
                                                       Part II  
                                  Can there be a (stable) Small C Multielectron State of The Newpde?         
                                  Yes, It is Composite 3e,  2P3/2 at r=rH 
 
Review of partI  
   postulate 1 (observable) and define observability 
Where did the Newpde come from? Answer: From this postulate 1                                              
rewritten as: Occam’s razor optimized observable (so with observer):  1=1X1.    (My concept) 
 
Definition of ‘observability’  
So my concept restated is: postulate 1(observable) with z=zz  'with observer' (ºnoise C  
 'optimized' so dC=0) added in z’=z’z’+C (eq1)  thus with all z’ unknown except the postulated 
zz=z (=1,0). So 
    z=0=zo=z’ in the iteration of eq.1 with dC=0 gives the 2D Mandelbrot set C so a dz (sect.1, 
Nth fractal scale) 
    z=1 thereby implies z'=1+dz in eq.1 with dC=0 gets 2D Dirac eq for e,v (N≥1 observer eq11) 
These z=0, z=1 steps together imply the 2D+2D= 4D Newpde  with dz=rH=(e2/m)1040N =C 
in koo=1-rH/r= 1/krr with large m so small C in eq1.(so postulate1). Note eq.11 observables   
s requires Newpde dz’=.   So all we did here is define observability  (in above “my 
concept”)                                                So just postulate 1 
Small C’ boost in composite 3e is the subject of partII 

 
 
                       Small C stable Newpde State 2P3/2 at r=rH: Composite 3e 
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        Newpde Composite 3e  2P3/2 at r=rH Model: small C realized 
Note that we derived g,Zo,W+,W- in Appendix A Of Part I So we derived the E and B fields. 



7.3 Eq.11 B Field Flux Quantization In This Enclosed Current Loop  
Note if a charged particle moves in loop in a field free region that surrounds another region, there 
is trapped magnetic flux f in that region. Also we can include minimal interaction E&M 
momentum/h =k®k+eA/h =eBr/h for uniform B field. If y phase is a unique function on the 
loop then phase kr= (eBr/h)r=(eBrr/h)= e(Barea)/h=eF/h=n2p. F=4.13X10-15 for integer spin. 
Then upon completing a closed loop the particle’s wave function will acquire an additional phase 
factor 𝑒𝑥𝑝 %!"F

#
&. But the wave function must be single valued at any point in space.  This can be 

accomplished if the magnetic flux F is quantized: eF/h= pn, n=0±1,±2,±3, so Fo=h/(2e). From  
NIST: 2.067833848X10-15Wb =Fo.    half integer spin½.   Integer spin 2Fo=2(h/2e)=h/e for the 
two positrons. 
  
7.4 Ultrarelativistic Rotator. 
Side View z=0. 
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' 	rH/2=2.8X10-15m ºr’H         (7.1)                             

for the ortho 2P state observer (i.e,2P3/2, 2P½) in the horizontal plane and rH/2= r”. We must 
repeat this integration on the end para states, the radius is shrunk by t+2(e+De) and so is nearly a 
point source S½ state (for the observer above the circle as for the deuterium central electron 
sect.10.7). We next show that the jump from ortho to para must then correspond to the jump 
from e to t fractal quantum state given t is separable and so a orthogonal state transition. 
2rH=2(2.81X10-15=2e2/(mec2), Side view ½(2rH)=rH,  
Radius Of Proton: Average both the cos2 edge ((1/2)r) and axial width (near zero)  
(2.81713/2+0)/Ö2=.98F=rp. But the spectroscopic and scattering methods that are used to 
measure rp do not assume a singularity physics at 2.8F/2=rHp/2 so allow for the slightly larger 
radius in practice proton radius= rp = 1.1F.   
 
Top view 2rH.z=1 
So only New pde e (z=0  x0=De=me) is stable .  The only way to get multi e particle stable large 
x is with the Newpde composite 3e 2P3/2 at r=rH state.  That is because we have stability (dt’2=(1-
rH/r)dt2) clocks stop at r=rH. That 3rd mass also reverses the pair annihilation virtual pair creation 
inside the rH volume given s=prH2» (1/20)barn making it merely a virtual creation annihilation 
event. So our 2P3/2  composite 3e (proton) at r=rH is the only stable multi e composite.  
             Magnetic Flux Quantization For Current Around Loop 
Our Newpde  II®III quadrant eq.12  rotations (appendix A4) gave us Maxwell’s equations and 
E&M so we can apply B fields here. We also derived quantum mechanics from that Circle 
equation (giving eq.11). Thus we can have quantization of the B field flux∮𝐵8⃗ •𝑑𝐴88888⃗  =F0N 
Just above (and below) the coil plane toward the edge of the coil the B direction changes and the 
magnitude of B goes up. So some  𝐵8⃗ •𝑑𝐴88888⃗  =DF minimum deviation from BdA for some constant 
;𝑑𝐴88888⃗ ; above the coil plane.  Given B is perpendicular to dA at the center and the radius rH of the 
coil cancels out (eq.2 below) this DF flux could be over the center where the relevant g is 



needed. Thus we must write SDF=F=BA= 𝐵𝜋𝑟$* with the B at the center of the coil for z=0 
(appendix). So effective rH slightly bigger (making B smaller) but rH cancels anyway. So                                                                
                                   𝐵𝐴 = (0"!

*1#
)𝜋𝑟$* = F'(#2𝑃2/*𝑙𝑜𝑏𝑒𝑠).	                                 (1) 

Also rH=e2/mec2, q/t=i. q=e=1.6X10-19 C,  F0= NIST: 2.067833848X10-15Wb, 1/g  dilation of rH 
but it and rH get canceled out here. The time t dilation g remains in the current ’i’ moving frame 
of reference. Recall that for circular motion: c=D/t=2prH/t so: 
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B=µ0i/2rH is the minimum B inside the loop, and given rH cancels out in eq.2, can be taken as a 
variational principle optimization of the energy B2.                   
Each of the 2 positron flux contributions around the circle(N1=2). But each positron moves 
through all 3  2P3/2 =N2 lobes. So doing the cancelations in eq.2: 
g(µo/4)ec=(h/2e)(2positronsX3lobes).                                                                         (3) 
  So 
g(µo/4)ec=(h/2e)6,  But there already is a populated state (Hund’s rule) 1S½ (µ) =.1125=µ/P so 
we add it in (For example recall in the hydrogen atom that the 1S states fill before the 2P states.). 
So: 
g= #
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	    (Note that 4 cancels the 4 in µo=4pX10 -7 Wb-m/Amps.) 
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We must add in the 3X.511=1.533 for the 3 electrons  
915+1.533=916.533 
2P3/2 at r=rH implies also twice our 2 positron g result will be the proton mass. 
2(916.533))mec2=1.50087X10-10J=937Mev 
Finally we must add that 1Mev binding energy between that µ and the (Fitzgerald contracted) net 
+e positrons and electron (Fitzgerald contracted to a point Coulomb source) from axial frame of 
reference (sect.10.5) and get 938.23Mev. 
Actual proton mass= 938.272Mev=mp.   
An exact answer! 
Small C limit Finally Realized 
Note we then we now have that small C limit from stable composite 3e because the positrons 
gain mass (explaining the proton mass) by their rapid motion contracting E field lines seen at 
the center area thereby (explaining the strong force). 
mp in equation 9.6 (and the rest of ch.8 is this 938 proton mass normalized to 1. 
 Also from appendix A7 scissors r=r/cosq), eigenfunction perturbation (caused by object C in 
A7, gives the Fermi G).  
In Ch.9 we perturb the Newpde 2P3/2 at r=rH state using a Frobenius series formulation.  We then 
note that the Meisner effect J=0, N=0 Frobenius zero point energy 9.23 must add an extra e+ to 
that µ- to get the p- case1 J=0 (Thus this later Frobenius solution (J=0, N=0 solution) 
formulation requires an (implicitly assumed) additional charge e+.) 
 



Ortho State Eq.9.22 Zero Point Energy e  Implies Meisner Effect Nonzero Ortho States 
m=1,0,-1. ge=e/De 
The magnetic field in one of these protons is about 1011T (=µoi/(2rH), so large that any spatially 
oscillating charge is going to be forced to induce a counter current that tries to cancel the change 
in flux produced by the charge motion (Faraday's law) relative to the proton. The Frobenius 
series method applied to the new pde has this J=0, N=0 zero point energy solution eq.9.22 SP 
hybrid state of the proton whose oscillation provides a Cooper pair oscillation counter current in 
that huge 1011T field that cancels it out. So at close range there are many pions e/De. (up to 7) 
and more distant, where the B field drops you only need one: Hence we have just derived the 
multi pion interactions observed near the proton and resulting Yukawa force. 
The ortho state with B orthogonal to A would not exist without this zero point SP state motion 
since the (SP hybrid so) induced P state spinor has a horizontal component so has a dot product 
with horizontal S2 nonzero spinor (for ortho). 
These two B fields (B^ and B||) are put into Paschen Back (eg.,msc2=uBgeB(1+0+0+0))           

  
Fig1 
2 body positron-positron dynamics so ortho(s.c.b) and para(t) states 
on the r=rH shell near q=90°. Paschen Back dynamics 
 
Summary Of Para and Ortho States: two gs: top view Para g=917, Ortho side view g=e/De 
S^ SP hybrid zero point energy eq.9.22: P state so     S1•S2 ¹0, ortho:  ge m=±1,0B=(e/De)B=B^. 
  =(.06/.00058)2.02X1011 =2.27X1013T=B^   (eg., ms=uBB^(1+0+0+0))              
 
S||  Flux quantization g top S|| view both positrons so  S1•S2 ¹0,  para:   gL=0=gB=B|| . 
    =917(4)2.02X1011 =7.5X1014T=B||                (eg., mt=uBB||(1+1+1+1))    
 
7.6 The two rapidly moving positrons: 2Ä2=3Å1 List of 1 Para SB|| and 3 Ortho SB^  States 
Here Thomas LS LSTº -(LBL*(SAL or SCL))K±gs perturbation is subtracted off the Paschen Back 
energy for both the SB^ and SB|| cases.  
 
