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Abstract In that regard Dirac in 1928 made his equation(1) flat space(2). But space is not in 
general flat, there are forces. 
  So over the past 100 years people have had to try to make up for that mistake by adding ad hoc 
convoluted gauge force after gauge force until fundamental theoretical physics became a mass of 
confusion, a train wreck, a junk pile. So all they can do for ever and ever is to rearrange that junk 
pile with zero actual progress in the most fundamental theoretical physics* ,.. forever.  We died. 
  By the way note that Newpde(3) gµÖ(kµµ)¶y/¶xµ=(w/c)y  is NOT flat space (4) so it cures this 
problem (5). 
 
References    
(1) gµ¶y/¶xµ=(w/c)y   
(2)Spherical symmetry: (gxÖkxxdx+gyÖkyydy+gzÖkzzdz+gtÖkttidt)2=kxxdx2+kyydy2+kzzdz2-kttdt2=ds2 
kxx=kyy=kzz=ktt=1 is flat space, Minkowski, as in his Dirac equation(1).  
 (3)  Newpde: gµÖ(kµµ)¶y/¶xµ=(w/c)y  for e,v. So we didn’t just drop the kµn (as is done in ref.1) 
(4) Here  koo=1-rH/r=1/krr,  rH =(2e2)(1040N) /(mc2). The N=..-1,0,1,.. fractal scales  (next page) 
(5)This Newpde kij contains a Mandelbrot set(6) e21040N Nth fractal scale source(fig1) term 
(from eq.13) that also successfully unifies theoretical physics. For example: 
For N=-1 (i.e.,e2X10-40ºGme2) kij is then by inspection(4) the Schwarzschild metric gij; so we just 
derived General Relativity and the gravity constant G from Quantum Mechanics in one lineWow      
For N=1 (so r<rC) Newpde zitterbewegung expansion stage explains the universe expansion (For 
r>rC it's not observed, per Schrodinger's 1932 paper.). 
For N=1 zitterbewegung harmonic coordinates and Minkowski metric submanifold (after long 
time expansion) gets the De Sitter ambient metric we observe (D16, 6.2). 
For N=0  Newpde r=rH 2P3/2  state composite 3e is the baryons (sect.2, partII)  and Newpde r=rH 
composite e,v is the 4 Standard electroweak Model Bosons (4 eq.12 rotations®appendixA) 
for N=0 the higher order Taylor expansion(terms) of Ökij gives the anomalous gyromagnetic ratio 
and Lamb shift without the renormalization and infinities (appendix D3): This is very important 
So kuv provides the general covariance of the Newpde. Eq. 4 even provides us space-time r,t. 
So we got all physics here by mere inspection of this (curved space) Newpde with no gauges!  
 We fixed it. 
 
 
   
  So where does that Newpde come from that fixed it? We just do what is simplest (let Occam be 
your guide), just postulate 1: the physics (Newpde) will then follow, top down: 
So this Occam’s razor simplicity requirement motivates every step. We later derive  from our 
postulate 1 the eq.11 real eigenvalues (Hermitian) operator formalism so we can thereby define 
the limit 1 as 1±uncertainty and so (an observable) indististinguishable from 1 since it is inside 
the uncertainty bounds. Note also an ‘observable’ implies an ‘observer’. 



                                                         Postulate 1                   and  define limit1                                  
 abstract  Let Occam be your guide to get physics top down, So startout simplest with Postulate1   
 The simplest algebraic definition of 1 is z=zz so define limit 1 as z=zz+C for small constant C                                                  
                                         ‘constant’defined as dC=0;  
                                          ‘small' defined as  ||C||<<1 
                                           solution of z=zz is z=1,0;   
Postulate1 ( i.e., z=zz) requires some C=0 (so z=1,0 =z’) in the solution set of z’=z’z’+C(eq1) 
                                                        davidmaker 
 so z=0=zo =z’ To find all C substitute z' on left (eq.1) into right z'z' repeatedly and get iteration 
zN+1=zNzN-C. Constraint dC=0 requires we reject the Cs for -dC=d(zN+1-zNzN)=d(¥-¥)¹0.The Cs 
that are  left over define the Mandelbrot set CM. eg., dz’=1040Ndz, N=1 fractal scale(ºobserver) 
z=1 in z’=1+dz in eq.1 get dz+dzdz=C (3) so dz=(-1±√1 + 4𝐶)/2=dr+idt if C< -¼(complex) (4)  
    z=1 in z’=1+dz in eq1 gives for required N=1 (so |dz|>>1) and  dC=0=d(dz+dzdz)=ddz(1) 
+ddz(dz)+(dz)ddz»d(dzdz)=0=(plug in eq.4)=d[(dr+idt)(dr+idt)]=d[(dr2-dt2)+i(drdt+dtdr)]=0 (5)   
 =2D (Minkowski  metric, c=1)+i(Clifford algebra®eq.7a)                                         (ºDirac eq)                                             
Factor eq.5 real    d(dr2-dt2)=d[(dr+dt)(dr-dt)] =0=[[d(dr+dt)](dr-dt)]+[(dr+dt)[d(dr-dt)]] =0    (6)   
so  -dr+dt=ds,-dr-dt=dsºds1(®±e) Squaring&eq.5 gives circle.in e,v (dr,dt)   2nd,3rdquadrants (7) 
&   dr+dt=ds,  dr-dt=ds, dr±dt=0, light cone (®n,v) in same e,v (dr,dt) plane 1st,4thquadrants (8)  
&   dr+dt=0,dr-dt=0 so dr=dt=0                defines  vacuum                                                        (9) 
Quadrants give positive scalar drdt of eq.7 (if not vacuum) imply the eq.5 non infinite extremum 
imaginaryºdrdt+dtdr=0ºgidrgjdt+gjdtgidr=(gigj+gjgi)drdt so (gigj+gjgi)=0, i≠j(from releq4 gjgi=1)(7a 
                                                                                          Thus from eqs5,7a:  dr2-dt2=(grdr+igtdt)2 
  Both z=0,z=1 together using orthogonality to get (2D+2Dcurved space). Thus (z=1)+(z=0)= 
(dx1+idx2)+(dx3+idx4)ºdr+idt given dr2-dt2=(grdr+igtdt)2if dr2ºdx2+dy2+dz2 (orthogonality)so that 
grdrºgxdx+gydy+gzdz, gjgi+gjgi=0, i¹j,(gi)2=1, rewritten (kii from N=0 CM perturbation ofN=1 eq.7) 
(gxÖkxxdx+gyÖkyydy+gzÖkzzdz+gtÖkttidt)2=kxxdx2+kyydy2+kzzdz2-kttdt2= ds2. Multiply both sides by 
1/ds2 and dz2ºy2 use circle -i¶dz/¶r=(dr/ds)dz inside brackets( ) get 4D gµ(Ökµµ)¶y/¶xµ=(w/c)y     
ºNewpde for e,v,koo=1-rH/r =1/krr, rH=e2X1040N/m (N=. -1,0,1.,).Also CM/x=rH=smallC sobigx=g  
boost so z=zz so postulate 1. So we really did just postulate 1.          So Postulate 1®Newpde 
Applications of N=0 r=rH: Newpde composite 3e 2P3/2 state = baryons and the 4  Newpde e,v  
(quadrant)rotations are the 4 W+,g,W-,Zo, SM Bosons. Also N=-1 is GR & big g=x=t+µ from CM 
So  “postulate 1”  gives eq1 (i.e., all of physics) and real#math, everything.  See davidmaker.com 



 
 
 
I     Math Details of                 Postulate 1                     and  define limit1  
 abstract  Let Occam be your guide to get physics top down, So startout simplest with Postulate1   
 The simplest algebraic definition of 1 is z=zz so define limit 1 as z=zz+C for small constant C                                                  
                                         ‘constant’defined as dC=0;  
                                          ‘small' defined as  ||C||<<1 
                                           solution of z=zz is z=1,0;   
Postulate1 ( i.e., z=zz) requires some C=0 (so z=1,0 =z’) in the solution set of z’=z’z’+C(eq1) 
so  z=0=zo =z’ To find all C substitute z' on left (eq.1) into right z'z' repeatedly and get iteration 
zN+1=zNzN-C. Constraint dC=0 requires we reject the Cs for -dC=d(zN+1-zNzN)=d(¥-¥)¹0.The Cs 
that are  left over define the Mandelbrot set CM. eg., dz’=1040Ndz, N=1 fractal scale(ºobserver) 

 
z=1 in z’=1+dz in eq.1 get dz+dzdz=C (3) so dz=(-1±√1 + 4𝐶)/2=dr+idt if C< -¼(complex) (4)  
   z=1 in z’=1+dz in eq1 gives for required N=1 (so |dz’|>>1) and dC=0=d(dz+dzdz)=ddz(1)  
+ddz(dz)+(dz)ddz»d(dzdz)=0=(plug in eq.4)=d[(dr+idt)(dr+idt)]=d[(dr2-dt2)+i(drdt+dtdr)]=0  (5)  
 =(Minkowski  metric, c=1)+i(Clifford algebra®eq.7a)                                              (ºDirac eq)     
Factor eq.5 real    d(dr2-dt2)=d[(dr+dt)(dr-dt)] =0=[[d(dr+dt)](dr-dt)]+[(dr+dt)[d(dr-dt)]] =0    (6)   
so  -dr+dt=ds,-dr-dt=dsºds1(®±e) Squaring&eq.5 gives circle.in e,v (dr,dt)   2nd,3rdquadrants (7) 
&    dr+dt=ds, dr-dt=ds, dr±dt=0, light cone (®n,v) in same e,v (dr,dt) plane 1st,4thquadrants  (8)  



