We solve these equations only near r=ky since that is where the stability is to be found (and also
fortunately were these equations are /inear differential equations). Thus our first step is to expand
g about this radius and drop the higher order terms.

The Frobenius series solution method can now be used to solve equations 8.1 and 8.2 at r=ru. See
for example Mathematical Methods of Physics, Arfken 3 ed. Page 454. First we solve the fin
equation 8.1, plug that into equation 8.2 and then have an equation in only F. There we substitute
a series solution ansatz F= ) anr" in the resulting combined equations. We can then separate out
the results into coefficients of respective rn and get recursion relations that will give us series
that must be terminated at some N. Note the energy Eigenvalue ‘E’ will be in this series as
dt/dsVgeo so we can then solve for the mass energy of these hadrons at specific J. We will need
an indicial equation for the first term to start out this process. Also in this Frobenius solution
method ‘n’ turns out to be a multiple of ’% and the series must start at n=-1. Finally to get the
charge zero case the charged case must be done first and its constant masses used in the
uncharged state calculations.

Here in Ch.9 we perturb the Newpde 2P3/; at r=ry state using a Frobenius series formulation.
We then note that the Meisner effect J=0, N=0 Frobenius zero point energy 9.23 must add an
extra ¢” to that p~ to get the ™ casel J=0 (Thus this later Frobenius solution (J=0, N=0 solution)
formulation requires an (implicitly assumed) additional charge e*.)

9.2 CASE 1 charged: Excited States for F, m=0, qt 2P3/2

Again case 1 is one of the equation 8.1 possibilities. Therefore let R=ku-r, r<<R (for stability) we
can write in 8.1:

\/_
Vi, = ——~ ——— = (9.1)

14+ Hoe JR+Ty+Re
R
-r

VT

Jra-r+rg+(rg—r)e

VYg—T

Jra2+e)-r(1+¢) -

(9.4)

AV PR R
<ﬁ (1 ot o )= = (9.5)

Note taking the first term of this Taylor expansion of the square root makes this an
approximation (<2GeV.). Note that including the above 1+¢/4 the compensating (1+e/4) in the
next r term has the effect of a multiplying the derivative terms by 1t€/4. This rescales r to allow



us to still say that the stable boundary is still at ru. Thus we could use it to also rescale t in the
first term of equations 8.1 and 8.2 or note that (1+&/4) (1+&)=1+5/4¢ thus renormalizing 1+ ¢ to
1+4/3¢ =1+¢” everywhere. Also the 3r%/32ku? terms must be included. We drop these
perturbative terms until the end. Therefore substituting in equation 9.5 we find that equation 8.1
reads:

\/_
Vo= ———r —% = 9.1)

= JR+Ty+Re

p
1+-H+e
VYg—T _
Jra-r+rg+(rg—r)e - (©-2)
VYg—T _
Jra2+e)-r(1+¢) - (©-3)
T TZ
(1_2) 1—E+g+.. (9 4)
V2 1_#+1;j2 t. '
H
1-2 T 3r2 1_%
i _r —_ V) H
<ﬁ> (1 ot o ) = (9.5)
Therefore
_ he T d (1+é)(j_%) o .
f= —hcm (1 - E) Tar o~ F  substituting into
therefore _
3
r d J+3 _
[E + mp]F — hc (1 - E)E + TH—T>f =0 (97)

We find solving for f and substituting back in:

T
sl (1) L) 1)
P 4ry) \2dr Ty

hc _(1 r) d (1+E)(]_§)

E-m, 4y \/7dr+ Ty F=(E+mpy)F+
s oty D),
(E - mp)\/f 4ry 4T'H\/§dr 4ry) \[2r2 12
2
(kc)? 3r . d (1+TL) (j+1.5)(j—%) _
" E-myp (1 * E) U +1.5) Varpdr . 2 =



w( (i+2) (- %)_('—%)>

([E+m >F+

U 212
1 1
(hc)? +3)(-3) (-3)
m(-Z\/_ 3 + 4173 rF +
(hc)? 1 dF
(E—my)V2 4rH\/_ dr
(ke)? ( 3 ) dF
(E - m)V2 r,,mf anz) " dr

(hc)?
( _;p)ﬁ< : ) a2 "

(he)? -1 dZ_F
(B —m,)V2 (2‘/57"11) "ar?