SB||=State t non LS coupling para singlet state (the 1 single state in the 3Å1  decomposition)  



B||=7.448X1015T,=B=g(2.02X1011) 
0°            rH   
 B||uB(mLA+mSA+mLC+mSC)=PE  LST PE-LST     name      Pauli Principle. LEM     S                                                 
  L=0   1   +   1   +   1   +   1         173     0       173         t           even stable  Singlet         para  
SB^ State  B total triplet b,c,s ground state u/d  LS coupling triplet ortho state. LS coupling 
B^»4.043X1012T    (e/De)2.02X1011 =2.27X1013T 
90° SB=±1        rsnf   2P½ = at r=rH.  Here single PEº ½ PE=½D bond=½; D=2. See sect.10.7 
 B^uB(mLA+mSA+mLC+mSC)=PE       LST  »LST-PE name   Pauli Principle         
  m=1      1  +   1   +   1    +  1       5790         1.5+1 (2)             Xb                                      ortho 
  m=0      1  +   1   +   0    +  0       2471         1.5-0  (2)             Xs                                      ortho 
  m=-1     1  +   1   +   0    +  0       1314         1.5-1  (2)            Xs                                      ortho 
                    Ground State  Pu/d =(1)938              1                    Pu/d                             2P3/2  & 2P1/2 
So a total of 4 states for two positrons (3ortho, 1para). 6 2P3/2  states if you include the central 
electron. Since the proton is the core object for these states we can use the Frobenius solution 
Ch.9 perturbations below for these r>rH deviations from the spin 1 flux quantization 2fE=2h/2e 
above sect.10.13 and X.. We get four multiplets of the three X  one P.   Get ud.  (Chapter 8). The 
above are also boson energy transitions analogous to the principle quantum number photon 
transition emissions of the hydrogen atom.                                            
Other Ortho Consequences 
We can reverse engineer this process by modeling a large decrease in the resulting strong 
magnetic field:  
 Neutron 2P½  1-rH/rH for charge 0 (case 2 Ch.8) is homeomorphically mapped into 1-e with 
added outside particle KE Meisner effect additional outside charge (reducing that rH/rH charge so 
preserving angular momentum a (and so KMQ) in the Kerr metric term (a/r)2. Note the negative 
sign still indicates inside multibody charge is still 0. 
Proton 2P3/2  1+rH/rH (case 1 in Ch.8) is then homeomorphically mapped into 1+e with added 
particle KE. The positive sign indicates nonzero internal multibody charge. See eq.B4. 
For  2P3/2     k00=(1-2e)-De-[(CM/me)r].  The starting point of PartII.                      (B3) 
vector wp. So ultrarelativistic Thomas precession =n3mp =LS energy w is subtracted off from 
Paschen Back energy wp. It adds to 0 in the ground state. lso LEM=NrHhw/c=rX[(EXH)/c](prH2T) 
angular momentum also cancels some of the total angular momentum of objects A,C and B.  
For each ortho state we apply the Frobenius solution perturbation(Ch.9) . The next ortho value is 
mp=2 (for s and later mp=4 for c, mp=6 for the b state) for the next ortho state.  
Calculation Of x1 
We use the equation 1.2.7 energy normalization (meº1) for two reduced mass 2P3/2 
ultrarelativistic positrons at r=rH with ansatz x®x2, in xo®1 in x1=x3+x2+xo. So E=CMx12/xÖ2® 
½x12/x1= ½ /(x2+(2+D)x+(1+D))= (partial fractions)=  ½ ((1(-1/D)/(x+1))+ ((1(1/D)/(x+1+D)= 
positron1 +positron2. So for x®0 then D=1/3684 from the boosted magnetic flux calculation 
2g=3684. 
 



 
Fig.8 

Fig.2 
Chapter 8   Frobenius Series Perturbation  To Each Paschen Back State  
Introduction  
Here we start with the ground state magnetic flux energy(u/d) set mb=1, move on to the three 
orthos (s,c,b) with larger mb s (X) and finally to the very high para (t). We are actually perturbing 
the motions at rH by these r in equation 9.5 and so are taking into account the constituents 
of the proton in this way. 
   Also there are then 6 magnetic flux quantization 2P3/2 states. Each flux quantization level has 
its own mp and associated Frobenius solution. So we have ground state mp=1, (appendixC 
938Mev result) and excited states: mp=1.5=Xs, and also Xc, Xb, each having it’s own Frobenius 
solution sets. 
   8.1 Solution to eq.2 Using Separability: Gyromagnetic Ratios And Low 
Energy  Particles (energy<3GeV)  Derived For ground state Magnetic Flux  

r»rH Application: Gyromagnetic Ratios 



After separation of variables the “r” component of equation 9 can be rewritten as:        
P%@A
@+Q𝜅''𝑚B& + 𝑚BT 𝐹 − 𝒽𝑐 %√𝜅11

@
@1
+ C=2/*

1
& 𝑓 = 0                  (8.1)                                                                                                     

P%@A
@+Q𝜅''𝑚B& − 𝑚BT 𝑓 + ℎ𝑐 %√𝜅11

@
@1
− DE//*

1
&𝐹 = 0.	                  (8.2)                                   

Because the k00 =1-rH/r is point source the object B ambient metric is local and so the vacuum is 
not infinite density (see also sect 6.11) as in the QED ambient metric which is homogenous. 
Comparing the flat space-time Dirac equation to equations 8.1 and 8.2:      
                                                     (dt/ds)Ökoo=(1/k00)Ökoo=(1/Ökoo)=Energy=E    (8.2a) 
Using the above Dirac equation it is easiest to find the gyromagnetic ratios gy for the spin 
polarized F=0 case. Recall the usual calculation of rate of the change of spin S gives 
dS/dtµmµgyJ from the Heisenberg equations of motion. We note that 1/Ögrr rescales dr in   
%√𝜅11

@
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1
& 𝑓		in equation 8.1. Thus to have the same rescaling of r in the second term we 

must multiply the second term denominator (i.e.,r) and numerator  (i.e., J+3/2) each by 1/Ögrr and 
set the  numerator equal to 3/2+J(gy), where gy is now the gyromagnetic ratio. This makes our 
equation 8.1 compatible with the standard Dirac equation allowing us to substitute the gy into the 
standard dS/dtµmµgyJ to find the correction to dS/dt.  
 
Thus again: 
                            [1/Ögrr]( 3/2 +J)=3/2+Jgy, Therefore for J= ½ we have:  
                            [1/Ögrr]( 3/2+½)=3/2+½gy= 3/2+½(1+Dgy)                                  (8.3)       
                                                                      
Then we solve equation 8.3 for gy and substitute it into the above dS/dt equation.  
 
S States: Recall e and De  and S states from eq. 6.4.13. These are zero point energy states 
(eq.9.22) that must also be the source of the Meisner effect canceling of those large B fields. 
Noting in equation 6.4.13 we get the gyromagnetic ratio of   the electron with grr=1/(1+De/(1+e)) 
and e=0 for electron. Thus solve equation 8.3 for Ögrr=Ö (1+De/(1+e))= Ö (1+De/(1+0))=  Ö 
(1+.0005799/1). Thus from equation 8.3 
 [1/Ö (1+.0005799)](3/2 + ½)= 3/2 + ½(1+Dgy). Solving for Dgy gives anomalous gyromagnetic 
ratio correction of the electron  Dgy=.00116  
 
Going to higher energies  (so e¹0 in equation 8.3)  we get the anomalous gyromagnetic ratio 
correction of the muon. From the momentum representation of eq.8.1,8.2:  
 
2P3/2 states:  Recall the 2P3/2 states from chapter 3. Note also that k can be positive or negative 
since 4pk=Z00 in our Lagrangian with a positive k meaning at least one charge is not canceled. 
Therefore 1/grr =1±k/r+e (using our Frobenius solution expansion near r»rH of eq.9.5 below 
multiply through by zero point energy,Meisner effect  (1+e/4)((1+e+..) »1+.08=1+e’ so a pion 
mass is then added to the protons) from the  ±nature of Zoo. Therefore we have two cases from 
equation B3  at the boundary r=k 
 
CASE 1                               1/grr =1+k/k+e                              charge 1          (core case)                                                          
CASE 2                               1/grr =1- k/k+e                              charge 0          (use m from case 1) 
 



Note: e (9.22) is required because it is the zpe here (like hw½ is the zpe of 1D SHM) external to 
the 3e region. So through the Fzero point energy araday’s law Meisner effect pops up to cancel 
that huge 1014T internal B field, hence the origin of the mesonic field. So the e in case 1 and case 
II is the artifact of that large internal B field of section 8.1.                                                                                   
Also the effect of a zero charge is to make metric component goo (=1/grr) contribution zero in 
case 2. Thus the effect of nonzero charge is to increase the dimensionality by adding a metric 
component in eq.2. This provides the reason that Kaluza Klein theory (adding a 5th dimension) is 
so successful at injecting E&M into general relativity. But Kaluza Klein theory is not required 
here because finite CM in eq.1.11 is really responsible for  charge and E&M. 2D is sufficient as 
we showed in Chapter 1, eq.1.5. The extra 2D degree of freedom is associated with that extra 
real term ddz in the amazing equation 1.6.  
 