&    dr+dt=0,dr-dt=0 so dr=dt=0                  defines  vacuum                                                       (9) 
Quadrants give positive scalar drdt of eq.7 (not eq9 vacuum) imply eq.5 non infinite extremum 
imaginaryºdrdt+dtdr=0ºgidrgjdt+gjdtgidr=(gigj+gjgi)drdt so (gigj+gjgi)=0, i≠j(from releq4 gjgi=1)(7a 
   We square eqs.7 or 8 or 9 ds12=(dr+dt)(dr+dt)=(-dr-dt)(-dr-dt  =[dr2+dt2] +(drdt+dtdr) 
ºds2+ds3=ds12. Circleºdz=dseiq= dsei(Dq+qo) =  dsei((cosqdr+sinqdt)/(ds)+qo),  qo=45° (dz in fig.7). We 
define kºdr/ds, wºdt/ds, sinqºr, cosqºt. dsei45°ºds’.Take ordinary derivative dr(since (flat space) 
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(So given dzºy, Fºk then from eq.11  <F>*= ò(Fy)*ydt=òy*Fydt =<F>. Therefore k is 
Hermitian). Also  from right side real# Cauchy seq.  starting at  –¼ iteration, is the same as the 
the Mandelbrot set iteration(7), Ch.2,sect.2,with small C 0=limit making real eigenvalues 
(eg.,noise) likely. Thus the Mandelbrot set iteration here  did double duty also as proof of the  
real number eigenvalues in eq.11. The observables dr®k®pr condition gotten from eq.11 
operator formalism(10) thereby converts eq.7-9 into Dirac eq. pdes (4XCircle solution in left 
side fig.1  also implies observability). Thus our title ‘postulate 1 (observable)’ implicity  contains 
the eq.11 QM definition of observability. Cancel that ei45°coefficient (45°=p/4) then multiply 
both sides of eq.11 by h and define dzºy, pºhk. Eq.11:  the familiar          𝑝(𝜓 = 𝑖ℏ !-

!(
    (11).   

Repeat eq.3 for the t, µ respective dz lobes in fig.6 so they each have their own neutrino v. 
 
 dC=0 Extremum on Circle 4X sequence shapes (fig1)  In Mandelbrot set pulls it out of 
zoom clutter because of the above 4X circle observability sequence  
dC=0 gives that 45° extreme but it also applies to local constants (extremum peaks and valleys) 
because   𝛿𝐶 = 4!.
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𝑖𝑑𝑡 = 0.  So for that fig.1  4X sequence of circles drdt= 

dareaM¹0 (so eq.11a observables) the real dC=0 extremum given the decreasing circle radius 
sequence  lim

0→2
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𝑑𝑟0=KX0 =0 (since dr¥»0) at Fiegenbaum point =fa=(-1.40115.,i0)= 

CMºend. So random circles in the zoom don’t do dC=0. Note if a circle (or many circles) is 
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@ ) it is still a circle, eq.11 still holds, so it’s still an observable as seen 

in the N fractal scale zoom. Thus you can pick out from that zoom these fig.1 Mandelbrot set 
extremum 4Xdiameter circles as the only observables and dC=0 extremum geometry in all that 
clutter.  Reset the zoom, restart at such  SNCM= 1040NCM in  eq.13. 
 
1b  z=1,z=0 steps combined (on Circle with small C boost) using orthogonality(ortho):   
Postulate1 also implies a small C in eq.1 which thereby implies a (Minkowski metric Lorentz 
contraction(9)) 1/g boosted frame of reference(fig.6)  in the eq.3 C=CM/gºCM/x1=dz’=D for next 
small smaller fractal scale Nob<0 so dz’<<1 (composite 3e: sect.2 and PartII). For N=0 eq.5 
(which is true only for N>0) and so eq.7 is not quite true (and dz in eq.11 perturbed). But we 
keep dds2=0 (circle) in eq.5, on the 4X circles so we must have an angle perturbation of big N=1 
dr,dt for qo=45°on above ds Circle and so a slightly modified eq.7:       
                                                                                    (dr-dz’)+(dt+dz’)ºdr’+dt’=ds             (12)    
Nob=0 extremum eq.12 rotations (observer at N=1, eq.7 dr+dt=ds constraint) 



 Recall for Nob=0 (observer at N=1) and eq. 7 dr+dt=ds  the r,t  axis’ are the max extremum for 
ds2, and the ds2 at 45° is the min extremum ds2 so each Dq=±45° is pinned to an axis’ so extreme 
Dq»±45°=dz’. So in eq.12 the 4 rotations 45°+45°=90° define 4 Bosons (appendix A).  
  But for 45°-45° Nob<0 then contributes so you also have other (smaller) fractal scale extreme 
dz’(eg.,tiny Fiegenbaum pts so N=1 dr=r, for Nob<0) so metric coefficient krrº(dr/dr’)2=       
(dr/(dr-(CM/x1)))2= 1/(1-rH/r)2  = A1/(1-rH/r) +A2/(1-rH/r)2. The partial fractions AI can be split off 
from RN and so                                                       krr»1/[1-((CM/x1)r))]                       (13) 
 (CM defined to be e2 charge, gºx1 mass). So:            ds2=krrdr’2 +koodt’2                              (14) 
 From eq.7a    dr’dt’=Ökrrdr’Ökoodt’=drdt so                krr=1/koo                                                     (15) 
  We can then do a rotational dyadic coordinate transformation of kµn to get the Kerr metric 
which is all we need for our applications(9).    
                                                                              Recall from eqs5,7a that  dr2-dt2=(grdr+igtdt)2 
Both z=0,z=1 together using orthogonality to get (2D+2Dcurved space). Thus (z=1)+(z=0)=  
 (dx1+idx2)+(dx3+idx4)ºdr+idt given dr2-dt2=(grdr+igtdt)2 if dr2ºdx2+dy2+dz2  (orthogonality) so 
that grdrºgxdx+gydy+gzdz, gjgi+gjgi=0, i¹j,(gi)2=1 (B2), rewritten (with eq14)  
(gxÖkxxdx+gyÖkyydy+gzÖkzzdz+gtÖkttidt)2=kxxdx2+kyydy2+kzzdz2-kttdt2= ds2.  Multiply both sides 
by 1/ds2& (dz/ÖdV)2ºy2 and using operator eq 11 inside the brackets( ) get 
Newpde gµ(Ökµµ)¶y/¶xµ=(w/c)y  for e,v,  koo=1-rH/r =1/krr  rH=e2X1040N/m (N=. -1,0,1.,) (16)                                          
=CM/x1  (from* eq.13) CM=Fiegenbaum point. So:     postulate1®Newpde.               syllogism     
 
* CM/x1 is  x small C boost for z=zz so postulate1 from Newpde r=rH 2P3/2 stable state. See fig6.      
The 4 eq.12 Newpde e,v rotations at r=rH are the 4 W+,g,W-,Zo    SM Bosons (appendixA).   
   So Penrose’s intuition(6) was right on! There is physics in the Mandelbrot set, all of it. 
 
2.1 Oscillation of  dz(ºy) on a given fractal scale 
From Newpde (eg., eq.1.13 Bjorken and Drell)     𝑖ℏ !-
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ℏ /  er=+1, 
r=1,2; er=-1, r=3,4.): This implies an oscillation frequency of w=mc2/h. which is fractal here. So 
the eq.12 the 45° line has this w oscillation as a (that eq.7-9 dz variation) rotation.  On our own 
fractal cosmological scale we are in the expansion stage of one such oscillation. Thus the 
fractalness of the Newpde explains cosmology. The next higher cosmological  scale is 
independent (but still connected by superposition of speeds implying a separation of variables 
result: 	𝑖ℏ !-

!/
= 𝛽∑ (10>?5(𝜔𝑡)=@∆=5 )𝜓		 = 𝛽 ∑ (10>?5𝑚=@∆=5 𝑐6/ℏ)𝜓 ). By the way fractal 

scale N=1 the 45° small Mandelbulb chord e (Fig6) is now, given this w,  getting larger with 

time so t a e. So cosmologically for stationary  N=1 dz=Ökoodt=  𝑒<9=#
-1/

ℏ / → 𝑒9(=@∆=)  (17)  
This N=0  and N=-1 dz is the source of the small rotation in eq.12 .Later we see that high energy 
scattering drives the ddz term (/ds) to the big D45° exreme (so preferred) jumps (appendixA). 
 
2.2 N=0 small C boost so postulate observable1 (e)  Postulate 1 (observable) requires 
that C»0 in equation 1.  Recall eq.3 dz+dzdz=C. So for N=1 observer |dz|>>1 so dzdz=C. Given 
eq.3 for N=0 |dz|>>|dzdz|, C»dz sect.1for N=0. Note also our above circle e electron De 
intersection ground state is at 45° (2nd&3rd quadrants is from minimum ds2). Following the 



energy increase for Newpde states µ 1S½ then is not a constant in time because of eq.12 angle 
Newpde zitterbewegung variable contribution (sect.2.1) to the dz chord perturbation of the 45° 
(fig6 below.) The 68.7° =Arctan(dz/CM) is from eq.4 quadratic equation at the Fiegenbaum 
point.(so it gives our fundamental (excited state Mandelbulb) mass t  2S½ that never changes 
allowing us to normalize it to 1). Next is the Newpde composite 3e 2P3/2 state at r=rH. with its 
quantized B flux giving a large g for each of the 2 positrons. Since the S and P states don’t 
interact here (one is free space) these states are degenerate giving the same reduced mass for 
each (t+µ)/2 =gme+gme=mp. Note also that the real component of eq.5 is the Minkowski metric 
implying these g  boosts. For N=1 eq.3 implies C=dzdz/x so that 1/dzdz= 1/(Mandelbulb radius)2  

=mass (from fig6). or as  a fraction of t, electron De=.00058 (18)  
  But g (observer) =g (observable) so for the N=0 observable we got the g from the N=1 observer 
case in  rH=CM/g=CM/x=C for small C and so postulate1.  