Here r=2ku is a regular singular point. Next substitute in F= > hanr™ with again half integer n
allowed as well:

N ([E +my] + lé’jf; (— (“3)5"‘%) —~ (JZZ))D a,r™+. (9.8)

o3\, 1 o1
Z(E (h;))f( ﬁ(1+r§3)(f _7)+(4;3)>an1r” v 99)
p H H
N .. 3
(he)? 1 (i+3) )
;w—mp)ﬁ(‘mm* T )“‘“)amr + (910
(he)? 3(j+§) )
Z(E my V2 (16\/_1‘H+ 4r,32 )"“nr * (9.11)
Z(E (hriz)z)J‘(l)("”)(nJrl)amzr +. (9.12)
P

(he)?
Z (E —my)V2 (2\/_r >(n + Dnay, " = 0. (9.13)
D H



Note from equation 9.12 that this series diverges. To terminate the series we now take 9.8 and 9.11
together and 9.10 and 9.13 together (since they have the same a,). For example combining the

equation 9.8 and 9.11 terms
wor (((1+3)0-2) (-3)
E—-m, T V2r?

(he? ( 1 j(“%))n

(E+my)+

(E-m,)V2\16v2r7 47

Replacing the normalization mp—mp(1+e ) (from section 4.8):

00D G-D) a1 20+

EZ _ m2 + — + N=0
( 2 T V2r2 | N2\1evZrd A
Therefore after rearranging:
E= \/mg + = (j2 + 1.7071j — 1.10355 — (J. 5303 + .8269)N) (9.14)
TH

We have for a general Laurent series ansatz:

wta g va v +ar’ va,, ' var' +.=F

Note also that equations 9.8-9.13 imply that the coefficients of a given 1" are independent. Thus
adding together the coefficients of r for equations 9.8-9.13 at a given n:

9.9(j-¥)an-1+(9.8+9.11)an+(9.10+9.13)(n+1)an:1+9.12(n+2)(n+1ani=0 (9.15)

Method of Solving Equation 9.15
For the outside observer an F=0 finite boundary condition at infinity applies for flat vacuum
value n=0, j=% and for r°, r'”, r'! and for complete vacuum for N=0, J=0.

Here then the generalized Laurent series ..+a ,#~ +a_,,v "> +a,r’ +a,,r'"* +ar' +.=F

reduces to ..+a_ 7~ +a_,,#""* +a,r’ = F. Thus either set 9.9(-/5)an.1 =0 or
(9.10+9.13)(n+1)an-1+9.12(n+1)(n+1)an2 =0 separately in eq.9.15 or set both equal to zero:

J= 1, sets q.9.9=0

1) N=-1, inequation 9.14 gives mass eigenvalue for =
Exact solution for all possible a,, sets none of them to zero.

2) N=0, inequation 9.14 gives mass eigenvalue for nucleon. dr°/dr=0 so all
derivative of F terms are then zero and this solution applies inside as well.

N=0 flat J=0 allowed flat vacuum gives ©* and with free e, j= % muon.

3) N=-l, in equation 9.14 gives mass eigenvalue of two Z s since a plus and

minus square root of r.

These 9.9=0 cases have case 2 zero charge representations as well.

N=-1, Principle QM number Also a =0
1) J=0, in equation 9.14 gives mass eigenvalue for K



2) J=1,  gives deuteron mass eigenvalue (bonding) given N=0,J=0 fills first (i.e.,
pion). Thereafter use nuclear shell model-Schrodinger equation many
body techniques with these nonrelativistic lobes with this (bound state)
force acting like a outer layer surface tension, finite height square well
potential . Get a aufbau principle that then gives the D,F,G,..nuclear shell
model states. Alternatively can fill that first S state in with free 1Sy (next
state to filled state) and we have j=3/2 () filling in some (i.e., uds) of
the 2P3; states (see Ch.9) and thereby also deriving from first principles
Gell Man’s 1963 eight fold way for hyperon eigenvalue classification (to

finish that effort need case II zero charge and case III A, as well). M is
replaced by 2 in ¢ hyperons, by 4 for b hyperons as indicated in f fig. 16-1
for how to fill in the cbt 2P harmonic states given the requirement to use r? then.

Also, to include higher order r expansion term effects in equation 9.5 we must include those
perturbative 1+¢/4 and 3r?/32ku® contributions which gives a n(n-1)/6.4 added to the “n” term
component inside the radical of equation 9.14.

In our new pde dJ=o through LS spin-orbit coupling so the three spin’ss and the L=1 add to a
minimum. 1-%2-%+Y, =Y =S for the proton with possible Pauli principle non S=%: possibilities
for larger mass eigenvalue.

Details of Above Solutions for Case 1
Thus besides the ground state (N=0 Fgroundstate= 2.ant™ = aor-°=F( proton) we have the two solutions:
Fnx=1 =X an™ = a-ir''=F., j= %, 0., Fx=s =2 ant™ =a., 1> =F,. For j="%. 0.
Note the energy eigenvalues (E) can be found from the solution to equation 9.14 and kx =1 with
E=1=938MeV. Thus
N=0, j= "4 then 9.14 gives +Nucleon (ground state) mass eigenvalue. Note that for the N=0, (with
J= Y and also J= 0 in section 9.5) ground state that the charge density is uniform (i.e., p=Kocr? )
for r<k.
N=-%, j=% two valued because of the two square root solutions. Equation 9.14 then gives 2+
(charged sigma particle) 1184Mev particles, F2 eigenfunction(s). Actual 1189Mev
=-1, j= "> gives one charged E particle. Therefore the energy from equation 9.14 is 1327 Mev
(actual 1321), F; eigenfunction.
Case 2 and case 3 give the neutral hyperons and A, respectively (see case 3 below).