CASE 1: Plus +k, therefore is the proton + charge component.  1/grr =1+k/k +e = 2+ e . Thus  
             from equation 8.1, 8.2    (1.5+.5)=1.5+.5(gy), gy=2.8              (8.4) 
The gyromagnetic ratio of the proton  (therefore that  above r» k stability was  indeed proton 
stability as we concluded) mass=mp . dt/dsÖgoo =1/Ögoo =E=mp 
 
 CASE 2:  negative k, thus charge cancels, zero charge:    
           1/grr =1-k/k +e= e   Therefore from equation 8.3 and case 1 1/grr =1+k/k+e  
                                           
            (1.5+.5)=1.5+.5(gy), gy=-1.9,                                                      (8.5) 
the gyromagnetic ratio of the neutron with the other charged and neutral hyperon magnetic 
moments scaled using their masses by these values respectively.   
 
Chapter 9 
The composite 3e Energies For particle energy <3GeV Derived  
Using Frobenius Series Solution (at first Paschen Back mp level) 
Perturbation) 
 
9.1 Series Solutions y Ansatz Near r»rH 
mp=1 here. mp determined from Paschen Back energy level (next Paschen Back level mp=2 for s) 
Recall equations 8.1, 8.2: 
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Recall from the previous section goo=1-k/r-(ε+Δε). Also recall our Dirac doublet (equation 7 ) 
must have a left handed zero mass component will be called case 1 and case 3 respectively 
below. Also we need the equivalent of the singlet equation 2 is our below case 2. Also in 
equation 2 at r=rH the eigenvalue is De+e+1=2mp for that principle quantum which then must be 
the same for the 2P3/2 state. Here we write out the left handed Dirac Doublet Eq.2 in the general 

e+2

e



representation of the Dirac matrices. Also recall from chapter 8 that the 2P3/2 state (and its sp2 

hybrid) for this new electron Dirac equation gives a azimuthal trifolium, 3 lobe shape and thus a 
l/3 spherical harmonic wavelength so that for covalent bonding r’»rH/3 in koo=1-r’/r. This l/3 
also is used  to calculate P wave scattering (called  “jets” by quark people.)    
 

To use the f & F components of the equation 8.1, 8.2 Dirac equation we write the Dirac equation 
for free particle motion along the symmetry axis z (r=ratio of momentum to energy) to find the 
chirality of the components in the general representation of section 1.6.  We then compare this z 
motion free particle Dirac equation eigenfunction structure with radial component structure to 
arrive at a sense of which components of the radial equation are left handed and which aren’t. 
This step is a little more complicated here because we are not using the chiral representation of 
the Dirac matrices, but the standard representation instead. In any case given that the electron is 
positive energy, then (as we see below) for the positron  -E  gives left handed f and F implying 
that this object must have a positive charge since this left handedness(doublet, Ch.3) results from 
the fractalness (There is a corresponding argument for G and g).  The proton indeed is positive 
charged. So: 
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where to get correspondence from these two Dirac equation structures 

we see that at  +E: uR=  =g,  uL= =f;  -E: No (vR=  here), vL=

=F, Note  in general (with r»0) here: =Y .  So we have the 

solution that in the standard representation of the left handed doublet is 
given by F and f only for –E of the electron (here a positron needed 
below for + proton hadron excited states) at the horizon. Dirac matrices  
So for the left handed doublet:  we have respectively          (9.4) 

 
Or more succinctly equation 2 in the Dirac doublet form implies in section B2: Note our 
postulate implies C®0 so we are on the dr axis thus dt’=0 so dt’2=(1-rH/r)dt2 (sect.0.1 of Ch.1). 
Thus r=rH=k is a stable point since the clock stops since dt’=0 and the is the Meisner effect 
formalism for canceling out that huge B field at a distance and a;so making it so the protons mass 
is mp, and not much larger. . 
CASE 1                               1/krr =1+k/k+e  =1+ rHM+1/r+ rHM/r +e                                (core case)                                                          
CASE 2                               1/krr =1- k/k+e  =1+ rHM+1/r+ rHM/r +e                  
Normalize out 1+ rHM+1/r. That just divides by 2 since we (at r) are already near the event horizon  
CASE 1                               1/krr =1+k/k+e  =1+ rHM/r +e                        charge 1          (core case)                                                          
CASE 2                               1/krr =1- k/k+e  =1+ rHM/r +e                       charge 0    
So if  |rHM+1/r|=|rHM/r | (use m from case 1) then negative rHM/r means zero charge (so 
rHM+1/r=rHM/r so charge sources cancel out) and positive means charged. (see also above 
sect.B2).  
Note in sect.1.5 we can have a zero and nonzero charge in the 3rd quadrant (where dt=dr) 
massive Proca boson case given the possibilities in sign we have for ±e’/2 in 
((-e/2) ±e’/2)dr-((-e/2)±e’/2)dt. 
In the first quadrant ds=0 again (section 1.4) so they have to add to zero. +dr+e/2+dt-e/2 and –dr-
e/2-dt+e/2 solutions.  Multiply the second equation by -1, then add the two resulting equations, 
then divide by 2 and get dr+e/4±e/4+dt-e/4±e/4  so that e/2®e/2±e/2. So we multiply each of the 
two ds2 cases (above |dr+dt| discussion) by its own dz, each with its own krr=1/(1-e//r) ®1/(1-
(e/2±e/2)/r) (sect.4.7) implying 2 charges e/2-e/2=0, e/2+e/2=e and so two Proca equation 
massive W,Z. 
See B2. .See above B2: 
 
CASE 1                               1/grr =1+k/k+e           F                   charge 1, m=1  (core case) 2P3/2                                                               
CASE 2                               1/grr =1- k/k+e           F                   charge 0, m from case 1) 2P1/2 
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CASE 3                                                                  f                   charge  0, m=0      
We solve these equations only near r≈kH since that is where the stability is to be found (and also 
fortunately were these equations are linear differential equations).  Thus our first step is to 
expand √grr about this radius and drop the higher order terms.   
 
The Frobenius series solution method can now be used to solve equations 8.1 and 8.2 at r»rH. See 
for example Mathematical Methods of Physics, Arfken 3rd ed. Page 454. First we solve the f in 
equation 8.1, plug that into equation 8.2 and then have an equation in only F. There we substitute 
a series solution ansatz  F= ∑anrn  in the resulting combined equations.  We can then separate out 
the results into coefficients of respective rn and get recursion relations that will give us series 
that must be terminated at some N. Note the energy Eigenvalue ‘E’ will be in this series as 
dt/ds√goo so we can then solve for the mass energy of these hadrons at specific J. We will need 
an indicial equation for the first term to start out this process. Also in this Frobenius solution 
method ‘n’ turns out to be a multiple of ½ and the series must start at n=-1. Finally to get the 
charge zero case the charged case must be done first and its constant masses used in the 
uncharged state calculations.  
    
 
 
Here in Ch.9 we perturb the Newpde 2P3/2 at r=rH state using a Frobenius series formulation.  We 
then note that the Meisner effect J=0, N=0 Frobenius zero point energy 9.23 must add an extra e+ 
to that µ- to get the p- case1 J=0 (Thus this later Frobenius solution (J=0, N=0 solution) 
formulation requires an (implicitly assumed) additional charge e+.) 
 
9.2  CASE 1 charged: Excited States for F, m¹0, q±  2P3/2  
 
Again case 1 is one of the equation 8.1 possibilities. Therefore let R=kH-r, r<<R (for stability) we 
can write in 8.1:  
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Note taking the first term of this Taylor expansion of the square root makes this an 
approximation (<2GeV.). Note that including the above 1±e/4 the compensating (1±e/4) in the 
next r term has the effect of a multiplying the derivative terms by 1±e/4. This rescales r to allow 
us to still say that the stable boundary is still at rH.  Thus we could use it to also rescale t in the 
first term of equations 8.1 and 8.2 or note that (1+e/4) (1+e)=1+5/4e thus renormalizing  1+ e to 
1+4/3e =1+e’ everywhere. Also the 3r2/32kH2 terms must be included. We drop these 
perturbative terms until the end.  Therefore substituting in equation 9.5 we find that equation 8.1 
reads:  
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We find solving for f and substituting back in: 
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Here r=2kH is a regular singular point. Next substitute in F= ånanrn  with again half integer n 
allowed as well: 
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Note from equation 9.12 that this series diverges. To terminate the series we now take 9.8 and 
9.11 together and 9.10 and 9.13 together (since they have the same an). For example combining 
the equation 9.8 and 9.11 terms 
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Replacing the normalization mp®mp(1±e ) (from section 4.8): 
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We have for a general Laurent series ansatz: 

 
Note also that equations 9.8-9.13 imply that the coefficients of a given rn are independent.  Thus 
adding together the coefficients of rn for equations 9.8–9.13 at a given n: 
 
9.9(j-½)an-1+(9.8+9.11)an+(9.10+9.13)(n+1)an+1+9.12(n+2)(n+1)an+2=0   (9.15)  
 
Method of Solving Equation 9.15 
For the outside observer an F=0 finite boundary condition at infinity applies for flat vacuum 
value n=0, j=½ and for ro, r-½, r-1 and for complete vacuum for N=0, J=0. 
Here then the generalized Laurent series  
reduces to ..+ . Thus either set 9.9(j-½)an-1 =0 or 
(9.10+9.13)(n+1)an-1+9.12(n+1)(n+1)an+2 =0 separately in eq.9.15 or set both equal to zero:  
 
J= ½, sets eq.9.9=0 

1) N=-1,    in equation 9.14 gives mass eigenvalue for  X 
                          Exact solution for all possible an, sets none of them to zero. 