 
Fig.6  Conclusion 
So the smallC at the end was required. So we really did just postulate 1  
 
  So we just do what is simplest (let Occam be your guide), just postulate 1: the physics 
(Newpde) will then follow, top down: 
* Ultimate Occam’s Razor  (observable) 
It means here ultimate simplicity, the simplest idea imaginable. So for example z=zz is simpler 
than z=zzzz.  Therefore 1 in this context (uniquely algebraically defined by z=zz) is this ultimate 
Occam's razor postulate since 0 (also from z=zz) postulates literally nothing. 
 
3e Stability: We can actually calculate mp from the quantization of the magnetic flux 
h/2e=F0=BA..Using the Mandelbrot set 2mp =t+µ+e=x1 (18)  
written as ei(e+De) (eq.D9 outside rH in D18 hence the ‘i’)  This relation with h just sets the h. and 
the Mercuron equation D15 for µ requires the location of object B to find the actual magnitude of 
me.(eq.D9). Stability is also implied by (dt’2=(1-rH/r)dt2) since clocks stop at r=rH. That 3rd mass 
also reverses the pair annihilation with virtual pair creation inside the rH volume given 
s=prH2»(1/20)barns which is the reason why only composite 3e gives stability and not other 
larger composites(except multiples of 3e itself i.e.,nucleons). Note here we also derived baryon 
physics (mp). See Chapters 8,9,10 Frobenius series solution. This composite 3e stability then 
makes this small C limit always true and so our postulate1 is always true. 
 
2.2 Left end small drdt (eq.6) extremum Fiegenbaum point Fractalness 



The Fiegenbaum point (11a) is the only part of the Mandlebrot set we use. At the Fiegenbaum 
point (imaginary) time X10-40=D and real -1.40115. Since |CM|>>0 in eq.2 postulated  eq.1 z=zz 
implies a boosted SR Lorentz transformation  universal reference frame to random (since this 
transformation cancels noise C in eq.2, fig6), small CM subset C»dz’ (from eq.3) =real distance 
=realdz/g =1.4011/g=CM/g ºCM/x1 using large x1. Note at the Fiegenbaum point distance 
1.4011/g shrinks a lot but time X10-40g doesn’t get much bigger since it was so small to begin 
with at the Fiegenbaum point.  Eq.1 then means we have Ockam’s razor optimized postulated 1. 
Given the New pde rH we only see the rH=e21040N/m sources from our N=0 observer baseline. 
We never see  the r<rH  http://www.youtube.com/watch?v=0jGaio87u3A which explores the 
Mandelbrot set  interior near the Fiegenbaum point. Reset the zoom start at such extremum 
SNCM=1040NCM in  eq.13. The splits are in 3 directions from the orbs. There appear to be about 
2.5 splits going by each second (given my PC baud rate) and the next Mandelbrot set comes up 
in about 62 seconds. So 32.7X62 =10N so 172log3=N=82. So there are 1082 splits. So there are 
about 1082splits per initial split. But each of these Mandelbrot set Fiegenbaum points is a 
CM/xºrH in electron (eq.13 above). So for each larger electron there are 1082 constituent 
electrons. Also the scale difference between Mandelbrot sets as seen in the zoom is about 1040, 
the scale change between the classical electron radius and 1011ly with the C noising giving us 
our fractal universe.  
Recall again we got from eq.3 dz+dzdz=C with quadratic equation result: 
 dz	= <4±√4<>.

6
.  is real for noise C<¼ creating our noise on the N=0 th fractal scale. So 

¼=(3/2)kT/(mpc2).  So T is 20MK.  So here we have derived the average temperature of the 
universe (stellar average).  That z’=1+dz substitution also introduces Lorentz transformation 
rotational and translation noise that does not effect the number of splits, analogous to how a 
homeomorphism does not change the number of holes (which is a Topological invariant). 
So the excess C noise (due to that small C’ boost) causes the Fiegenbaum point neighborhood 
internal structure to become randomized (as our present universe is) but the number of electrons 
(1082) remains invariant. See appendix D mixed state case2 for further organizational effects. 
N=rD . So the fractal dimension= D=logN/logr=log(splits)/log(#rH in scale jump) 
=log1080/log1040 =log(1040)2)/log(1040)= 2 . (See appendix E for Hausdorf dimension & measure)  
which is the same as the 2D of eq.4 and the Mandelbrot set. The next smaller (subatomic) fractal 
scale r1=rH=2e2/mec2, N=0th, r2=rH=2GM/c2 is defined as the N=1 th where M=1082me with 
r2=1040r1 So the Fiegenbaum pt. gave us a lot of physics:  
eg. #of electrons in the universe, the universe size, temp. 
 
2.2 Results: What makes this all work is  postulate 1 (z=zz so z=1,0). Add constant C 
(dC=0) and get z’=z’z’+C (eq1). z=zz postulated so z=1,0Î{z’}. (Get Postulate1®Newpde). 
Postulate 1 is the simplest idea imaginable: a Occam’s razor theory. We also get the actual 
physics with the Newpde (Therefore the usual postulating of hundreds of Lagrange densities, 
free parameters, dimensions ,etc., is senseless.). 
     For example (appendixC) Newpde composite 3e  2P3/2 at r=rH is the proton: That B flux 
quantization(C3) implies a big proton mass implying 2 high speed g=917 positrons and so the 
Fitzgerald contracted E field lines are the strong force: we finally understand the strong force! 
So these two positrons then have big mass two body motion(partII) so ortho(s,c,b) and para(t) 
excited (multiplet) states understood. Eq.12 implies Composite e,v at r=rH is the electroweak 
SM (appendixA) Special relativity is that Minkowski result. With the Eqs.16 y (appendix C) 

http://www.youtube.com/watch?v=0jGaio87u3A


we finally understand Quantum Mechanics for the first time and eq.4 gave us a first 
principles derivation of r,t space-time for the first time. That Newpde kµn metric (In eq.14), on 
the N=-1 next smaller fractal scale(1) so rH=10-402e2/mec2º2Gme/c2, is the Schwarzschild metric 
since koo=1-rH/r=1/krr (15): we just derived General Relativity(gravity) from quantum 
mechanics in one line. The Newpde zitterbewegung expansion component (r<rC) on the next 
larger fractal scale (N=1) is the universe expansion: we just derived the expansion of the 
universe in one line. The Newpde appendix C derivation of those precision QED values 
(eg.,Lamb shift sect.D) allow us to abolish the renormalization and infinities. So there is no 
need for those many Lagrangian density postulates anymore, just postulate1 instead. 
 
                                   Real# Mathematics from Postulate 1  
The postulate 1 also gives the list-define math (B2) list cases 1È1º1+1º2, define a=b+c (So no 
other math axioms but 1.) and Cauchy sequence proof (2)of real number eigenvalues 
(sect.2.1,Ch.2) from a Cauchy sequence of rational numbers as a special case of  the Mandelbrot 
set iteration formula starting –¼ . That means the mathematics and the physics come from 
(postulate 1®Newpde): everything. Recall from eq.7 that dr+dt=ds. So combining in quadrature 
eqs 7&11 SNRdz=(dr/ds+dt/ds)dz =((dr+dt)/ds)dz=(1)dz (11a,append) and so having come full 
circle back to postulate 1 as a real eigenvalue (1ºNewpde electron).  So we really do have a 
binary physics signal. So, having come full circle then: (postulate 1Û Newpde)  
Mathematical Notion (of postulate 1ÛNewpde) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
                           Intuitive Notion (of postulate 1ÛNewpde) 
The Mandelbrot set introduces that rH =CM/x1 horizon in koo=1-rH/r in the Newpde, where CM is 
fractal by 1040Xscale change(fig.2) So we have found (davidmaker.com) that: Given that fractal 
selfsimilarity astronomers are observing from the inside of what particle physicists are studying 
from the outside, that ONE New pde e electron rH,  one thing (fig.1). Everything we observe big 
(cosmological) and small (subatomic) is then that (New pde) rH, even baryons are composite 3e. 
So we understand, everything.  This is the only Occam’s razor first principles theory 
 Summary:  So instead of doing the usual powers of 10 simulation we do a single power of 1040 

simulation and we are immediately back to where we started! 

fig2 
(­lowest left corner) Object B caused perturbation structure jumps: void®galaxy®globular,,etc.  
References 
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(6) Penrose in a utube video implied that the Mandelbrot set might contain physics. Here we 
merely showed how to find it. For example the (fractal Mandelbulb neighborhood area |drdt|>0 
of the) Fiegenbaum point is a subset (containing that 1040Xselfsimiilar scale jump: Fig1)  
(7) Cantor: Ueber die Ausdehnung eines Satzes aus der Theorie der trigonometrischen Reihen, 
“Ueber eine elementare Frage der Mannigfaltigkeitslehre” Jahresbericht der Deutschen 
Mathematiker-Vereinigung.” Mandelbrot set iteration sequence zn CM=-¼, z0=0 same as Cauchy 
seq. since it begins with rational number -¼, allowing the (C’ uncertainty) dr neighborhood of 0 
to have a nonzero probability of being a real number and thereby giving real eigenvalues to the  
equation 11 operator formalism after the small C’ boost to get observability around dr=0. dr=0. 
(8)Tensor Analysis, Sokolnikoff, John Wiley 
(9)The Principle of Relativity, A Einstein, Dover 
(10)Quantum Mechanics, Merzbacher, John Wiley 
(11) lemniscate circle sequence (Wolfram, Weisstein, Eric 
(12) Bosons: Equation 12 implications for Rotation 
Recall from sect.1 eq.3 that dC= d(dz+dzdz)=ddddz(1)+ ddz(dz)+(dz)ddz= dC=0 so C is split 
between ddz noise and dzdz classical invariance ds2 proper time.  
 Recall at N=0 the N=1 |dz|>>1 &CM>>1. So dzdz»CM there.  So equation 5 holds then. But  
  d,&
#$
= ±45°		(p/4) extremum at N=0 (SM) and N=-1 (GR) is also a solution for observer N=1.  