9.5 Nucleon Wavefunction: J=1, q#0, N=-1 of Case 1

Here we recall case 1, section 9.3 above and compute energy eigenvalues for J=0 and J=1.again
using equation 9.14 in case 1.

J=0

N=-1, j=0 E=490 MeV from equation 9.14 case 1. K* . Substitute into strangeness equation 9.34
case 1 we obtain strangeness =1.

N=0, j=0 then from equation 9.14 E=139.7 MeV (9.22)

case (note again m=1+e=1.061 in 9.14 for outside). This is the nontrivial F zero point energy is
(and so has a fundamental SP hybrid state harmonic) for r<k=g¢ at r=ru. since the square root in
equation 20.1 becomes imaginary then. Thus the mass of ©* is now the vacuum ambient metric
(e.g., note Focr® for N=0 here) e‘at r=ru so really is the muon ambient metric component modified
by being next to that 2P3/; at r=rn, object. Also this explains why this fundamental harmonic result



for © is used in all the successful nuclear force theories such as in the Skyrmion Lagrangian for
example. Note that:
m »+=139Mev=1.3(105.6MeV) =1.3e=.08=¢"

N=-1,J=1 case 1. Recall for J=1 we have y o rsinf oc Y| (8,¢) double lobe y*y along the z axis:
From equation 9.14 we find with these inputs that E=1867Mev (9.23)
implying that (because E~2m, and J=1) this eigenstate is responsible for the spin 1 deuteron (state).
The L=1, 2P state solution(s) are symmetric and so of the form (1/N2)(y1y2 + y1y2) =ys and
have positive parity even if the 2P w1 and y2 each has negative parity. The Deuteron thus has +
parity (Enge, 1966).
Recall if we include the background metric in eq.6.4.11 Koo=1+rn/r+2¢’+Ag and
kn=1/(1+ru/r+Ag). So rescaling r—r-¢’ =r’for r near ru allows us to use our above solutions
again. So in equation 8.1 (1/\/Krr)\|f=l/\/(l+rH/r’+A8)\|le/\/(1+rH/r)\|f+(8/2)\|f. Note if we again
rescale our numerator J=1—1+(g’/2)2 so that we have perturbed our Y spherical harmonic with
a (e/2)Y» giving a measure of the oblate, non spherical structure (e.g quadrupolar yp and higher.
€’/2 =.04 from 9.22 therefore the nonspherical component of y is approximately 4% of the total
vy and is often called the tensor component of the Deuteron eigenstate (Enge, 1966). This
simplest multiparticle state represents the deuteron state and this is then the explanation for the
deuteron tensor component of the nuclear force.
Also the energy of the Deuteron is given just outside the ry boundary (so ¢’ —ig in 6.4.11) by
Ep=Rel 1876/Nkoo=Rel 1876/\(1+ig’)+..=1876(1-ie’/2+ (3/8)(ie’)*+..). So the added real term
due to the €’ is equal to 1876(3/8)c’?=1876(3/8)(.08)>=4MeV. In free space £’=0 and just outside
the nucleus it gives this contribution to the Deuteron energy. Thus this (3/8)¢’? is the binding
energy of the Deuteron.
Note from the equation 9.15 discussion for N not -1 we can only use J=1/2 and J=3/2 thus are
restricted for two particles to S and P states (i.e. /2 + /2 =1) which then gives us the hyperons. For
=-1 we can use other J and can thereby construct large nuclei.
The multinucleon nuclei really are the solutions of the indicial equations of 9.15.
Recall in the shell model a hard shell nuclear outer wall is assumed with free space oscillations
allowed inside this shell. The solutions to the Schrodinger equation are then spherical Bessel
functions with corrections for spin orbit interaction, finite well height and tapered wells (Herald
Enge, Introduction To Nuclear Physics, P.145). In any case an infinite mean free path for these
oscillations is assumed to exist inside this shell. So how can there be an infinite mean free path
inside this extremely high mass density region?
In that regard the above 2, J=1, N=-1 2P deuteron state can also be viewed as yet another
Bogoliubov pairing interaction (such as in the SC section 4.5) giving this infinite mean free path
of the electron pairs comprising a pion acting as a Cooper pair, just as in SC In the context of the
section 4.5 pairing interaction model A(dv/dt)/v? is no longer as small but dv/dt becomes very
large to due to the ultrarelativistic motion of the electrons inside the nucleons. In any case this
infinite mean free path for these oscillations (recall Cooper pairs have an infinite mean free path)
is thereby explained here as a new type of superconductivity.