2) N=0,      in equation 9.14 gives mass eigenvalue for nucleon. dro/dr=0 so all  
              derivative of F terms are then zero and this solution applies inside as well. 
                   N=0 flat J=0 allowed flat vacuum gives p±  and with free e, j= ½ muon. 

3) N= -½,  in equation 9.14 gives mass eigenvalue of two S s since a plus and  
             minus square root of r.  
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These 9.9=0 cases have case 2 zero charge representations as well. 

 
N=-1,  Principle QM number Also  a-2 =0                

1) J=0,       in equation 9.14 gives mass eigenvalue for  K  
2) J=1,       gives deuteron mass eigenvalue (bonding) given N=0,J=0 fills first (i.e.,  
                   pion). Thereafter use nuclear shell model-Schrodinger equation many  
                   body techniques with these nonrelativistic lobes with this (bound state)   
                   force acting like a outer layer surface tension, finite height square well   
                    potential . Get a aufbau principle that then gives the D,F,G,..nuclear shell  
                   model states.  Alternatively can fill that first S state in with free 1S½ (next  
                   state to filled state) and we  have j= 3/2   W-  filling  in some (i.e., uds)  of   
                   the 2P3/2 states (see Ch.9) and thereby also deriving from first principles  
                   Gell Man’s 1963 eight fold way for hyperon eigenvalue classification (to  
                   finish that effort need case II zero charge and case III Lo as well). Mp is  

                   replaced by 2 in c hyperons, by 4 for b hyperons as indicated in f fig. 16-1 
                   for how to fill in the cbt 2P harmonic states given the requirement to use r2 then. 

 
Also, to include higher order r expansion term effects in equation 9.5 we must include those 
perturbative 1+e/4 and 3r2/32kH2 contributions which gives a n(n-1)/6.4 added to the “n” term 
component inside the radical of equation 9.14. 
In our new pde dJ=o through LS spin-orbit coupling so the three spin½s  and the L=1 add to a 
minimum. 1-½-½+½ =½ =S for the proton with possible Pauli principle non S=½ possibilities 
for larger mass eigenvalue. 
 
Details of Above Solutions for Case 1 
Thus besides the ground state (N=0 Fgroundstate= åanrn = a0r-0=F0 proton) we have the two 
solutions: 
  FN=-1 =åanrn = a-1r-1=F1., j= ½, 0.,            FN=-½ =åanrn =a-½ r–½ =F2. For  j = ½.  0.  
Note the energy eigenvalues (E) can be found from the solution to equation 9.14 and kH =1 with 
E=1=938MeV. Thus 
N= 0, j= ½ then 9.14 gives +Nucleon (ground state) mass eigenvalue.  Note that for the N=0, 
(with J= ½ and also J= 0 in section 9.5) ground state that the charge density is uniform (i.e., 
r=Kµr0 ) for r<k. 
N=-½ ,  j=½   two valued because of the two square root solutions.  Equation 9.14 then gives å±  
(charged sigma particle) 1184Mev  particles, F2 eigenfunction(s).  Actual 1189Mev          
N=-1, j= ½  gives one charged  X particle. Therefore the energy from equation 9.14 is 1327 Mev  
(actual 1321), F1 eigenfunction.  
Case 2 and case 3 give the neutral hyperons and Lo respectively (see case 3 below).  
 
9.5 Nucleon Wavefunction: J=1, q¹0, N=-1 of Case 1 
Here we recall case 1, section 9.3 above and compute energy eigenvalues for J=0 and J=1.again 
using equation 9.14 in case 1.  
J=0 
N=-1, j=0 E=490 MeV from equation 9.14 case 1. K± . Substitute into strangeness equation 9.34 
case 1 we obtain strangeness =1. 



N=0, j=0 then from equation 9.14 E=139.7 MeV                                                         (9.22)  
case (note again m=1+e=1.061 in 9.14 for outside). This is the nontrivial F zero point energy 
(and so has a fundamental SP hybrid state harmonic) for r<k=e at r=rH. since the square root in 
equation 20.1 becomes imaginary then. Thus the mass of p±  is now the vacuum (e.g., note Fµro 
for N=0 here) e‘at r»k explaining why this fundamental harmonic result for p is used in all the 
successful nuclear force theories such as in the Skyrmion Lagrangian for example. Note that: 
                              m p ± =139Mev=1.3(105.6MeV) =1.3e=.08=e‘                            
 
N=-1,J=1 case 1.  Recall for J=1 we have y µ rsinq µY11 (q,f) double lobe y*y along the z 
axis: From equation 9.14 we find with these inputs that E=1867Mev                             (9.23) 
implying that (because E~2mp and J=1) this eigenstate is responsible for the spin 1 deuteron 
(state). The L=1, 2P state solution(s) are symmetric and so of the form (1/Ö2)(y1y2 + y1y2) 
=ys  and have positive parity even if the 2P y1 and y2 each has negative parity. The Deuteron 
thus has + parity (Enge, 1966). 
Recall if we include the background metric in eq.6.4.11 koo=1+rH/r+2e’+De and 
krr=1/(1+rH/r+De).  So rescaling r®r-e’ =r’for r near rH allows us to use our above solutions 
again. So in equation 8.1  (1/Ökrr)y=1/Ö(1+rH/r’+De)y»1/Ö(1+rH/r)y+(e/2)y. Note if we again 
rescale our numerator J=1®1+(e’/2)2 so that we have perturbed our Y1 spherical harmonic with 
a (e/2)Y2 giving a measure of the oblate, non spherical structure (e.g quadrupolar yD and higher.  
e’/2 ».04 from 9.22 therefore the nonspherical component of y is approximately 4% of the total 
y and is often called the tensor component of the Deuteron eigenstate (Enge, 1966).  This 
simplest multiparticle state represents the deuteron state and this is then the explanation for the 
deuteron tensor component of the nuclear force.  
Also the energy of the Deuteron is given just outside the rH boundary (so e’®ie in 6.4.11) by 
ED=Rel 1876/Ökoo=Rel 1876/Ö(1+ie’)+..=1876(1-ie’/2+ (3/8)(ie’)2+..).  So the added real term 
due to the e’ is equal to 1876(3/8)e’2=1876(3/8)(.08)2=4MeV. In free space e’=0 and just outside 
the nucleus it gives this contribution to the Deuteron energy. Thus this (3/8)e’2 is the binding 
energy of the Deuteron.  
Note from the equation 9.15 discussion for N not -1 we can only use J=1/2 and J=3/2 thus are 
restricted for two particles to S and P states (i.e. ½ + ½ =1) which then gives us the hyperons.  
For N=-1 we can use other J and can thereby construct large nuclei. 
The multinucleon nuclei really are the solutions of the indicial equations of 9.15. 
Recall in the shell model a hard shell nuclear outer wall is assumed with free space oscillations 
allowed inside this shell. The solutions to the Schrodinger equation are then spherical Bessel 
functions with corrections for spin orbit interaction, finite well height and tapered wells (Herald 
Enge, Introduction To Nuclear Physics, P.145).  In any case an infinite mean free path for these 
oscillations is assumed to exist inside this shell. So how can there be an infinite mean free path 
inside this extremely high mass density region?  
In that regard the above 2, J=1, N=-1 2P deuteron state can also be viewed as yet another 
Bogoliubov pairing interaction (such as in the SC section 4.5) giving this infinite mean free path 
of the electron pairs comprising a pion acting as a Cooper pair, just as in SC In the context of the 
section 4.5 pairing interaction model A(dv/dt)/v2 is no longer as small but dv/dt becomes very 
large to due to the ultrarelativistic motion of the electrons inside the nucleons. In any case this 
infinite mean free path for these oscillations (recall Cooper pairs have an infinite mean free path) 
is thereby explained here as a new type of superconductivity. 



 
Spin Orbit Interaction In Shell Model 
Recall the derivation of the shell model from first principles in section 6.12. If equal numbers of 
Neutrons and Protons gyromagnetic ratios then gyP-gyN =2.7-1.9 =.8. 
Since more neutrons in heavier elements: (1/1.1)(.8)=.7. 
R=rH º½ Fermi measured from singularity at 1-½ = ½ . 
From 2P3/2 at r=rH Fitzgerald contraction discussion in section 2.2: r®R=½(1-½) = ¼ Fermi º 
RV(r-rH) so Rv(r-rH)®Kr. From Ch1,sect 4.16  V=1/(r-rH). Spin orbit interaction= 
ao2(1/r)(¶V/¶r)(s•L)=  

𝑎O*
1

𝑅P(𝑟 − 𝑟$)
𝜕𝑉

𝜕t𝑅P(𝑟 − 𝑟$)u
(𝑠 • 𝐿) =

. 7
𝑅P(𝑟 − 𝑟$)

h
−1

t𝑅P(𝑟 − 𝑟$)u
*i (𝑠 • 𝐿) = 

= .7(42)(𝑠 • 𝐿)
1
𝑟
𝜕𝑉
𝜕𝑟 = .7(64)(𝑠 • 𝐿)

1
𝑟
𝜕𝑉
𝜕𝑟 = 𝑎O*

1
𝑟
𝜕𝑉
𝜕𝑟
(𝑠 • 𝐿) = 

 
45*E&M spin orbit interaction.  
Thus the ao=1Fermi. Thus the nuclear spin-orbit interaction is much larger than the E&M spin 
orbit interaction because the nucleons are much closer to rH than to r=0 and the Fitzgerald 
contraction of the nucleon 2P3/2 state is on the order of ½. 
 