So as the g boosted observer dz/g , C/g, gets smaller than the huge N=1 scale  (so higher energy, 
smaller wavelength, beam probes) ddz(1)/ds noise angle gets relatively larger (relative to 
d(dzdz)/ds, sect.1) until finally the next smaller N=0 (and next smaller one after that, N=-1) is 
N=0 fractal scale in that sect.1 big angle   ±45° required extremum solution (Recall ‘extremum’s 
are our solutions.)  45°=p/4» 1»dz’/ds(observable) = CMend/dsºq (in equation 12).  So here all 
four q±45°X2  rotations of Composite e,v  implied by eq.12. So we have the N=0, N=-1 
solutions for dz’ angle perturbation of N=1 for big scattering energies. So observer  g=observed g 
I®II, II®III,III®IV,IV®I rotations in eq.7-9 plane Give SM Bosons 
For z=0 dz’ is big in z’=1+dz and so we have again ±45° min ds and so two possible 45° 
rotations so through a total of two quadrants for ±dz’ in eq.12. one such rotation around an 
around a axis (SM) and the other around a diagonal (SC). Note in fig.3 dr,dt is also a rotation. 
and so has an eq.11 rotation operator observable q.  Thus from equation 11 for (q) angle 
rotations  qdzº(dr/ds)dz= -i∂(dz)/¶r for the first 45°rotation. So we got through one Newpde 
derivative for each 45° rotation.  For the next 45° rotation in fig.4 it is then a second derivative 
qqdz’=eiqpeiq’dz= ei(qp+q)dz= (dr/ds)((dr/ds)dr’)=-i¶(-i¶(dr’))/¶r)¶r= -¶2(dr’)/¶r2 large angle 
rotation in figure 3.  In contrast for z=1, dz’ small so 45°-45° small angle rotation in figure 3 (so 
then N=-1).  Do the same with the time t and get for z=0 rotation of 45°+45° (fig.4) then 
qqdz’=(d2/dr2)z’+(d2/dt2)dz’    (A1)           



            
fig.3. for 45°-45° So two body (e,n) singlet DS=½-½  =0 component so pairing interaction 
(sect.4.5).Also ortho DS=½+½=1 making 2 body (at r=rH) S=1 Bosons and so a field theory. 
Note we also get these Laplacians characteristic of the Boson field equations by those 45°+45° 
rotations so eq.16 implies Bosons accompany our leptons (given the dz’), so these leptons 
exhibit “force”.  
 
 Newpde  r=rH, z=0, 45°+45 rotation of composites e,v implied by Equation 12                                                              
So z=0 allows a large C z rotation application from the 4 different axis' max extremum (of eq.16) 
branch cuts gives the 4 results:  Z,+-W, photon bosons of the Standard Model. So we have 
derived the Standard Model of particle physics in this very elegant way (from the four axis’). 
You are physically at r=rH if you rotate through the electron quadrants (I, IV).of eq.7-9. So we 
have large CM dichotomic 90° rotation to the next Reimann surface of eq.12, eq.A1 (dr2+dt2)z’’ 
from some initial extremum angle(s) q.  Eq.12 solutions imply complex 2D plane Stern Gerlach 
dichotomic rotations using eq.A1 thereby using Pauli matrices si algebra, which maps one-to-
one to the quaternionA algebra.  Using eq.12 we start at some initial angle q and rotate by 90° 
the noise rotations are: C=dz”= [eL,vL]T ºdz’(­)+dz’(¯) ºy(­)+y(¯) has a eq.12  infinitesimal 
unitary generator dz”ºU=1-(i/2)en*s), nºq/e in ds2=UtU. But in the limit n®¥ we find, using 
elementary calculus, the result exp(-(i/2)q*s) =dz”. We can use any axis as a branch cut since all 
4 are eq.16 large extremum so for the 2nd rotation we move the branch cut 90° and measure the 
angle off the next diagonal since Pauli matrix dichotomic rotations are actually axis rotations, 
leaving our e and v directions the same.  In any case (dr+dt)z’’in eq.16 can then be replaced by 
eq.A1   (dr2+dt2 +..)dz” =(dr2+dt2+..)equaternionABosons because of eq.A1.  
A2 Then use eq. 12 and quaternions to rotate dz” since the quaternion formulation is isomorphic 
to the Pauli matrices. dr’=dzr=krrdr for Quaternion A kii=eiAi . 
 
Appendix A Quaternion ansatz krr=eiAr instead of krr= (dr/dr’)2. in eq.14. N=0. 
A1  for the eq.12:large q= 45°+45° rotation (for N=0 so large dz'=qrH). Instead of the equation 
13,15 formulation of kij  for small dz’ (z=1) and large q=45°+45° we use Ar in dr direction with 
dr2=x2+dy2+dz2. So we can again use 2D (dr,dt))  E=1/Ökoo=1/ÖeiAi.=ei-A/2. The 1 is mass energy 



and the first real component after that in the Taylor expansion is field energy A2 

 
fig4 
Fig.4 applies to eq.9 45°+45°=90° case: Bosons.   
A2 These quadrants were defined in eq.7-9 and used in eq.12. The Appendix A4 derivation 
applies to the far right side figure. Recall from eq.12  z=0 result CM=45°+45°=90°, gets Bosons.  
45°-45°= leptons. The v in quadrants II(eq.5) and III (eq.9). e in quadrants I (eq.7) and IV (eq.7). 
Locally normalize out 1+e (appendix D). For the composite e,v on those required large z=0 eq.9 
rotations for C®0,  and for stability r=rH (eg.,for 2P½, I®II, III®IV,IV®I) unless rH=0 (II®III) 
Example: 
A4  Quadrants II®III rotation eq.A2  (dr2+dt2+..)equaternion A =rotated through CM in eq.16. 
example CM in eq.A1 is a 90° CCW rotation from 45° through v and antiv  
A is the 4 potential. From eq.9b we find after taking logs of both sides that Ao=1/Ar    (A2)                                                                                         
Pretending we have a only two i,j quaternions but still use the quaternion rules we first do the r 
derivative:  From eq. A1 dr2dz =(¶2/¶r2)(exp(iAr+jAo))=(¶/¶r[(i¶Ar¶r+¶Ao/¶r)(exp(iAr+jAo)] 
=¶/¶r[(¶/¶r)iAr+(¶/¶r)jAo)(exp(iAr+jAo)+[i¶Ar/¶r+j¶Ao/¶r]¶/¶r(iAr+jAo)(exp(iAr+jAo)+ 
(i¶2Ar/¶r2 +j¶2Ao/¶r2)(exp(iAr+jAo)+[i¶Ar/¶r+j¶Ao/¶r][i¶Ar/¶r+j¶/¶r(Ao)] exp(iAr+jAo)   (A3) 
Then do the time derivative second derivative ¶2/¶t2(exp(iAr+jAo) =(¶/¶t[(i¶Ar¶t+¶Ao/¶t) 
(exp(iAr+jAo)]=¶/¶t[(¶/¶t)iAr+(¶/¶t)jAo)(exp(iAr+jAo)+ 
[i¶Ar/¶r+j¶Ao/¶t]¶/¶r(iAr+jAo)(exp(iAr+jAo) +(i¶2Ar/¶t2 +j¶2Ao/¶t2)(exp(iAr+jAo) 
+[i¶Ar/¶t+j¶Ao/¶t][i¶Ar/¶t+j¶/¶t(Ao)]exp(iAr+jAo)                                                            (A4) 
Adding eq. A2 to eq. A4 to obtain the total D’Alambertian    A3+A4= 
 [i¶2Ar/¶r2+i¶2Ar/¶t2]+ [j¶2Ao/¶r2+j¶2Ao/¶t2]+ii(¶Ar/¶r)2+ ij(¶Ar/¶r)(¶Ao/¶r) 
+ji(¶Ao/¶r)(¶Ar/¶r)+jj(¶Ao/¶r)2 ++ii(¶Ar/¶t)2+ij(¶Ar/¶t)(¶Ao/¶t)+ji(¶Ao/¶t)(¶Ar/¶t)+jj(¶Ao/¶t)2  .   
Since ii=-1, jj=-1,  ij=-ji the middle terms cancel leaving [i¶2Ar/¶r2+i¶2Ar/¶t2]+  
[j¶2Ao/¶r2+j¶2Ao/¶t2]+ii(¶Ar/¶r)2+jj(¶Ao/¶r)2 +ii(¶Ar/¶t)2+jj(¶Ao/¶t)2   
Plugging in A2 and A4 gives us cross terms  jj(¶Ao/¶r)2+ii(¶Ar/¶t)2 = jj(¶(-Ar)/¶r)2+ii(¶Ar/¶t)2  

=0. So  jj(¶Ar/¶r)2  =- jj(¶Ao/¶t)2  or taking the square root:   ¶Ar/¶r + ¶Ao/¶t=0              (A5 ) 
i[¶2Ar/¶r2+i¶2Ar/¶t2]=0,   j[¶2Ao/¶r2+i¶2Ao/¶t2]=0  or ¶2Aµ/¶r2+¶2Aµ/¶t2+..=1                 (A6)  
A4 and A5 are Maxwell’s equations (Lorentz gauge formulation) in free space, if µ=1,2,3,4.                      
                                                     �2Aµ=1, �•Aµ=0                                                           (A7)  
The Lorentz gauge is the only gauge hence it is no gauge at all and we have avoided the Maxwell 
overdeterminism problem (8eq, ,6 unknowns Ei,Bi.).Must use Newpde 4D orthogonalization here 
Amplitudes of physical processes in QED in the noncovariant Coulomb gauge coincide with 
those in the covariant Lorenz gauge. The Aharonov–Bohm effect depends on a line integral 
of A around a closed loop, and this integral is not changed by A®A+Ñy which doesn’t change  



B=ÑXA either. So formulation in the Lorentz gauge mathematics works so it is no longer a 
gauge, we are gaugeless. 