Spin Orbit Interaction In Shell Model
Recall the derivation of the shell model from first principles in section 6.12. If equal numbers of
Neutrons and Protons gyromagnetic ratios then gyp-gyn =2.7-1.9 =.8.



Since more neutrons in heavier elements: (1/1.1)(.8)=.7.

R=ry =2 Fermi measured from singularity at 1-2=" .

From 2P3); at r=ry Fitzgerald contraction discussion in section 2.2: r—>R=Y5(1-"2) = ¥4 Fermi =
Rv(r-ru) so Ry(r-rq)—>Kr. From Chl,sect 4.16 V=1/(r-ru). Spin orbit interaction=
a02(1/r)(dV/or)(seL)=

, 1 LAY -1 (el
CRG R =) RGI\R G- )
10V 10V 10V
= 7(43)(5 4 L);E = 7(64)(5 i L);E = ag;a(s o L) =

45*E&M spin orbit interaction.

Thus the a;=1Fermi. Thus the nuclear spin-orbit interaction is much larger than the E&M spin
orbit interaction because the nucleons are much closer to ru than to r=0 and the Fitzgerald
contraction of the nucleon 2P3, state is on the order of 5.

At close range there are higher energies available so the 4mev (=be) in equation 9.3 (if we include
12 contributions) becomes the binding energy for the deuteron in geo=1-k/r+be in 8.1
particles, F> eigenfunction(s). Actual 1189Mev

=-1, j= "> gives one charged E particle. Therefore the energy from equation 9.14 is 1327 Mev
(actual 1321), F; eigenfunction =Es the fundamental structure for m=1.5. So we reapply the
analysis all over again for mp->1.5 insteard of 1.
Case 2 and case 3 give the neutral hyperons and A, respectively (see main Frobenius series solution
paper).
The multinucleon nuclei are the solutions of the indicial equations of 9.15.
Recall in the shell model a hard shell nuclear outer wall is assumed with free space oscillations
allowed inside this shell. The solutions to the Schrodinger equation are then spherical Bessel
functions with corrections for spin orbit interaction, finite well height and tapered wells (Herald
Enge, Introduction To Nuclear Physics, P.145). In any case an infinite mean free path for these
oscillations is assumed to exist inside this shell. So how can there be an infinite mean free path
inside this extremely high mass density region?
In that regard the above 2, J=1, N=-1 2P deuteron state can also be viewed as yet another
Bogoliubov pairing interaction (such as in the SC section 4.4) giving this infinite mean free path
of the electron pairs comprising a pion acting as a Cooper pair, just as in SC In the context of the
section 4.5 pairing interaction model A(dv/dt)/v? is no longer as small but dv/dt becomes very
large to due to the ultrarelativistic motion of the electrons inside the nucleons. In any case this
infinite mean free path for these oscillations (recall Cooper pairs have an infinite mean free path)
is thereby explained here as a new type of superconductivity.

Particle Lifetimes

Recall from section 1.1: ko0=1-ra/r SO r-rKeo=tn analogous to dr-ctie,=ds so ru=ds=|dZ|. From
section 6.7 there are three Dirac equation contributions with one being the ultrarelativistic my
contribution. For that contribution we put Dirac as into dr+idt=dZ the free space Dirac equation.
Dividing by ds gives mass on the right side in that Dirac equation. Because the motion of the my
=leV (Ch.3) particle is ultrarelativistic in these hadrons we apply figure 1-1 dr=dt so 6=45° and
so dZ/ds =e'™*dr/ds for the ultrarelativistic my (on earth contribution of Ch.3). Note that (e™*)*=i.



We add another contribution (for spin %2, N=-1) to get zero charge case II below. For added 2P,
(K,£m mesons) there are 3e in ru below (sect.10.3). Thus we obtain:

hyperons, Kaons and +x: e™2e?/myc’= e’ y=Rn
Recall that domain r=ruy was the most stable, the proton state. This stability condition can be
restated in terms of excess energy above the proton rest mass. Next substitute this m and
ultrarelativistic my in the ry in equation 9.14 with this 1’y in the relativistic solution of equation 2
described in Ch.1,sect.1.