At close range there are higher energies available so the 4mev (=be) in equation 9.3 (if we 
include r2 contributions) becomes the binding energy for the deuteron in goo=1-k/r+be in 8.1 
particles, F2 eigenfunction(s).  Actual 1189Mev          
N=-1, j= ½  gives one charged  X particle. Therefore the energy from equation 9.14 is 1327 Mev  
(actual 1321), F1 eigenfunction ºXs  the fundamental structure for m=1.5. So we reapply the 
analysis all over again for mp->1.5 insteard of 1. 
Case 2 and case 3 give the neutral hyperons and Lo respectively (see main Frobenius series 
solution paper). 
The multinucleon nuclei are the solutions of the indicial equations of 9.15. 
Recall in the shell model a hard shell nuclear outer wall is assumed with free space oscillations 
allowed inside this shell. The solutions to the Schrodinger equation are then spherical Bessel 
functions with corrections for spin orbit interaction, finite well height and tapered wells (Herald 
Enge, Introduction To Nuclear Physics, P.145).  In any case an infinite mean free path for these 
oscillations is assumed to exist inside this shell. So how can there be an infinite mean free path 
inside this extremely high mass density region?  
In that regard the above 2, J=1, N=-1 2P deuteron state can also be viewed as yet another 
Bogoliubov pairing interaction (such as in the SC section 4.4) giving this infinite mean free path 
of the electron pairs comprising a pion acting as a Cooper pair, just as in SC In the context of the 
section 4.5 pairing interaction model A(dv/dt)/v2 is no longer as small but dv/dt becomes very 
large to due to the ultrarelativistic motion of the electrons inside the nucleons. In any case this 
infinite mean free path for these oscillations (recall Cooper pairs have an infinite mean free path) 
is thereby explained here as a new type of superconductivity. 
 
Particle Lifetimes 
Recall from section 1.1:  koo=1-rH/r so r-rkoo=rH analogous to dr-ctkoo=ds so rH=dsº|dZ|. From 
section 6.7 there are three Dirac equation contributions with one being the ultrarelativistic mn 



contribution. For that contribution we put Dirac as into dr+idt=dZ the free space Dirac equation. 
Dividing by ds gives mass on the right side in that Dirac equation. Because the motion of the mn 
=1eV (Ch.3) particle is ultrarelativistic in these hadrons we apply figure 1-1 dr=dt so q=45° and 
so dZ/ds =eip/4dr/ds for the ultrarelativistic mn (on earth contribution of Ch.3). Note that (eip/4)2=i. 
We add another contribution (for spin ½, N=-1) to get zero charge case II below. For added 2P½ 
(K,±p mesons) there are 3e in rH below (sect.10.3). Thus we obtain:                    
                                              hyperons, Kaons and ±p:                    eip/42e2/mnc2= eip/4r’H=RH 
Recall that domain r=rH was the most stable, the proton state. This stability condition can be 
restated in terms of excess energy above the proton rest mass. Next substitute this m and 
ultrarelativistic mn in the rH in equation 9.14 with this r’H in the relativistic solution of equation 2 
described in Ch.1,sect.1. 

              

 

» .  

Add to above to 9.14 result to get for the total energy: 

 

Plug (hc/e2 )2 =(1/a)2 back in eq.8.1 and normalize mnc2 to 1/hz with 1/h. Next plug into the time 
propagator eiHt and get for the r’H (decay) term: 

        (9.23) 

 giving hyperon, Kaon, ±p decay times. 
The second term D is also the excess mass above the proton mass. 
For neutrons (939Mev) the excess mass above the proton mass (938Mev) is mp/1000 and 
RH®1000RH,    D®D’ 

 
gives the neutron decay time.  
For mµ muons j=½, N=0 and the excess mass is mp/8.87ºmµ. 

 
gives time for muon mµ decay. 
For po decay time  mn®me (E&M decay) along with 8.87®7=mp/mpo in the above equation.

 

For resonances mn®me (E&M decay) in 9.23 gives time of decay. 
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Note the second term here contains a ii=-1 and so it is a exponential decay term e–Et with 
.693/E=t the “half life”.  
Thus we get po, ±p, K mesons and hyperon, muon, neutron, resonance half lives from (these 
modifications of) equation 9.23.  
 
9.7 CASE 2 Excited State F, charge=0. 2P1/2 
 
Recall from 9.4 that case 1 implies Eq®m in case 2 (in 9.4). Also  
 1/grr»1-kH/kH+e= e for -e.  Net charge=Zero.  Thus let R=kH+r, r<<R , r’=kHe+r 

                                                          

 

 
Recall equations 8.1, 8.2: 
                            
P%@A
@+Q𝜅''𝑚B& + 𝑚BT 𝐹 − 𝒽𝑐 %√𝜅11

@
@1
+ C=2/*

1
& 𝑓 = 0                                                                                                    

                                                                                             
       

[\
𝑑𝑡
𝑑𝑠 Q𝜅''𝑚B] − 𝑚B^ 𝑓 + ℎ𝑐 \Q𝜅11

𝑑
𝑑𝑟 −

𝑗 − 1/2
𝑟 ] 𝐹 = 0 

          

Q𝜅11 =
1

)1 − 𝑟$𝑅 + 𝜀
≈

√𝑅
Q𝑅 − 𝑟$ + 𝑅𝜀

= √𝑟$ + 𝑟
Q𝑟$ + 𝑟 − 𝑟$ + (𝑟$ + 𝑟)𝜀

≈ 

 
√1#=1

Q1#R=1(/=R)
≈ √1#

√1#R=1
= √1#

√1S
                      

Also   -78
79
.(𝜅:: → 𝐸.			in the Dirac equation 18.1. Therefore equation 19.1 reads: r’=kHe+r 

          

[𝐸 + 𝑚]𝐹 − ℎ𝑐 F)1#
1S

@
@1
+

D=1!
1#=1

G𝑓 =                                                                                                                                                                      

[𝐸 + 𝑚]𝐹 − ℎ𝑐 v)
𝑟$
𝑟S
𝑑
𝑑𝑟 +

𝑗 + 32
𝑟$ + 𝑟

x𝑓 = 0 

 

[𝐸 − 𝑚]𝐹 − ℎ𝑐 F)1#
1S

@
@1S
+ %1 − 1

1#
&
D=1!
1#
G𝑓 = 0.	    and 

[𝐸 − 𝑚]𝑓 + ℎ𝑐 F)1#
1S

@
@1
− %1 − 1

1#
&
DE+!
1#
G𝐹 = 0          Thus                                                                                                           

. 

02/3
=÷

ø
ö

ç
è
æ +

+-ú
û

ù
ê
ë

é
+÷
ø
ö

ç
è
æ f

r
j

dr
dgcFmmg

ds
dt

rroo !

02/1
00 =÷

ø
ö

ç
è
æ -

-+ú
û

ù
ê
ë

é
-÷
ø
ö

ç
è
æ F

r
j

dr
dgcfmmg

ds
dt

rr!



𝑓 = − #&
(GEH)

F)1#
1S

@
@1S
− %1 − 1

1#
&
4DE+!5

1#
G𝐹               Therefore 

[𝐸 + 𝑚]𝐹 − ℎ𝑐 F)1#
1S

@
@1S
+ %1 − 1

1#
&
C=1!
1#
G𝑓 = 0  using r=r’+rHe 

 

(𝐸 +𝑚)𝐹 − ℎ𝑐 H#
𝑟4
𝑟′

𝑑
𝑑𝑟′ + Z1 − E

𝑟; − 𝜀𝑟4
𝑟4

F\
𝑗 + 32
𝑟4

J
−ℎ𝑐
𝐸 −𝑚H#

𝑟4
𝑟′

𝑑
𝑑𝑟′ − E1 −

(𝑟; − 𝜀𝑟4)
𝑟4

F
𝑗 − 12
𝑟4

J𝐹 = 0 

Multiplying both sides by |E-mp| we obtain: 

E
𝐸2 −𝑚2

(ℎ𝑐)2 F𝐹 + :#
𝑟4
𝑟′

𝑑
𝑑𝑟′ + E1 −

(𝑟; − 𝜀𝑟4)
𝑟4

FH
𝑗 + 32
𝑟4

JC:#
𝑟4
𝑟′

𝑑
𝑑𝑟′ − E1 −

𝑟; − 𝑟4𝜀
𝑟4

FH
𝑗 − 12
𝑟4

JC𝐹 = 0 

 

𝐸* −𝑚*

(ℎ𝑐)* −r(1 + 2𝜀)v
%𝑗 + 32&%𝑗 −

1
2&

𝑟$*
xs𝐹 + )

𝑟$
𝑟′ v

𝑗 − 12
𝑟$*

x + (1 + 𝜀)
%𝑗 + 32&
𝑟$

)
𝑟$
𝑟′

𝑑
𝑑𝑟′ + 

%1#
1S

@!

@1!
− /

*
1#
1)/!