 

A5 Other 45°+45° Rotations (Besides above quadrants  II®III)  
For the composite e,v on those required large z=0 eq.12 rotations for C»0,  and for stability r=rH 
for 2P½ (I®II, III®IV,IV®I) unless rH=0 (II®III) are: 
Ist®IInd quadrant rotation is the W+ at r=rH. Do similar math to A2-A7 math and get instead 
a Proca equation The limit e®1=t (D13) in x1 at r=rH.since Hund’s rule implies µ=e=1S½ ≤2S½= 
t=1. So the e is negative in De/(1-e) as in case 1 charged as in appendix C1 case 2. 
E=1/Ö(koo) -1=[1/Ö(1-De/(1-e)-rH/r)]-1=[1/Ö(De/(1-e))]-1. Et=E+E=2/Ö(De/(1-e))=W+ mass. 
Et=E-E gives E&M that also interacts weakly with weak force. 
IIIrd ®IV quadrant rotation   is the W-.  Do the math and get a Proca equation again. 
E=1/Ö(koo) -1=[1/Ö(1-De/(1-e)-rH/r)]-1=[1/Ö(De/(1-e))]-1. Et=E+E=2/Ö(De/(1-e))=W- mass. 
Et=E-E gives E&M that also interacts weakly with weak force. 
IVth ® Ist quadrant rotation is the Zo.   Do the math and get a Proca equation. CM charge 
cancelation. D14 gives 1/(1+e) gives 0 charge since e®1 to case 1 in appendix C2. 
E=1/Ö(koo) -1=[1/Ö(1-De/(1+e)-rH/r)]-1=[1/Ö(De/(1+e))]-1.  Et=E+E=2/Ö(De/(1+e))-1=Zo mass. 
Et=E-E gives E&M that also interacts weakly with weak force. Seen in small left handed 
polarization rotation of light. 
 IInd®IIIrd quadrant rotation   through those 2 neutrinos gives 2 objects. rH=0 
E=1/Ökoo -1=[1/Ö(1-De/(1+e)]-1=De/(1+e). Because of the +- square root E=E+-E so E rest mass 
is 0 or De=(2De)/2 reduced mass. 
Et=E+E=2E=2De is the pairing interaction of SC. The Et=E-E=0 is the 0 rest mass photon 
Boson.  Do the math (eq.A2-A7) and get Maxwell's equations. Note there was no charge CM on 
the two v s.Note we get SM particles out of composite e,v using required eq.9 rotations for  
 
A6 Object B Effect On Inertial Frame Dragging (from appendix D) 
The fractal implications are that we are inside a cosmological positron inside a proton 2P3/2 at 
r=rH state.  The cosmological object (electron) we are inside of is a positron and call it object A 
which orbits electron object B with a given distant 3rd object C. Object B is responsible for the 
mass of the electron since it’s frame dragging creates that Kerr metric (a/r)2=mec2  (D9) result 
used in eq.D9. So Newpde ground state mec2 º<He> is the fundamental Hamiltonian eigenvalue 
defining idea for composite e,v, r=rH  implying Fermi 4 point E= òytHydV= òytyHdV= òytyG 
Recall  for composite e,v  all interactions occur inside rH (4p/3)l3=VrH. 4
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Application of Eq.A8 To Ortho states (created by that 2P3/2 2body motion at r=rH) 
The composite 3e ortho state (partII) operator adds spin (eg., as in 2nd derivative eq.A1) so 2nd 
derivative S((gµÖkµµdxµ)-ik)(gnÖknndxn+ik)c =S((gµÖkµµdxµ)-ik)y so ½(1±g5)y=c. In that regard 
the expectation value of g5 is speed and varies with ei3f/2 in the trifolium. The spin½ decay proton 
S½ µeif/2ºy1, the original ortho 2P1/2 particle is chiral c=y2º½(1-g5)y=½(1-g5ei3f/2)y. Initial 



2P1/2 electron y is constant. Start with initial ortho state c. These g5  terms then modify  equation 
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k1(1/4+ig5)= k(.225+ig50.974) =k(cos13°+ig5sin13°)  deriving the 13° Cabbibo angle.  With 
previously mentioned CP result(direct evidence of fractal universe)  get CKM matrix. 
 
A7 Object C Effect on Inertial Frame Dragging and GF found by using eq.A8 
again 
Review of 2P3/2 Next higher fractal scale (X1040), cosmological scale. Recall from D9 mec2 =De 
is the energy gap for object B vibrational stable iegenstates of composite 3e (vibrational 
perturbation r is  the only variable in Frobenius solution, partII Ch.8,9,10) proton. Observor in 
objectA.  From fig.7 vsin30°+vsin30°=v. From fig 7 r2=12+12+2(1)(1)cos120°=3, so  r=Ö3. 

Recall for the positron motion 𝛾 = 4

O4<8
/

1/

=917. So Fitzgerald contract  rCA=h1 − 8P$/;?°8/

8/ √3= 

.866=cos30°. The E field in the forward or backward direction of the CA line (the weakest) due 
to a charge moving away is E’=(1-v2/c2)E=(1/g2)E = (1/9172)E (from Feynman’s lectures) where 
E=q/r2. For circular motion in the proton around the central electronQR

/

S
= qE   so that  ∆mc6 =

KE = QR/

6
= q𝑟.T𝐸.T

4
6
 =((1/g2)q2/r2CA)(rCA))½= (1/g2)q(q/12))(1)½/rCA =((1/g2)/rCA)[(qEABrAB)½] 

=((1/g2)/rCA)(mec2) =Dmc2 in summary =object C scissors  eigenstates. 

Fig7 Allowing us to finally compare the energy gap caused by object C to the energy gap caused 
by object B (A8). So to summarize  Eqr =DE= (mec2/((cos30°)9172) =mec2/728000. So energy 
gap caused by object C is  is DE=(mec2/((cos30°)9172) =mec2/728000. The weak interaction 
occurs inside of rH with those electrons me. The G can be written for E&M decay as 
(2mc2)XVrH=  2mc2 [(4/3)prH3]. So for weak decay from equation A8 it is GF= 
(2mec2/728,000)VrH=GF  the strength of the Fermi weak interaction constant which is the 
coupling constant for the Fermi 4 point weak interaction integral. Note 2mec2/729,000=1.19X10-

19J.So DE=1.19X10-19/1.6X10-19=.7eV which is our DE gap for the weak interaction inside the 
integral for GF.  
 
A8 Derivation of the Standard Model from Newpde but with No Free 
parameters                                                                                                                                    
Since we have now derived MW, MZ and their associated Proca equations, and Dirac equations 
for mt,mµ,me etc., and  G,GF,ke2 Maxwell’s equations, etc. we can now write down the usual 
Lagrangian densities that implies these results. In the formulation MZ=MW/cosqW you can find 
the Weinberg angle qW, gsinqW=e, g’cosqW=e; solve for g and g’, etc., We will have thereby 



derived the standard model from first principles (i.e.,postulate1). It no longer contains free 
parameters. 
 
Appemdix B  ultimate Occam’s razor (observable) also implies the underlying rela#math 
N=0 postulate 1 (observable) can also be used in a list-define math to get the real number 
algebra (without all those many Rel#math axioms).Eg., 1È1º1+1 (Ch.2).   
Postulate 1 (observable) so observer C so 1ÈCº1+C. with algebraic definition of 1 z=zz having 
both 1,0 as solutions so defining negation ~with 0=1-1 Thus we can define 
~((AÈB)~B~A)ºAÇB. So we have drfined intersection Ç so we have derived set theory.  
So in postulate 1 z=zz why did 0 come along for the ride? There is a deeper reason in set theory. 
Note Æ and 0 aren’t really new postulates  since they postulate literaly  “nothing”. 
Recall we just derived set theory from the postulate of 1 (observable).  
The null set Æ is the subset of every set. In the more fundamental set theory formulation 
{Æ}Ì{all sets}Û{0}Ì{1} since Æ=ÆÈÆÛ0+0=0, {{1}È Æ}={1}Û1+0=1. 
So list 1È1º1+1º2, 2È1º1+2º3,..all the way up to 1082 (see Fiegenbaum point) and define all 
this list as a+b=c, etc., to create our algebra and numbers which we use to write equation 1 
z=zz+C, dC=0 for example. Recall every set has the null set as a subset. So from above set {1} 
(x1 for z=1) has the 0 (xo for z=0 ground state) as a subset. So x1=x2S½+x1S½+xo=t+µ+me.(B1) 
B2 2D+2D®4D Orthgonality 
Note adding the N=0 fractal scale 2D dz perturbation to N=1 eq.7 2D gives curved space 4D. So 
(dx1+idx2)+(dx3+idx4) ºdr+idt given (eqs5,7a)  dr2-dt2=(grdr+igtdt)2 if dr2ºdx2+dy2+dz2 so that 
grdrºgxdx+gydy+gzdz, gjgi+gjgi=0, i¹j,(gi)2=1, rewritten (with curved space kµn eq.13-15) 
(gxÖkxxdx+gyÖkyydy+gzÖkzzdz+gtÖkttidt)2=kxxdx2+kyydy2+kzzdz2-kttdt2= ds2.  
 More fundamentlly satisfying this 4D Clifford algebra and complex orthogonalization 
requirement is a special case of any 2 xixj in eq.3 (directly from postulate1):  Imposing 
orthogonality thereby creates 6 pairs of eqs.3&5. So each particle carries around it’s own dr+idt 
complex coordinates with them on their world lines. Alternatively this 2D dr+idt is a ‘hologram’ 
‘illuminated’ by a modulated dr2+dt2=ds2 ‘circle’ wave (as 2nd derivative wave equation 
operators from eq.11 circle) since 4Degrees of freedom are imbedded on a 2D (dr,dt) surface 
here, with observed coherent superposition output as eq.16 solutions.  A more direct way is to 
simply write the 4Degrees of freedom on the 2D surface as dr+idt= (dr1+idt1)+(dr2+idt2) 
=(dr1,wdt2),(dr2,idt2)= (x,z,y,idt)=(x,y,z,idt), where wdtºdz is the z direction spin½ component w 
(angular velocity) axial vector of the Newpde lepton (eqs.7-9); which we get anyway from lepton 
equation eq.16. 
Appendix C  
 Quantum Mechanics Is The Newpde y  (for each N fractal scale) 
Recall the solution to (postulate 1)  z=zz is 1,o. In z=1-dz, dz*dz is (defined as) the probability 
of z being o. Recall z=o is the xo=me solution to the new pde so dz*dz is the probability we have 
just an electron (sect.3). Note z=zz also thereby conveniently provides us with an automatic 
normalization of dz. Note also that (dz*dz)/dr is also then a one dimensional probability 
‘density’. So Bohr’s probability density “postulate” for y*y (º(dz*dz)) is derived here. It is not 
a postulate anymore. (So Bohr was very close to the postulate of 1, and so using z=zz here.) 
   Note the electron eq.7 has two parts (i.e., dr+dt &dr-dt,) that solve eq.3 together, same kind of 
d(pA-pB) conservation relation as between Alice and Bob; signal, idler,Bell’s stuff. We could 
then label these two parts observer and object with associated eq.7 wavefunctions dzºy1, 