E= \/mj JFRLZ(J'2 +1.70715 —1.10355—(/.5303 + .8269)N )

H

s (em/4)2 (J.Z +1.7071 —1.10355 - (;.5303 + .8269)N)
2m;r'2 '
Add to above to 9.14 result to get for the total energy:

™\ (1Y (2 +1.7071 - 1.10355 - (/.5303 + 8269)N )
m |1+ b= | M= L '
p ' 2m§

"u Ty
Plug (he/e? )? =(1/a)? back in eq.8.1 and normalize myc? to 1/hz with 1/h. Next plug into the time
propagator et and get for the r’u (decay) term:

- expz{((mpcz Ih)+ (e ¥ (m,e® 1 h) 2 (77 +1.7071 -1.10355 - (1.5303 + .8269)N)J(h—czj2}

m, 2e

L i(j +1.7071j—1.103552—(]'.5303+.8269)N) L O0)
m (2a)

= expi(((mpcz /h)+ i
p
= expi(((m p02 / h)+ iA))t giving hyperon, Kaon, +n decay times.

The second term A is also the excess mass above the proton mass.
For neutrons (939Mev) the excess mass above the proton mass (938Mev) is m,/1000 and
Ru—1000RH, A—A’

Bt
1000* (1000R,,)

gives the neutron decay time.

(> +1.7071j-1.10355— (;.5303 + .8269)N)

For my muons j="2, N=0 and the excess mass is m/8.87=m,.

P
E* =m’ 2 417071/ —1.10355—(7.5303 + 8269)N
" 887 88TR, 7 +170 U305+ s260)

gives time for muon m, decay.

For n°® decay time m,—m. (E&M decay) along with 8.87—7=m,/m.0 in the above equation.

For resonances my—m. (E&M decay) in 9.23 gives time of decay.

Note the second term here contains a ii=-1 and so it is a exponential decay term e £t with
.693/E=t the “half life”.

Thus we get n°, £, K mesons and hyperon, muon, neutron, resonance half lives from (these
modifications of) equation 9.23.



9.7 CASE 2 Excited State F, charge=0. 2P1/2

Recall from 9.4 that case 1 implies Eq—m in case 2 (in 9.4). Also
1/gn~1-kn/kut+e= ¢ for -e. Net charge=Zero. Thus let R=ku+r, r<<R , r’=kpe+r

[ﬂ &mﬂ+mF—M{gwi-f+”2}“o
ds dr

(ﬁ gOOmj_m f+hC( grri_J_l/szzo
ds dr r

Recall equations 8.1, 8.2:

:(% KOOmp) + mp] F — hc (\/K_rr%+ ]+3/2)f —0

(&

my| 1 + e (Vi 3=~ —22) P =0

Kom)
\/_ 1 vR _ Ty +7

\/1_r_H+€ JR—1y+Re Jry+r—ry+(y+7r)e

R

VTHHT ViH _ _ J"H
Jrae+r(1+e) \/TH£+T 11
Also (ds) /Koo = E. in the Dirac equation 18.1. Therefore equation 19.1 reads: r’=kpe-+r

[E + m]F — hc(f:r TH+r>f_

., 3

md Jts

[E + m]F — hc A 2
r'dr ry+r

.. 3
, d r\Jt; .
[E m]F h:C( \ Trr —+ (1 — E) E)f =0. and
.1
_ tTHd _ _T\l=2 —
[E m]f+hc</r’dr (1 m) TH)F—O Thus
f=- nd _ (1 — L) (=2) F Therefore
(E m) rrdrr rH/ TH
3
d J+5 . ,
[E + m]F — hc( / T (1 — %) —TH2>f = 0 using r=r’+rue




.. 3 o1
Ty d r'—eryg\\J T35\ —h d f— J—3

(E + m)F — hc(/ ,+<1—< H)) 2) ¢ ( T_H_,—<1—(r ng)) 2>F=0
"dr Ty ry |E—m\~N7r'dr Ty Ty

Multiplying both sides by |E-m,| we obtain:
E? —m? Ty d (r' —ery) j+% Ty d T —Tye j—%
( (he)? >F+ FF—F(l_ Ty ) Ty FF_<1_ Ty ) Ty F=0

3. 1 .1 ., 3
%— 1+ 2¢) (J+2)rH(] 2) F+\/§ ]er +(1+5)M rr—’fdci,+

rrdr?2  2r4/2 drr

2
(22— 22 2)F =0  Multiplying both sides by r”? we obtain:

3
E? —m? 3 1\ (r'? Jjt3 d
S -aso( 0D o
(l ho)? rl (1+2¢) ]+2 )\ 72 F+(1+¢) Now r dr’+
LN d VEPR
TTH gz | T gy T (J 2) B

Defining r’=r? and doing the derivatives in the new variable:
dFF dF dr 1 dF
—=——=—— and
dr dr dr~ 2r dr
sz_id(IdFj 1(_Ld_F+1 1 d°F _
dr*  2rdr\2r dr) 2r Sdr) 2r2r dr’

1 dF 1 d’F
- — Substituting these expressions for the derivatives in:

4r® dr 4r dr’ ,
-0+ 0-3) (7))

(he)?
@) d p_TH d .