@
@1S
& 𝐹 = 0      Multiplying both sides by r’2 we obtain: 

h{
𝐸* −𝑚*

(ℎ𝑐)* 𝑟′*| − (1 + 2𝜀) \𝑗 +
3
2] \𝑗 −

1
2] F

𝑟′*

𝑟$*
Gi𝐹 + (1 + 𝜀)v

𝑗 + 32
√𝑟$

x𝑟2/*
𝑑
𝑑𝑟′ + 

{F𝑟′𝑟$
𝑑*

𝑑𝑟′*G −
1
2 𝑟$

𝑑
𝑑𝑟′ −

√𝑟$𝑟′2/*

𝑟$*
\𝑗 −

1
2]| 𝐹 = 

 
Defining r’ºr2 and doing the derivatives in the new variable: 

   and 

= = 

 Substituting these expressions for the derivatives in: 

{
𝐸* −𝑚*

(ℎ𝑐)* 𝑟> − (1 + 𝜀) \𝑗 +
3
2] \𝑗 −

1
2] F

𝑟>

𝑟$*
G|𝐹 + 

{
𝑟$
4
𝑑*
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𝑟$
4𝑟

𝑑
𝑑𝑟′| 𝐹 −
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1
2&
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𝑟2
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= 

v
𝐸* −𝑚*

(ℎ𝑐)* − (1 + 2𝜀)
%𝑗 + 32& %𝑗 −

1
2&

𝑟$*
x�𝑎,E>𝑟, +

𝑟$
4 �

(𝑛 + 1)(𝑛 + 2)𝑎,=*𝑟, − 

1#
>
∑(𝑛 + 2)𝑎,=*𝑟, −

√1#
1#
! %𝑗 −

/
*
&∑𝑎,E2𝑟, + (1 + 𝜀)

4D=1!5

*√1#
∑(𝑛 + 1)𝑎,E*𝑟,- 

 
𝑟$
4 �

(𝑛 + 2)𝑎,=*𝑟, = 0 
Combining terms noting simplification due to combining the an+2 terms 

v
𝐸* −𝑚*

(ℎ𝑐)* − (1 + 2𝜀)
%𝑗 + 32& %𝑗 −

1
2&

𝑟$*
x�𝑎,E>𝑟, +

𝑟$
4 �

(𝑛 − 1)(𝑛 + 1)𝑎,=*𝑟, + 

√1#
1#
! %𝑗 −

/
*
&∑ 𝑎,E2𝑟, + (1 + 𝜀)

4D=1!5

*√1#
∑(𝑛 − 1)𝑎,E/𝑟, = 0.		  ? 

Next we write the individual eigenfunctions as: 

v
𝐸* −𝑚*

(ℎ𝑐)* − (1 + 2𝜀)
%𝑗 + 32& %𝑗 −

1
2&

𝑟$*
x�𝑎,E>𝑟, = 0 

Thus since these series terms add to zero:  
 

𝐸 = �𝑚* + (ℎ𝑐)*(1 + 2𝜀)
4D=1!54DE

+
!5

1#
!             (9.24) 

(1 + 𝜀)
D=1!
*√1#

∑(𝑛 − 1)𝑎,E*𝑟, = 0  Here r’=r2 so   
                                                              
                                                                                       
1#
>
∑(𝑛* − 1)𝑎,=*𝑟, = 0                  (9.25) 

-                                                                                 
− √1#

1#
! %𝑗 −

/
*
&∑𝑎,E2𝑟, = 0.		     (9.26) 

J=1/2 with N=1 solves the indicial equation implied by 9.24-9.26. Recall from 9.4 that m=proton 
in this case (case 2).  The energy in 9.24 is then that of a neutral particle (q=0) with the mass of 
the neutron so E =Eq =m=mN. See equation 9.23b for neutron lifetime and 2P3/2 for neutron 
spherical harmonic state, section 10.3) But in case 2 and equation 9.23 then  the previously 
derived charged spin ½  hadrons må, mX can also be put back into the Dirac equations for 
‘m’(instead of the proton).  Thus the charged, må, mX from equation 9.14 can be put into the “m” 
in 9.24 which gives the neutral  E=m=mN, mX..  må has a N=1/2 and so does not satisfy the 
above equations and so does not exhibit a stable neutral å.  Recall the W- (which is J=3/2) is not 
J= ½ so doesn’t have a neutral counterpart as does the proton and these other J= ½ hyperons. 
Recall the iterated Dirac equation is the Klein Gordon (in c with J=0) equation eigenstate 
transitions.  
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J=0, q=0 Case 2  
Recall J=0 is allowed in every case.  
m=1 proton, j=0 in equation 9.24 means K Long. Equation 9.23 gives K long mass eigenvalue:  
1+(0+3/2)(0-1/2)/1=1/4. Thus Ö.25 =.5.  Thus .5X938X1.06=497 MeV=Klong. Note case 2 is zero 
charge and note also from section 9.8 that the Strangeness=2|Ö.5|=2*.707 »1 as in strangeness 
equation 9.34 below.  
m»1 for Neutron then in 9.24 we have  K short,  if m=mX and J=0 then Do Long.    
If m=mX  j=0, and neutral then 9.24 gives Do Short.  
 
9.8 CASE 3 m=0, so yL, f state, charge=0 (lower case of equation 9.5).  
 
In case 3 there is no central force therefore N=0 and j=½ in f. This is the m=0 left handed 
doublet case of Chapter 3.  Let R=kH-r, r<<R for stability we can write: 
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Therefore equation 9.1 reads:               

e𝐸 + 𝑚Bg𝐹 − ℎ𝑐 h%1 −
1
>1#
& @
√*@1

+
D=1!
1#E1

i𝑓 = 0     

e𝐸 − 𝑚Bg𝐹 − ℎ𝑐

⎝

⎜
⎛
\1 −

𝑟
4𝑟$

]
𝑑

√2𝑑𝑟
+
%1 + 𝑟

𝑟$
& %𝑗 + 32&

𝑟$
⎠

⎟
⎞
𝑓 = 0 

e𝐸 − 𝑚Bg𝑓 + ℎ𝑐 F√𝜅11
@
@1
−

DE+!
1
G𝐹 = 0                                         (9.27) 

From the above equation 9.27 if (and j= ½) mp=0 then         



e𝐸 − 𝑚Bg𝑓 + ℎ𝑐 v%1 −
1
>1#
& @
√*@1

−
K/= %

%#
L4DE+!5

1#
x𝐹 = 0    

Therefore (with j= ½) from equation 9.27 for small r.   In any case: 
 

𝐹 = ℎ𝑐 #&
FG=H0I

v%1 − 1
>1#
& @
√*@1

+
K/= %

%#
L4D=1!5

1#
x𝑓           

  e𝐸 + 𝑚Bg𝐹 − ℎ𝑐 h%1 −
1
>1#
& @
√*@1

+
D=1!
1#E1

i𝑓 = 0 

Solving for f and substituting back in 9.27 
• 

e𝐸 − 𝑚Bg𝑓 + ℎ𝑐

⎝

⎜
⎛
\1 −

𝑟
4𝑟$

]
𝑑
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%1 + 𝑟

𝑟$
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𝑑
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+
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4𝑟$
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𝐸 +𝑚B
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1
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𝑑
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𝑟$
&
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%𝑗 + 32& %𝑗 −

1
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v−

1
4√2𝑟$

+
%𝑗 − 12&
𝑟$

x
𝑑𝑓
𝑑𝑟 + 

( )
( ) dr

df
k

j
kE

c

HHpm ÷÷
ø

ö
çç
è

æ
÷
ø
ö

ç
è
æ -+-

+
1

2
1

24
1

2

2
!



F
(ℎ𝑐)*

t𝐸 + 𝑚Bu√2
Gv

1
16√2𝑟$*

−
3%𝑗 − 12&

4𝑟$*
x𝑟

𝑑𝑓
𝑑𝑟 + 

F
(ℎ𝑐)*

t𝐸 + 𝑚Bu√2
G \

1
√2
]
𝑑*𝑓
𝑑𝑟* + 

 

F
(ℎ𝑐)*

t𝐸 + 𝑚Bu√2
GF

−1
2√2𝑟$

G 𝑟
𝑑*𝑓
𝑑𝑟* 

Next substitute in F= ånanrn  

                  ∑ Fe𝐸 −𝑚Bg + {\
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We now take 9.27 and 9.30 together and 9.29 and 9.32 together (since they have the same an). 
Thus there are 4 independent series (with 9.28 and 10.31) here.  The equation 9.27 and 9.30 nth 
terms give: 
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At some value of n=N we have for a solution 
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" 4(𝑗 + 3/2)(𝑗 − 1/2) + .7071𝑗 + 1.0607 + (. 0156 − (𝑗 − .5). 5303)𝑁8        (9.33)                                                          

Recall from the equation 9.4 ‘f’ case that we have mp=m=0, and zero charge therefore no central 
force thus N=0 in fµro in equation 8.1.  Therefore since there is small r and dr0/dt=d1/dt=0 in the 
equations just above equation 9.27 along with 9.33 then the 9.27-9.32 equations add to zero and 
thus are solved. Also the j=3/2 (so L=1) case is not allowed since that requires a central force to 
give L¹0, j= ½ and of course j=0 is allowed here. Thus 
N= 0, j= ½, m=0 then from 9.33 we have E=1115.8 Mev Lo 

 



N=0, j=0, h mass and also gives m=.56 (with m=0) in 9.33 used in gyromagnetic ratio 
calculation for f. Recall e=.08 (with m=0) for F in 9.14. This is the nontrivial f state zero point 
energy for r<k since Y=y+c from our observability definition. Note Kaons then give no strange 
bound states because this mass is real (in contrast to the imaginary pion mass in 9.22). 
 