dzºy2. So if there is no observer eq.7 (So no y1) then eq.3 doesn’t hold at all and so there is no 
object “observed” wavefunction.y2. Thus the object wave function y2 “collapses” to the 
wavefunction ‘observed’ y2 (or eq.5 and so postulate 1 does not even hold), if “observed” y1 
exists.  Then apply the same mathematical reasoning to every  other d(pA-pB) situation and we 
will also have thereby derived Bell's theorem and its general cases. Thus we derived the 
Copenhagen interpretation of Quantum Mechanics QM mathematically, from eq.16 and so  first 
principles postulate 1, not from the usual hand waving arguments.  
     Recall from appendix A dr2+dt2 is a second derivative operator wave equation(A1), that holds 
all the way around the circle(even for the eq.10 vacuum solutions), gives waves. In eq.12, error 
magnitude C (sect.2.3) is also a dz’ angle measure on the dr,idt plane. One extremum ds  (z=0) is 
at 45° so the largest C is on the diagonals (45°) where we have eq.4 extremum holding:  
particles. So a wide slit has high uncertainty, so large C (rotation angle) so we are at 45° (eg., 
particles, eq.16 photoelectric effect).  For a small slit we have less uncertainty so smaller C, not 
large enough for 45°, so only the wave equation A1 holds (small slit diffraction). Thus we 
derived wave particle duality here.  
Recall wave equation eq.A1 iteration of the New pde with eq.11 operator formalism. So dr/ds=k 
in the sect.1 dz=dseiq   q exponent then becomes k=2p/l. Multiplying both sides by h with hkºmv 
as before we then have the DeBroglie equation that relates particle momentum to wavelength in 
quantum mechanics. Equation 8a (sect.1) then counts units N of (dt/ds)=hw=hck  on the diagonal 
so that E=pt=hw for all energy components, universally. Thus this eq.11a counting N does not 
require  the (well known) quantization of the E&M field with SHM. First, set the unit of distance 
rH on our baseline fractal scale: (eq.1  N=0. See figure 1 attachment.). The 4X Mandelbrot set 
formulation allows only these finite extremum. 
dzºy 
Appendix D. N=0  (eq.13,14,15 give our Newpde metric kµn  at r<rH, r>rH )  
Found GR from eq.13 and eq.14 so we can now write the Ricci tensor Ruv (and self similar 
perturbation Kerr metric since frame dragging decreased by external object B, sect.A6). Also for 
fractal scale N=0, rH=2e2/mec2, and for N=-1 r’H=2Gme/c2=10-40rH.  
 
Nonzero Generic maximally symmetric (MS) ambient metric generated by object B 
N=2 big guy sees us from the outside and so sees sine. To see what we see he multiplies sin by i 
and u by I since we are inside (so -isiniu->sinhu). So start with complete frame dragging 
suppression eq.13, 15 but with ambient metric (provided by later perturbation a<<r provided 
by some rotation) metric ansatz: ds2=-el(dr)2-r2dq2-r2sinqdf2+eµdt2 so that goo=eµ, grr=el. From 
eq. Rij=0 for spherical symmetry in free space    
                              R11= ½µ”- ¼l’µ’+ ¼(µ’)2-l’/r =0               (D1)                                                        
                              R22=e -l[1+½ r(µ’-l’)]-1=0     (D2)                                                                     
                              R33=sin2q{e-l[1+½r(µ’-l’)]-1}=0                                                 (D3)                                                          
                              Roo=eµ-l[-½µ”+¼ l’µ’-¼(µ’)2- µ’/r]= 0                                   (D4) 
                              Rij=0 if i¹j                     
(eq. D1 -D4 from pp.303 Sokolnikof(8)): Equation D2 is a mere repetition of equation D3. We 
thus have only three equations on l and µ to consider. From equations D1, D4 we deduce that  
l’=-µ’ so that radial l=-µ+constant =-µ+C where C represents a possible ~constant ambient 
metric contribution which could be imaginary in the case of the slowly oscillating ambent metric 
of nearby object B. So e-µ+C=el. Then D2 can be written as:  



                                                              e–Ceµ (1+rµ’)=1                                                 (D5)    
Set eµ=g. So e-l =ge-C and so integrating this first order equation (equation.D11) we get: 
                              g=-2m/r +eC ºeµ = goo and e-l=(-2m/r +eC)e–C        =1/grr                 (D6) 
From equation D6 we can identify radial C with also rotational Kerr metric oblateness 
perturbation  Mandlebulb component here (D8 below) of Mandelbrot set Fig.6  eq.18 
2m/r=rH/r=CM/xr=e-C=  e-(e+De) =t+µ+De.(eq.17). We end up being at the horizon rH in equation 
D8. So 2m/r is set equal to eC in eq. D6. So  at the end, at the horizon rH,in eq.D8,  2m/r is set 
equal to eC =e-(e+De) =in D6. So  koo=1- e-(e+De)-2m/r. from eq.17. Given external object B 
oscillating zitterbewegung for r<rC   then e-(e+De)-® e-i(e+De)  so that  koo=1- e-i(e+De)-2m/r            
(D7)      So: e-l=1/krr=1/(1-2m’/r)             
 Perturbative self similar rotation providing the ambient metric Generated by object B     
Our new pde has spin S and so the self similar ambient metric on the N=0 th fractal scale is the 
Kerr metric which contains those perturbation rotations (dqdt T violation so (given CPT) then 

CP violation)        (D8)                                          

where ,   In our 2D  df=0, dq =0   Define:                                        
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2 = (𝐷7,17) = 1 + 𝑒. = 1 + 𝑒9(=@V=) =. 
(Replace a2/r2 Kerr object B term with inertial frame D7 dragging mass x1. In eq.D8 subtract 
2mr/(r’)2=rH/rH). In From eq.17 general the closer object B is the larger eC is. 
=1 + 𝜉4 −

(4
(4
= 𝑒. = 1 + 𝜀 + ∆𝑒+..  =e i(e+De)                                                                                                      (D9)                             

So this is a Kerr metric inertial frame dragging suppression due to outside object B of magnitude  
((a/r)sinq)2 = 1/grr=eie from D7 in the proper frame. Inside object A. e also changes with time 
(Mercuron equation D15). 
Object B oscillation sound wave observed compression in Shapely, Bootes, rarefaction in 
Eridanis. 
D2 Examples of this ambient metric. N=0 Composite 3e  
Introduction: N=0 Frobenius solution is for constant y (and so constant e) just inside rH.  
Equations D6,D7,D9 provide the ei(e+De) contributions from each maximal symmetry e source, 
with the B flux quantization causing the ne quantization of the ambient metric.  There appear to 
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be 2 B field sources, the two fast moving positrons (are right on rH and so are close to these 
boundaries) creating that huge internal magnetic field. So for the inside 1+2(e +De) get added 
and we normalize the maximal symmetry B field away for the observer 2nd positron  by dividing 
by 1+e.  
In contrast for just outside rH the flux is canceled out because of the frequent creation and 
annihilation events inside resulting in a Faraday's law B flux change cancellation application that 
gives the Meisner effect zero point energy (eq.9.22) pion e’ cloud who’s energy is thereby added 
to 2m/r=rH/r as implied by eq. D6. Thus: 
For z=0 just inside rH, the two positrons each have constant y (N=0 ch.8,9) inside rH. So from 
eq.D9 divide krr by 1+e+e=1+2e.=eC  So   4

W##
= (1)(1 + 2𝜀) ≡ 1 + 2(𝜀 + D𝜀) (D9a) 

Note negative potential energy here. Normalize out the koo magnetic field maximak symmetry of 
the observer by multplying koo  by 1+e =e-C for the magnetic (see partII flux of B)	
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For z=0 just outside rH, Since randomly the B field disappears (dB/dt≠0) due to that creation-
annihilation we have a Faraday’s law Meisner effect.  With outside rH B results, just divide by 
1+e” (D9) for zero point energy e”=.08 p± of eq.9.22 (partII) which has to itself increase and 
decrease with (see D9) each of these annihilation events and p± exists just outside rH (from our 
Frobenius solution):  4
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For z=0®z=1 r>>rH then free space boost sect.2  x0®t. Define 𝜀′º =
4@=