ry d? ry d Tyt ( ) r3 3
" F— — Bty b
l4 dr'? 4rd7”l 1 +rH 1+ <]+2) 2r | dr’ 4rdr
3 1
E? — m? (1+25)( + )(]_7) Za rn+4+T—HZ(n—1)na T —
(hc)? i i 4 ’
.3
. = 1 J+5 T
ZH — _%(}_— Z)Za P+ 4 (14 )(ZJ_Z)Znanrml _ZHZnanrn 2 _
. 3y, 1
Bom L, U+2)U9) > tuar + D 0+ D0+ 2Dty
(hc)z 7"13 n—4 4 n+2

M+ Danszr™ =5 () Sanogr” na 4 p ) )2(n+1)an 7



rH n —
y m+2)ayr" =0
Combining terms noting simplification due to combining the as+2 terms

AN |
E? —m? (+2)0-2) T
(h:C)z - (1 + 28) 7"13 z Ap_gT™ + ZZ(TT— - 1)(71 + 1)an+2r" +
.. 3
. j+s
%H(] - %)Z a,_sr™+ (1 + e)i—\%?Z(n —Da,_;r"=0. ?

Next we write the individual eigenfunctions as:

3y 1
%ﬁgg_ﬂ+2@0+2¥j 2) S e =

Thus since these series terms add to zero:

2
Th

E = jmz + (hc)?(1 + Ze)% (9.24)

. E 5
(1+¢) Zi/J;iHZ(n —1a,_,r™ = 0 Here r’=r’ so [ \/;
2N (% — Danr™ =0 (9.25)
N (. 1
—H(j=3) S =0, (9.26)

J=1/2 with N=1 solves the indicial equation implied by 9.24-9.26. Recall from 9.4 that m=proton
in this case (case 2). The energy in 9.24 is then that of a neutral particle (q=0) with the mass of
the neutron so E =E; =m=mn. See equation 9.23b for neutron lifetime and 2P3/2 for neutron
spherical harmonic state, section 10.3) But in case 2 and equation 9.23 then the previously derived
charged spin 2 hadrons my, mz can also be put back into the Dirac equations for ‘m’(instead of
the proton). Thus the charged, my, m= from equation 9.14 can be put into the “m” in 9.24 which
gives the neutral E=m=my, mz.. my has a N=1/2 and so does not satisfy the above equations and
so does not exhibit a stable neutral X.. Recall the Q- (which is J=3/2) is not J= % so doesn’t have
a neutral counterpart as does the proton and these other J= 2 hyperons.

Recall the iterated Dirac equation is the Klein Gordon (in ¢ with J=0) equation eigenstate
transitions.

J=0, q=0 Case 2

Recall J=0 is allowed in every case.

m=1 proton, j=0 in equation 9.24 means K Long. Equation 9.23 gives K long mass eigenvalue:
1+(0+3/2)(0-1/2)/1=1/4. Thus V.25 =.5. Thus .5X938X1.06=497 MeV=Kjons. Note case 2 is zero
charge and note also from section 9.8 that the Strangeness=2[\.5|=2*.707 ~1 as in strangeness
equation 9.34 below.

m~1 for Neutron then in 9.24 we have K short, if m=mz and J=0 then D° Long.

If m=mz j=0, and neutral then 9.24 gives D° Short.



9.8 CASE 3 m=0, so y1, f state, charge=0 (lower case of equation 9.5).

In case 3 there is no central force therefore N=0 and j="% in f. This is the m=0 left handed
doublet case of Chapter 3. Let R=ky-r, r<<R for stability we can write:

1 VR
Vi = ~

\/1+%‘I+£ JR+Ty+Re

VYg—T

Jra—r+rg+(rg—r)e

rg—r _
Jra2+e)-r(1+¢) -

£ —t—+
(1‘1) 2ry sy
V2 r r2
o 1erd
H 16TH

r

1 (1-Z+2 )NE
\2 4ry  32rf RN

Therefore equation 9.1 reads:

T d j+§
[E+mp]F—hc (1_E)E+TH—ZT>JC =0

1+ ) (j+3
[E — mp]F — ke <1 — 4:H) \/Eddr + ( THBH( 2) f=0
[E—mp]f+hc< Krr%—§>F=0 (9.27)

From the above equation 9.27 if (and j= 2) m,=0 then

T d (1+i) (j_%)

[E—mp]f+hc (1_E)\/§dr_ F=0

TH

Therefore (with j= '4) from equation 9.27 for small r. In any case:

F=h hc ( r ) d + (1+é)(j+g)

¢ E+m _E vzdr TH
14

r d j+§
[E +m,|F — ke ((1 ) aat rH_2r>f —0



Solving for f'and substituting back in 9.27

(145

2 0-2))

T d
[E —mp]f+hc (1 _47‘H)\/§dr

(1+5)0+5

Ty

)

hc (1 r ) d N
E +m, 4ry) \2dr

Ty

(hc)?