9.9 Strangeness 
 
Recall that in 9.14 (which applies to Case 1 and Case 2) the energy is E2=mo2+ (j2+1.7071j-
1.10355- (j (.53033))+.7642))N)/kH2. Now mo2 and E is conserved (mo is a constant) here and 
thus it appears that energy conservation implies that the square root of j2+1.7071j-1.10355)-
(j.5303+.7642)N ºS must be conserved. Therefore E2=m2 +S2 then and “S” is conserved for the 
charged core states and thus for the neutrals given that in section 9.8 that Eq®m then (for f state 
m=0 we also have S»E for L).  We could also write E2=m2 +C2 for the next 2P state eigenstates 
(call C charm if you want) which would also have their own associated production (since <|> not 
zero). Thus, as an example, normalizing to a factor of 2X: 
 
2XSQR[(.5(.5303)+.7642)(0)]=0=Snucleon, 2XSQR|[( .5(.5303)+.7642)(-1)|»2=SX, 
2XSQR|[.5(.5303+.7642)(-½)]| »1=SS,  2X SQR|[(1.52+1.7071(1.5)-1.10355-
(1.5(.5303+.7642)))(-1)]|»3=SW.                                                                               (9.34)    
                                                                              
Strangeness is only an approximate conservation law in the examples in 9.34 but there is enough 
conservation at least for the “associated production” and we have not yet included the weak 
interaction here. This is a direct derivation of strangeness, instead of just having postulated it 
as it is in the standard model and QCD. Strangeness isn’t strange anymore. 
Charm, bottom, top: In chapter 9 equation assuming hard spherical shell.  We obtain other (less 
stable, resonances) particle groups using equation 9.5 by taking the quadratic approximation of 
grr (i.e., include the (3/32)(r/kH)2 term in 9.5) Using 10.8 instead of just the linear approximation 
we used above. Recall that the perturbative (3/32)(r/kH)2  term had to be included since it gave a 
»20Mev correction to the hyperon masses. 
C Meson Mass Derivation From Potential Of Chapter 10 And The New Pde eq.9 
C Spherically Symmetric Wave Function Required 
         PROGRAMFracsN 
         DOUBLE PRECISION A,B,C,D,E,F,H,I,I1,J,KK 
         DOUBLE PRECISION K1,K2,K3,K4,N1,N2,N3,N4,R,W,X,Y,Z 
         DOUBLE PRECISION Y1,E1,E2,MM1,MM2,MM3,EE,JJ     
         integer N,M,M1 
         DIMENSION EE(400) 
C      Variational principle on E with respect to I and Y1, 
C      RungeKutte on D equation 8.1. Y=2 width Deuteron 
C      pion oscillation resonance modeled between 0 and Y=2. 
         H=0.001 
         mH=2 !harmonic number for oscillation inside Y=2. 
C      mN=1 gives pion 0 and K+-,mN=2 gives pi+- and Ko resonance 
         ep=0.08*mH   !pion 1st and 2nd harmonic resonance added to Y1 
         W=1.0+ep !pion mass added to nucleon. 
         J=0.0  !spin 0 mesons 



         X=0.0001   !mass energy increments 
         I1=100000000.0 
         A=0.0 
         B=0.0 
         C=0.0            
         E=0.0 
         KK=78.8   !gives MeV energy units 
         JJ=J*1. 
         Y1=2.0+ep  !pion  increases Y1. 
50     D=.0000001 
         I1=0.0 
         F=.0000001 
         Y=Y1 
60     R=Y 
          V=1.0/(1.0+ep-R) !chapter 14 potential for spin 0 
          E1=E 
          K1=((W-E-V)*F)+(((J-0.5)/R)*D) 
          N1=((E+W+V)*D)-(((J+1.5)/R)*F) 
          R=R+(0.5*H) 
          V=1.0/(1.0+ep-R) 
          K2=((W-E-V)*(F+(0.5*H*N1)))+(((J-0.5)/R)*(D+(0.5*H*K1))) 
          N2=((E+W+V)*(D+(0.5*H*K1)))-(((J+1.5)/R)*(F+(0.5*H*N1))) 
          K3=((W-E-V)*(F+(0.5*H*N2)))+(((J-0.5)/R)*(F+(0.5*H*K2))) 
          N3=((E+W+V)*(D+(0.5*H*K2)))-(((J+1.5)/R)*(F+(0.5*H*N2))) 
R=R+(.5*H)  
          V=1.0/(1.0+ep-R) 
          K4=((W-E-V)*(F+(H*N3)))+(((J-0.5)/R)*(D+(H*K3))) 
          N4=((E+W+V)*(D+(H*K3)))-(((J+1.5)/R)*(F+(H*N3))) 
          E=E1 
          F=F+((H/6.0)*(N1+(2.0*N2)+(2.0*N3)+N4)) 
          D=D+((H/6.0)*(K1+(2.0*K2)+(2.0*K3)+K4)) 
           I=(F*F)+(D*D) 
 100   I1=I1+(I*(R+(0.5*H))*(R+(0.5*H))) 
          IF((abs(R-1.0-ep)).LT.(0.9*H))THEN 
          Y=Y-(2.0*H) 
          GOTO 60 
          ENDIF 
         Y=Y-H    
         IF(Y.LT.0.0)THEN 
          GOTO 200 
          ENDIF 
          GOTO 60 
 200   E=E+X 
          C=I1 
          IF(B.LT.A)THEN 
 



          GOTO 310 
          ENDIF 
          GOTO 312 
 310   IF(C.GT.B)THEN 
          ENDIF 
 312   IF(B.GT.A)THEN 
          GOTO 315 
          ENDIF 
          GOTO 320 
 315   IF(C.LT.B)THEN 
          print *,'  ' 
          print *,'E=',(E-X)*KK,' J=',J,' max I' 
          ENDIF 
 320   IF(E.GT.8.0)THEN 
          GOTO 349 
          ENDIF 
          A=B 
          B=C 
 330   GOTO 50 
 349   print*,'program finished' 
 350   stop 
          End 
C Results for spin 0,L=0 are 
C For mN=1 get 135MeV po and 493K± for resonance with 1 meson.  
C For mN=2 get 139Mev p± and 497Mev Ko for resonance with two 
497Mev Ko for resonance with two mesons in ordinary nuclear matter nucleus would split before 
K energy created. In a neutron star however K s could be created. 
This fortran computer program only requires a few seconds to run on a PC. On the other hand 
lattice gauge theory programs (assuming a SU(3) lattice) require massive computing power and 
really do not duplicate high energy liquid state strong interactions anyway. 
Here the pion is a r=2RH proton with no net rotation and the central electron in a m=0 state so net 
spin =0 . s>>1/20Barn so annhilation occurs outside rH and the pion decays.  
 
Stability of 3e Composite 
The postitrons are ultrarelativistic, g=917, so the field lines are Fitzgerald contracted so so the 
E&M field lines are contracted resulting in our explanation of the strong force. 
dt’2=koodt2=(1-rH/r)dt2  is zero if r=rH so clocks stop so stability. But some y must leak out so 
some electron positron annhilation must occur.  But as we show below virtual decay and 
annhilation still results in stability 



 
Fig3 
So this is a virtual annihilation-creation process inside rH, implying that this two positron-
single electron state is stable (yet another reason for baryon stability). See eq.11 also. We 
rigorously derive the low mass (<3Gev) hyperon eigenvalues using the Frobenious series 
solutions to eq.11 near r=rH (from 3rdpt, r»rH) in Ch.8-Ch.11.  
B field Inside rH 
That above eq.1 calculation used  rH=e2/mec2, q/t=i. q=e=1.6X10-19 C,uo=4pX10-7, A=prH2, 
BA=2X10-15Wb=,	𝐵𝐴 = (0"!

*1#
)𝜋𝑟$*.	 This allows us to calculate B= 1011T inside rH  Note this 

creation and annihilation of this B field (above fig/3)  must imply a Faraday’s law Meisner effect 
zero point energy J=0  eq.9.23 pion cloud meaning there will be a constant cloud of moving 
pions around baryons, thereby proving the existence of the well known pion caused Yukawa 
force.(potential V=e-kr/r). One interesting consequence is that just after a typeII supernova the 
protons are most compacted (reaction force to the outward action push)  and so the pion cloud is 
squeezed out. So there is no Mesiner effect and so the entire neutron star exhibits this huge 1011T 
B field (thereby explaining magnetars) But the star eventually radiates this (potential) energy 
away expanding the star and so not squeezing out the pions anymore and so the Meisner effect 
suddenly returns thereby with a sudden change of B flux creating a large Faradays law EMF 
thereby explaining FRBs (energy=(B2/(2uo))X[(4/3)p(104)3]=(1011)2/(2X4p10-7)X4X1012= 
1.4X1040Joules FRB enough energy for a ms pulse to be detected anywhere in the (1012Ly 
radius) universe even by modest Jansky sensitivity RF receivers..).    	
 



                                    
 
 
Chapter 10 
 
r»rH Application:  2P3/2 Half Integer Spherical Harmonics Solutions. This is 

a continuation of Chapter 9 
10.2 Overview of 2P3/2 Solutions to Equation 9 (the New Dirac equation) at r»rH in the 
Context of the Equivalence Principle (single charge e) Implication 

Allowing this single charge ‘e’ to move near and inside that stable singularity radius r»2q2/mc2 
in the Ögij in this new Dirac equation (equation 2) as we see below makes the motion relativistic 
but stable requiring all the Dirac equation spherical harmonic solutions, not just the ones allowed 
by the Schrodinger equation. Also the next order of approximation above the hard shell for our 
goo horizon rH =2e2/mec2 is the harmonic oscillator V a r+1 giving the SU(3) SYMMETRY of the 
three dimensional harmonic oscillator. The +1 in the exponent of V (instead of the inverse 
square law-1) also reverses the sign on the exchange integral 
±òψ*111(r’)ψ*lmn(r”)V(r’,r”)ψlmn(r’)ψ111(r”)dt=J  designating the symmetric and antisymmetric 
states), making here then the J=3/2 state m=-3/2 and 3/2  
(i.e.,y =Y3/23/2(q,f)+Y--3/23/2(q,f) =2P3/2 eigenspinor) the first ground state that varies with 
azimuthal angle(baryons) above the already filled 1S (in analogy with helium) on the energy 
ladder instead of the expected ½  and –½ (these ½ s by the way give 2P1/2 in the ψ*ψ of the next 
higher P orbital slots) that vary with azimuthal angle (baryons). 
 