. Must normalize again 

(for  local  ambient metrc De change contributions) so multiply by 4
4@=&

	(see D9 for z=1 outside) 
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D3  A  N=0 Application example:  (mentioned on first page) 
Separation Of Variables On New Pde 
After separation of variables the “r” component of equation 16 (Newpde) can be written as: 
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5 𝑓 = 0                                      D13 
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Using the above Dirac equation component we find the anomalous gyromagnetic ratio Dgy for 
the spin polarized F=0 case. Recall the usual calculation of rate of the change of spin S gives 
dS/dtµmµgyJ from the Heisenberg equations of motion. We note that 1/Ökrr rescales dr in  
4√𝜅((

#
#(
+ ]@;/6

(
5 𝑓 in equation C5. Thus to have the same rescaling of r in the second term we 

must multiply the second term denominator (i.e.,r) and numerator  (i.e., J+3/2) each by 1/Ökrr and 
set the  numerator ansatz equal to (j+3/2)/Ökrrº3/2+J(gy), where gy is now the gyromagnetic 
ratio. This makes our equation D13, D14 compatible with the standard Dirac equation allowing 
us to substitute the gy into the Heisenberg equations of motion for spin S: dS/dtµmµgyJ to find 
the correction to dS/dt. Thus again: 
                            [1/Ökrr]( 3/2 +J)=3/2+Jgy, Therefore for J= ½ we have:  
                            [1/Ökrr]( 3/2+½)=3/2+½gy= 3/2+½(1+Dgy)                                  D15                                                                         



Then we solve for Dgy and substitute it into the above dS/dt equation.  
Thus solve eq. D12, D15 with eq.18 values in Ökrr= 1/Ö(1+De/(1+e))=   1/Ö(1+De/(1+0))=  
1/Ö(1+.0005799/1). Thus from equations C1,D13,D15: 
 [Ö(1+.0005799)](3/2 + ½)= 3/2 + ½(1+Dgy). Solving for Dgy gives anomalous gyromagnetic ratio 
correction of the electron  Dgy=.00116. 
If we set e¹0 (so De/(1+e)) instead of De) in the same koo in eq.16 we get the anomalous 
gyromagnetic ratio correction of the muon in the same way. 
Composite 3e: Meisner effect For B just outside rH. (where the zero point energy particle eq. 
9.22  is .08=p±) See D11 
Composite 3e  CASE 1: Plus +rH, therefore is the proton + charge component. Eq.C1 &D11   
1/krr =1+rH/rH +e” = 2+ e”. e” =.08 (eq.9.22). Thus from eq.C7: √2 + 𝜀"(1.5+.5)=1.5+.5(gy), 
gy=2.8               
The gyromagnetic ratio of the proton   
Composite 3e  CASE 2:  negative rH, thus charge cancels, zero charge:    
           1/krr =1-rH/rH +e”= e “  Therefore from equation D15 and case 1  eq.12 1/krr =1-rH/rH+e”                                            
        √𝜀" (1.5+.5)=1.5+.5(gy), gy=-1.9.                                                       
the gyromagnetic ratio of the neutron with the other charged and those ortho neutral hyperon 
magnetic moments scaled using their masses by these values respectively.  
 
D4 Separation of Variables 
After separation of variables the “r” component of equation 16 (Newpde) can be written as  
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  Comparing the flat space-time Dirac equation to the left side terms of equations C5 and C6:      
                                                     (dt/ds)Ökoo=(1/k00)Ökoo=(1/Ökoo)=Energy=E               D18 
Note for electron motion around hydrogen proton mv2/r=ke2/r2 so KE=½mv2= (½)ke2/r =PE 
potential energy in PE+KE=E.  So for the electron (but not the tauon or muon that are not in this 
orbit) PEe=½e2/r.  Here write the hydrogen energy and pull out the electron contribution. So in eq.B1 
and D18 rH’=(1+1+.5)e2/(mt+mµ+me)/2=2.5e2/(2mpc2).                                                    D19 
 
Variation d(y*y)=0 At r=n2ao  
Next note for the variation in y*y is equal to zero at maximum y*y probability density where 
for the hydrogen atom is at r=n2ao=4ao for n=2 and the y2,0,0 eigenfunction. Also recall eq.B1 
x1=mLc2 =(mt+mµ+me)c2=2mpc2 normalizes ½ke2  (Thus divide t+µ by 2 and then multiply the 
whole line by 2 to normalize the me/2.result. e=0 since no muon e here.): Recall in eq.19 xo has 
to be pulled in a Taylor expansion as an operator since it a separate observable. So substituting 
eqs.D16,C1 and eq.D12for k00, and B1,eq19 values in eq.D18: 

𝐸% =
(𝑡𝑎𝑢𝑜𝑛 +𝑚𝑢𝑜𝑛)(12)

h1 − 𝑟H:𝑟

− �𝑡𝑎𝑢𝑜𝑛 +𝑚𝑢𝑜𝑛 + 𝑃𝐸^ + 𝑃𝐸_ −𝑚%𝑐6�
1
2 = 



2(𝑚^𝑐6 +𝑚_𝑐6)
1
2 + 2

𝑚%𝑐6

2 + 2
2.5𝑒6

2𝑟(𝑚`𝑐6)
𝑚`𝑐6 − 2

2𝑒6

2𝑟(𝑚`𝑐6)
𝑚`𝑐6 − 2

3
8t

2.5𝑒6

𝑟𝑚`𝑐6
v
6

𝑚`𝑐6

− 2(𝑚^𝑐6 +𝑚_𝑐6)
1
2 

= 60B8/

6
+ 2 %

/

>(
− 2 ;

a
4 6.I
(0C8/

5
6
𝑚`𝑐6 = 𝑚%𝑐6 +

%/

6(
− 2 ;

a
4 6.I%

/

(0C8/
5
6
𝑚`𝑐6                                   

So: DEe=2 ;a 4
6.I

(0C8/
5
6
𝑚`𝑐6 =	(Third order Ökµµ Taylor expansion term)=  

∆𝐸 = 2 		;
a
[ 6.I)a.ade4?D*)4.f?6e4?E.D*

/

(>(.I;e4?E.@))6((4.fge4?E/F)(;e4?G)/
]6(2(1.67𝑋10<6g)(3𝑋10a)6  

=hf=6.626X10-34 27,360,000 so that f=27MHz Lamb shift. 
The other 1050Mhz comes from the zitterbewegung cloud. 
 
Note: Need infinities if flat space Dirac 1928 equation. For flat space ¶gik/¶xj=0 as a limit. Then 
must take field gkm =1/0= ¥ to get finite Christoffel symbol   Gmijº(gkm/2)(¶gik/¶xj+¶gjk/¶xi-
¶gij/¶xk) =(1/0)(0)=undefined but still  implying nonzero acceleration on the left side of the 

geodesic equation: So we need infinite fields for flat space. Thus QED 

requires (many such) infinities. But we have in general curved space gij=kij in the New pde so do 
not require that anything be infinite and yet we still obtain for the third order Taylor expansion 
term of Ökµn the Lamb shift and anomalous gyromagnetic ratio correction (see above sections 
C2,C3). 
So renormalization is a perturbative way (given it’s flat space Dirac equation and minimal 
interaction gauge origins) of calculating these (above) same, NONperturbative results, it’s a 
perturbative GR theory.  But renormalization gives lots of wrong answers too, eg.,1096grams/cm3 
vacuum density for starters. (So we drop it here since we don’t need it any longer for the high 
precision QED results.)  In contrast note near the end of reference 5 our Goo=0 for a 2D  MS. Thus a 
vacuum really is a vacuum. Also that large x1=t(1+e’) in rH in eq.14 is the reason leptons appear 
point particles (in contrast to the small x0 in the composite 3e baryons). 
 
D5 N=1 internal Observer cosmological physics from Observer at N=2 
From Newpde (eg., eq.1.13 Bjorken and Drell)     𝑖ℏ !-
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ℏ /  er=+1, 
r=1,2; er=-1, r=3,4.): This implies an oscillation frequency of w=mc2/h. So the eq.12 the 45° line 
has this w oscillation on that dz rotation.  The next higher cosmological independent (but still 
connected by superposition of speeds) fractal scale N=1 the 45° small Mandelbulb chord e (Fig6) 
is now getting smaller with time t a e  as in a separation of variables result: 	𝑖ℏ !-
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On our own fractal cosmological scale we are in the expansion stage of one such oscillation. 
Recall N>0ºobserver. Here we find what that N=2 fractal scale observer sees what we see if 
sinµ->sinhµ for r>rH going to  r<rH in E=1/Ökoo=1/Ö(1-rH/r) since the E in dz=eiEt ºeiµ and so µ 
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then becomes imaginary. Recall limit Rij as  r®0 is the source, where gravity creates gravity in 
the Einstein equations which becomes the modulation of the DeSitter ball. (6.14.2).  
R22=e -l[1+½ r(µ’-n’)]-1 with  µ=n (spherical symmetry) and µ’=-n’. So as r®0 , ImR22=.    
Im(eµ-1)=µ +..= sinµ=µ+..for  outside rH imaginary µ for small r (at the source) so sinµ becomes 
a gravitational source (gravity itself can create gravity as a feedback mechanism). The N=2 
observer then multiplies by i iR22, -sinµ and µ to get R22=-sinhµ to see what the N=2 observer 
sees that we see  inside rH so: 
R22=e -n[1+½ r(µ’-n’)]-1=-sinhn=(-(en- e-n)/2),   n’=-µ’ so 
e -µ[-r(µ’)]=-sinhµ-e-µ+1=(-(-e-µ+ eµ)/2)-e-µ+1=(-(e-µ+eµ)/2)+1=-coshµ+1. So given n’=-µ’ 
e -n[-r(µ’)]= 1-coshµ. Thus 
e -µr(dµ/dr)]=1-coshµ   
This can be rewritten as:                              eµdµ/(1-coshµ)=dr/r                             (D20) 
The integration is from x1= µ=e=1 to the present day mass of the muon= .06 (X tauon mass). 
Integrating equation B from  e=1 to the present e value we then get:                          
ln(rM+1/rbb)+2=[1/(eµ-1)-ln[eµ-1]]2                                                                             (D215) 
then rbb»50Mkmºmercuron (initial r=rH each baryon. Big bang 1082 baryons sect.2.3). Solve for 
rM+1, as function of µ. Find present derivative, find du from Hubble constant normalize the 
number to 13.7 to find total time u. Find we are now at 370by. This long of time explains the cbr 
thermalization and mature galaxies at dawn(instead of ~200My after bb, it is 370by). The 
zitterbewegung (sound wave) of object B creates the condensation (at the Shapely concentration) 
and rarefaction void in Eridanus: we are astronomically observing here selfsimilar objectB sound 
waves inside of a proton.                                         
     After a large expansion from rbb our eq.14 eq.15 Schwarzschild finally becomes Minkowski               
ds2=-dxo2+Si=1n dxi2. The submanifold is –x02+Si=1nxi2=α2  
     In static coordinates r,t:  (the New pde zitterbewegung harmonic coordinates xi  for r<rH)    
 xo=Ö(α2-r2)sinh(t/α):         (sinht is small t limit of equation D15. 5Tyears is the period>>370by) 
 x1=Ö(α2-r2)cosh(t/α):                                                                                                                                          
xi= rzi        2≤i≤n     zi is the standard imbedding n-2 sphere. Rn-1 which also implies the De Sitter 
metric:    ds2=-(1-r2/α2)dt2+(1-r2/α2)-1dr2+ dW2n-2   (D16) our observed ambient metric  
 