(hc)?

(E +my)2 <_ <1 - é) rH4j§dr * <1 B

F=[E-m)|f+

(1) 0 +3

r)z d?

+
4ry/) 2dr? 1

3r)<, 1) d
4TH J 2 \/Eerr

E+m

p(—<1+

<1+%>2<f+%><f—%>>f

2
Tn

3 1 ., 3
poma |00 ((U+2)0=2) G+3))[),,
(E + mp) T2 V2r?
(ho)? )_0+3)\,,,
(E + mp)\/f 472
L4
E +m )\/5[ k ] J dr "
(he)?
(E + mp)\/f 4\/_1‘H TH
)
(E+m,)VZ)\ 16v2r2 4r,, "dr
( (ke)? ) dzf
E+m)va) V2 ar? ™
(Fem) (a7
(E +my,)V2) \2v2ry, ) dr?

Next substitute in F= X nanr™

+)U)

(I8 - my) +| (22 (-

3
(+) n
72 + N )D a,r- +



o) I\
ZM (E+mp)\/—< 473 ) ap-1T +(928)
Zia (E:)Z)f ( MTH ) (n+ Dagy,r" (9.29)
(kc) 1 3(j-3)
I <(E+mp)ﬁ) (16\/1, pr )na ™+ (9.30)
Zi <i) (_) (n+2)(n + Day,r™ +(9.31)
M (E+mp)\/§ n+2 .

sV <(Ef:22) ﬁ) (= H) (n + Dna,,r" = 0 (9.32)

We now take 9.27 and 9.30 together and 9.29 and 9.32 together (since they have the same an).
Thus there are 4 independent series (with 9.28 and 10.31) here. The equation 9.27 and 9.30 nth

terms give:
e, ( (f+%>o%>+o+%>> )

[E+m]

2
-m, 147 \/frh%

1
( (he)? )(- 30-9)\
(E-m,)V2)\ 16v2r? 41 '

At some value of n=N we have for a solution

L3\, 1 .3 1
(E? —m3) + <— (]+2)£] ) + (]+2)> + i( . il 2)> N=0 therefore rearranging:

Th \/frfl V2 16\/51”13 4r1?1

E= \/mg + %((}' +3/2)(j — 1/2) +.7071j + 1.0607 + (.0156 — (j —.5).5303)N)  (9.33)

Recall from the equation 9.4 ‘f* case that we have my=m=0, and zero charge therefore no central
force thus N=0 in focr® in equation 8.1. Therefore since there is small r and dr’/dt=d1/dt=0 in the
equations just above equation 9.27 along with 9.33 then the 9.27-9.32 equations add to zero and
thus are solved. Also the j=3/2 (so L=1) case is not allowed since that requires a central force to
give L#0, j= Y2 and of course j=0 is allowed here. Thus

N=0, j= ', m=0 then from 9.33 we have E=1115.8 Mev A,

N=0, j=0, n mass and also gives m=.56 (with m=0) in 9.33 used in gyromagnetic ratio
calculation for f. Recall €=.08 (with m=0) for F in 9.14. This is the nontrivial f state zero point
energy for r<k since W=y+y from our observability definition. Note Kaons then give no strange
bound states because this mass is real (in contrast to the imaginary pion mass in 9.22).

9.9 Strangeness

Recall that in 9.14 (which applies to Case 1 and Case 2) the energy is E>=mo*+ (j*+1.7071j-
1.10355- (j (.53033))+.7642))N)/kn>. Now m,? and E is conserved (m, is a constant) here and thus
it appears that energy conservation implies that the square root of j*+1.7071j-1.10355)-
(j.5303+.7642)N =S must be conserved. Therefore E>=m? +S? then and “S” is conserved for the
charged core states and thus for the neutrals given that in section 9.8 that Eq—m then (for f state
m=0 we also have S~E for A). We could also write E>=m? +C? for the next 2P state eigenstates



(call C charm if you want) which would also have their own associated production (since <[> not
zero). Thus, as an example, normalizing to a factor of 2X:

2XSQR[(.5(.5303)+.7642)(0)]=0=Snucicon, 2XSQRI[( .5(.5303)+.7642)(-1)|~2=Sz,
2XSQR|[.5(.5303+.7642)(-%%)]| ~1=Ss, 2X SQR|[(1.5*+1.7071(1.5)-1.10355-
(1.5(.5303+.7642)))(-1)]|~3=Sa. (9.34)

Strangeness is only an approximate conservation law in the examples in 9.34 but there is enough
conservation at least for the “associated production” and we have not yet included the weak
interaction here. This is a direct derivation of strangeness, instead of just having postulated it as
it is in the standard model and QCD. Strangeness isn’t strange anymore.
Charm, bottom, top: In chapter 9 equation assuming hard spherical shell. We obtain other (less
stable, resonances) particle groups using equation 9.5 by taking the quadratic approximation of g
(i.e., include the (3/32)(r/ku)? term in 9.5) Using 10.8 instead of just the linear approximation we
used above. Recall that the perturbative (3/32)(r/kn)?> term had to be included since it gave a
~20Mev correction to the hyperon masses.
C Meson Mass Derivation From Potential Of Chapter 10 And The New Pde eq.9
C Spherically Symmetric Wave Function Required
PROGRAMFracsN
DOUBLE PRECISION A,B,C,D,E,F,H,LI1,J,KK
DOUBLE PRECISION K1,K2,K3,K4,N1,N2,N3,N4,R,W.X,Y.Z
DOUBLE PRECISION Y1,E1,E2.MM1,MM2 MM3,EE.JJ
integer N,M,M1
DIMENSION EE(400)
Variational principle on E with respect to [ and Y1,
RungeKutte on D equation 8.1. Y=2 width Deuteron
pion oscillation resonance modeled between 0 and Y=2.
H=0.001
mH=2 harmonic number for oscillation inside Y=2.
C  mN=I gives pion 0 and K+-,mN=2 gives pi+- and Ko resonance
ep=0.08*mH !pion Ist and 2nd harmonic resonance added to Y1
W=1.0+ep !pion mass added to nucleon.
J=0.0 !spin 0 mesons
X=0.0001 !mass energy increments
11=100000000.0
A=0.0
B=0.0
C=0.0
E=0.0
KK=78.8 !gives MeV energy units
JI=J*1.
Y1=2.0+ep !pion increases Y1.
50 D=.0000001
11=0.0
F=.0000001
Y=Y1

ONONP!



60

R=Y

V=1.0/(1.0+ep-R) !chapter 14 potential for spin 0

E1=E

K1=((W-E-V)*F)+(((J-0.5)/R)*D)
NI1=((E+W+V)*D)-(((J+1.5)/R)*F)

R=R+(0.5*H)

V=1.0/(1.0+ep-R)
K2=((W-E-V)*(F+(0.5*H*N1)))+(((J-0.5)/R)*(D+(0.5*H*K1)))
N2=((E+W+V)*(D+(0.5*H*K1)))-(((J+1.5)/R)*(F+(0.5*H*N1)))
K3=((W-E-V)*(F+(0.5*H*N2)))+(((J-0.5)/R)*(F+(0.5*H*K2)))
N3=((E+W+V)*(D+(0.5*H*K2)))-(((J+1.5)/R)*(F+(0.5*H*N2)))

R=R+(.5*H)

100

200

310

312

315

V=1.0/(1.0+ep-R)
K4=((W-E-V)*(F+(H*N3)))+(((J-0.5)/R)*(D+(H*K3)))
N4=((E+W-+V)*(D+H*K3)))-((J+1.5)/R)*(F+H*N3)))
E=El

F=F-+((H/6.0)*(N 1+(2.0¥N2)+(2.0*N3)+N4))
D=D+((H/6.0)*(K1+(2.0*K2)+(2.0¥*K3)+K4))
I=(F*F)+(D*D)

I=I1+(1*(R+(0.5*H))*(R+(0.5*H)))
IF((abs(R-1.0-ep)).LT.(0.9*H))THEN

Y=Y-(2.0¥H)

GOTO 60

ENDIF

Y=Y-H

IF(Y.LT.0.0)THEN

GOTO 200

ENDIF

GOTO 60

E=E+X

c=I1

IF(B.LT.A)THEN

GOTO 310
ENDIF

GOTO 312
IF(C.GT.B)THEN
ENDIF
IF(B.GT.A)THEN
GOTO 315
ENDIF

GOTO 320
IF(C.LT.B)THEN
print *.' '

print *'E=",(E-X)*KK,' J='J,' max I'
ENDIF



320 IF(E.GT.8.0)THEN
GOTO 349
ENDIF
A=B
B=C
330 GOTO 50
349 print*,'program finished'
350 stop
End
C Results for spin 0,L=0 are
C For mN=1 get 135MeV 7° and 493K* for resonance with 1 meson.
C For mN=2 get 139Mev n* and 497Mev K° for resonance with two
497Mev K° for resonance with two mesons in ordinary nuclear matter nucleus would split before
K energy created. In a neutron star however K s could be created.
This fortran computer program only requires a few seconds to run on a PC. On the other hand
lattice gauge theory programs (assuming a SU(3) lattice) require massive computing power and
really do not duplicate high energy liquid state strong interactions anyway.
Here the pion is a r=2Ry proton with no net rotation and the central electron in a m=0 state so net
spin =0 . 6>>1/20Barn so annhilation occurs outside ry and the 