D6  Mixed states of De and e N=-1 outside so 1S1/2 state  with r 
HN=-1 DxD(mN=-1c)=h/2. mN=-1=10-40me.  So Dx=105LY galaxy. 1S1/2 state may be 
flattened since such states are stable since goo=koo. 
From D13 metric source note De and e operators so Dee (operating on Newpde yN) is a new 
state, a “mixed state” that in the next higher scale classical limit then is a grand canonical 
ensemble with nonzero chemical potential (i.e., a “mixture” of systems).2nd derivative of cosx= 
-cosx so Dg00=-g00 =cosDe. That goo=koo in the halo of the Milky Way galaxy is the fundamental 
equation of metric quantization for all the multiples of 100 metric quantization, but here for r<rH. 
So in general  koo=ei(me+mu), me =.000058 is the electron mass (as a fraction of the Tauon mass.) 
which is the  component in the resulting me,mµ operator sequence. 
Imaginary part R22 locally for 2D MS Roo=Dgoo=k00(R/2)=cosDe gives also the local mixed 
De,e states of partIII metric quantization.  Set cos(De/(1-2e))=k00=goo, mv2/r=GMm/r2 so 
GM/r=v2 COM in the galaxy halo(circular orbits)  (1/(1-2e) term from D9a just inside rH) so 
Pure state De (e excited 1S½ state of ground state De, so not same state as De)  



Relkoo =cosµ from D9  
Case1 1-2GM/(c2r)=1-2(v/c)2=1-(De/(1-2e))2/2                                                           (D17) 
So 1-2(v/c)2=1-(De/(1-2e))2/2  so =(De/(1-2e))c/2=.00058/(1-(.06)2)(3X108)/2 =99km/sec 
»100km/sec (Mixed De,e, states classically here are grand canonical ensembles with nonzero 
chemical potential.). For ringed (not hub) galaxies the radial value becomes 100/2=50km/sec. 
 
Mixed state eDe   (Again GM/r=v2 so 2GM/(c2r)=2(v/c)2.) 
 Case 2 goo=1-2GM/(c2r)=Relkoo=cos[De+e]=1-[De+e]2/2=1-[(De+e)2/(De+e)]2/2=                      
1-[(De2+e2+2eDe)/(De+e)]2 

The De2 is just the above first case (Case 1) so just take the mixed state cross term 
[eDe/(e+De))]= c[De/(1+De/e))]/2=c[De+De2/e+...DeN+1/eN+.]/2=SvN. Note each term in this 
expansion is itself a (mixed state) operator.  So there can’t be a single v in the large gradient 2nd 

case so in the equation just above we can take                 vN=[DeN+1/(2eN)]c.                 (D18)                                                                              
From eq. D18 for example v=m100Nkm/sec. m=2,N=1 here (Local arm). In part III we list 
hundreds of examples of D18: (sun1,2km/sec, galaxy halos m100km/sec). The linear mixed state  
subdivision by this ubiquitous ~100 scale change factor in rbb (due to above object B 
zitterbewegung spherical Bessel function resonance boundary conditions resulting in nodes) 
created the voids. Same process for N-1 (so 100X smaller) antinodes get galaxies, 100Xsmaller: 
globular clusters, 100Xsmaller solar systems, etc., So these smaller objects were also created by 
mixed state metric quantization (eq.D18) resonance oscillation  inside initial radius rbb. 
We include the effects of that object B drop in inertial frame dragging on the inertial term m in 
the Gamow factor and so lower Z nuclear synthesis at earlier epochs (t>18by)BCE. (see partIII) 
Appendix E  D Modification of Usual Elementary Calculus e,d ‘tiny’ definition of the limit. 
Recall that: given a number e>0 there exists a number d>0 such that for all x in S satisfying  
                    |x-xo | <d  
we have  
                   |f(x)-L|<e 
Then write  
Thus you can take a smaller and smaller e here, so then f(x) gets closer and closer to L even if x 
never really reaches xo.“Tiny” for h ®L1 and f(x+h)-f(x)®L2  then means that L=0 =L1  and L2 . 
‘Tiny’ is this difference limit.  
 Hausdorf (Fractal) s dimensional measure using e, d 
Diameter of U is defined as   |𝑈| = 𝑠𝑢𝑝{|𝑥 − 𝑦|: 𝑥, 𝑦 ∈ 𝑈}.     EÌ ÈiUi      and      0<|Ui|£d 

𝐻+$(𝐸) = 𝑖𝑛𝑓�|𝑈9|$
2
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analogous to the elementary V=Us where of s=3, U=L then V is the volume of  a cube 
Volume=L3. Here however ‘s’ may be noninteger (eg.,fractional). The volume here would be the 
respective Hausdorf outer measure. 
The infimum is over all countable d covers{Ui} of E. 
To get the Hausdorf outer measure of E we let d®0 𝐻$(𝐸) = lim

+→?
𝐻+$(𝐸) 

The restriction of Hs to the s field of Hs measurable sets is called a Hausdorf s-dimensional 
measure.  Dim E is called the Hausdorf dimension such that 
  Hs(E) = ¥ if 0£s<dimE,   Hs(E)=0 if dim E<s<¥  

Lxf
oxx =® )(lim



    So if s implies a zero H or infinite H it is not the correct dimension. This rule is analogous to 
the definition of the (fractal) Mandelbrot set itself in which a C that gave infinity is rejected by 
the definition dC=0 we can model as a binary pulse (z=zz solution is binary z=1,0) with  
 zz=z (1)  is the algebraic definition of 1 and can add real constant C (so z’=z’z’-C, dC=0 
(2)), zÎ{z’} 
Plug z’=1+dz into eq.2 and get                              dz+dzdz=C                                            (3)    
 so                                                  d𝑧 = (−1±√1 + 4𝐶)/2=dr+idt                                      (4)                                                                               
for C<-¼ so real line r=C is immersed in the complex plane.  
   z=zo=0 To find C itself substitute z' on left (eq.2) into right z'z' repeatedly & get zN+1=zNzN-C. 
dC=0 requires us to reject the Cs for which  
-dC=d(zN+1-zNzN)= d(¥-¥)¹0. z=zz solution is 1,0 so initial  
gets the Mandelbrot set CM (fig2) out to some ||D|| distance from C=0.  D found from ¶C/¶t=0, 
dCºdCr=(¶CM/¶(drdt))dr =0 extreme giving the Fiegenbaum point ||CM|| = ||-1.400115..|| global 
max given this  ||CM|| is biggest of all. 
If s is not an integer then the dimensionality it is has a fractal dimension. 
   But because the Fiegenbaum point D uncertainty limit is the rH horizon, which is impenetrable  
(sect.2.5, partI),  e,d are not dr/ds eq.11a observables for 0<e,d<rH. Instead e,d >D =rH =the next 
1040X smaller fractal scale Mandelbrot set at the Fiegenbaum point. 
 
 
 
 
Appendix F 
Review       This is an Occam's razor optimized (i.e.,(dC=0, ||C||=noise) 
                                        POSTULATE OF 1                                                             So 
z=zz (1) is the algebraic definition of 1,o,add real constant C (i.e., z'=z'z',dC=0) (2),zÎ{z’}  
 
Digital communication anology: Binary (z=zz) 1,0 signal with white noise dC=0 in z’+C=z’z’. 
Recall the algebraic definition of 1 is z=zz which has solutions 1,0. Also you  
could say white noise C has a variation of zero (dC=0) making it easy to  
filter out (eg., with a Fourier cutoff filter). 
So you could easily make the simple digital communication analogy of this being a binary  
(z=zz) 1,0 signal with white noise dC=0  in z'+C=z'z'. 
 
(However the noise is added a little differently here (z+C=zz) than in  
statistical mechanics signal theory  (eg.,There you might use deconvolved signal=convolution 
integral  
[(transfer function)signal]dA)). where the' signal' actually would equal z+C  So this is not quite  
the same math as in statistical mechanics.) 
 
 
  
 
 