Also recall the identity (exp(if)+exp(-if))/2 =cosf. The Y 3/23/2 orbital is a exp(i3/2f) and Y-3/23/2 
orbital is exp(-i3/2f) and thus from the identity the summed state is cos(3/2f) with probability 
density y*y=cos2(3/2f),  the trifolium three lobed shape. Thus there are TWO +e s giving a net 
charge of +2/3e in each lobe because the +electron charge ‘e’ is in each orbital lobe on the 
average only 1/3 the time (FRACTIONAL CHARGE) giving the many scattering properties (such 
as jets) associated with the angular distribution of multiple fractional charges interior to this 
horizon. The lobe ‘structure’ can't leave (ASSYMPTOTIC FREEDOM) as in the Schrodinger 
equation case or move so is NONRELATIVISTIC in contrast to its rapidly moving me constituent. 
 
Finally we solve the problem with the new pde using a computer program, set the boundary 
conditions as if the Deuteron was a square well. See end of chapter 9 for the fortran program. In 
any case we can build the hyperons and mesons with integer charges e, don’t need the fractional 
charges. 
 
 
 
 
 
 
 
 
 



 
 
10.3 Trifolium Diagram 

 
 

 
                               Figure 10-1 Trifolium diagram  



 
Fig2 Note we get a similar shape to the trifolium with lattice QCD theory. 
Fig4 
 
. 

Fig.3 Second diagram is the E field of a ultrarelativistic 
charged particle (“Electronic Motion”, McGraw Hill, Harman) 
 Thus the neutron charge configuration allows for the creation of both the W and the Hv and the 
proton charge configuration does not allow this. 



Fig5 
10.5 Deuteron is the  J=1, y µ rsinq µY11 (q,f) (at r=rH) solution of the Newpde.eq.9.14            
It is then a double lobed y*y along the z axis at r=rH Deuteron state is derived from the above 
Ch.9 above Frobenius series solution to the Newpde. From equation 9.14 we find with these 
inputs that                                                      E=1867Mev                             (9.23) 

 
The potential energy between the central electron (for z=1) and the two +e is PEe=e2/r’H 
=9X109(1.602X10-19)2/(1.4X10-15)=1.7X10-13J.  (Tabulated D charge radius=2.128X10-15m)    
1.7X10-13/1.602X10-19= 1.06X106eV =1.06Mev=B at r=r’H, z=0 side view  
                             (B#)B=BE        =binding energy 
Deuterium D      (2)1.06=2.2Mev              
For many D (>3 rotating harmonic oscillators: Deuterons) use 3D harmonic oscillator as a first 
approximation.We have proved the shell model and let it calculate all the higher atomic number 
energies My  e^2/rH model showed how the shell model works since that deuterium electron 



undergoes a simple harmonic motion oscillation SHM in between the two protons.  (As you 
know the mainstream has no idea why the shell model works). Thus because of energy 
equipartition all the deuteriums are going to oscillate with the same eigenvalues, as if there was 
ONE big SHM oscillator as in the shell model. 
Thus I derived the shell model so I do not need to do any more  binding energies than deuterium. 
 
Neutron  
With the second proton missing a single electron has .78Mev instead of our .5 Mev binding 
energy (Neutron b decays hint at this number also.). The extra neutron mass energy beyond the 
proton (2P½) ~half the Deuteron BE =5SHM/2 =2.2/2 =1.1. For single bond».78 plus the 
electron where 2e2/rH =SHM. So half is .78+.511=1.3Mev the excess mass of a neutron above a 
proton. 
Summary 
The shell model sect.6.12 also requires this average radius and so has that inner and outer metric 
(sect.6.11, 3.1) as in sect 3.1 just like all solutions of  
We actually understand the nucleus of the atom from first principles eq.9.23 Y11 at r=rH) N=-1, 
J=1 solution to the Newpde here. We even got the Deuteron binding energy this way.  
  The shell model can now be understood with each Deuteron having the same SHM excited 
states as every other deuteron in the nucleus given the equipartition of energy (recall the shell 
model mysteriously uses the excited state of just one SHM oscillator in a vacuum. But there are 
in general many oscillators here and the nucleus is not a vacuum!).   So we finally understand 
why the shell model works. For a history of the alternative Shell model, also see study by 
A.E.S. Green in 1956).   
Comparison with QCD SU(3) 
Instead of the shell model one dimensional SHM rotating (that LS) we could use the equivalent  
3D oscillator and directly transform between x,y,z oscillator modes. In that regard the 3D 
components of the above SHM tensor Aij=(1/(2m))(pipj+m2w2xixj)  and components of L satisfy 
Poisson bracket relations  SU(3). So by including as a perturbation the rotation, the 3D SHM 
version gives SU(3) symmetry in the S derived from those Aij (Herbert Goldstein, ‘Classical 
Mechanics’ 2nd edition, pp.425) which holds in both the classical and QM case then. In that latter 
case SU(3) is gauged in by starting it out as a infinitesimal rotation, taking the limit to get it into 
the exponent (as in appendixA). So we have also just explained the origin of the adhoc and 
convoluted  QCD SU(3) gauged alternative to that correct Frobenius series N=-1,J=1, Y11, r=rH 
solution to nuclear physics. 
10.8 High (>100Gev) Energy Solutions to the Newpde 
Note at high energy the electrons in the 2P3/2 lobes (e.g., udd) would appear stationary, not 
averaged blob (density distributions) anymore. We are back to having single ‘e’ (not fractional 
“e”) scatterers again. Thus at very high energies (>100GeV) single e (not fractional charge) 
should once again dominate scattering and we should no longer see these “jets” (which in the 
above context is mere P wave scattering) caused by higher probability emission in these trifolium 
lobe directions (QCD no longer gives correct answers because of this). Also note that rH in koo is 
a hard shell and therefore Van der Waals type liquid equation of state at >100Gev energies.  Note 
by the way that the 6th 2P resonance is observable at these energies.   
Let <A’| represent the outgoing scattering wave immediately after a incident plane wave scatters 
off V. Let |A> be the 2P3/2 hyperon state for r=rH having the V. Thus at r=rH  V itself will have 
the 2P3/2*2P3/2  =y*y trifolium shape and thus commute with |A> since they constitute the same 



structure (2P3/2 commutes with itself). So since V commutes with |A> then <A’ also is a 2P3/2 
state or we have <A’|V|A>=0 and so no scattering into such states. Thus a type of ‘P wave 
scattering’ results from an incident plane wave. Thus we explain the origin of the ‘jets’ that are 
otherwise ascribed to scattering off quarks. 
Note that when the mean free path d during the interaction time is very short (d<<(1/3) 2prH) 
there is no more smearing between the 2P3/2 lobes and we have scattering off of independent 
point particles and the 2P3/2 state ceases to be relevant in the scattering and so the jets disappear. 
(jet quenching). Thus at extremely high energy the scattering is from charge e (not 1/3e) again 
and there are no more jets above top energy. LEP actually observed this effect just before it was 
shut down. 
10.9 Charge Independence Of The Strong Interaction 
It is well known that the strong interaction is approximately the same magnitude between 
Neutron-Proton, Neutron-Neutron and Proton-Proton pairs and thus is ‘charge independent’. 
Also note our theory deals with electrons only which only has charge dependence if certain QM 
effects are ignored.  But recall the orthogonality of S and P states as in <S|P>=0, <S|S>=1, 
<P|P>=1 given all the superscript and subscript substates (e.g.,S and m) are the same as well in 
the bra and kets. The ordinary nuclear interaction here is due to a covalent bond (sharing 
electrons) which is also a very strong interaction (bond) at r=rH and is dependent on the spin S 
and m state and not so much on the sign of the charge. Thus these QM (valence, spin) effects are 
very strong at r=rH. Thus the charge independence of the strong interaction is really an S state 
independence and 2P3/2 state dependence at r=rH of a 2P3/2 structure interacting with an S state.  
 

.  
Fig.5 
There are no gauges required in this theory and the QCD SU(3) is such a gauge. We have found 
that hadrons are excited states composed of these half integer spherical harmonic lobes.              
 
Chapter 11 Scattering Cross-Sections 
From the energy component of polarized representation of equation 8.1, 8.2: and using iterated 
(as in bosonic) section 9.13 E2=p2c2+m2oc4 = 

=V+k         (10.8.1)                                                                                        

Note the resemblance of E2=p2c2+m2oc4 to the Schrodinger equation if the E2 =k2+1/(r-rH) +1 of 
equation 10.8.1 is substituted into it. We interpret this equation as representing a bounded 
volume with energy E=V+k therefore allowing us to use that V in the usual Gauge theory 
method and so substitute it into the ordinary Dirac equation as gauge force. term. So we use    
1/(r-rH) instead of 1/r. in the Dirac equation S matrix. 
We use the equation 4.1 source and proceed in the usual way of Bjorken and Drell (here 
1/r®1/(r-rH/2) to construct the one vertex S matrix for the new Dirac equation 9. Recall the ½ 
came from the square root in equation 4.1. Thus the k in the integrand denominator is found from 
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the result of our V=–1/(r-rH/2) potential in equation 10.8.1 instead of the usual Coulomb 
potential 1/r in the large r limit (so a free electron otherwise): 

      (16.5) 

rescaling r®r’+rH=r and t®t’+(rH/c)ºt to minimize the resonance energy in pf-pi. We then 
obtain: 

For so: 

Sifº »                                                           

(10.8.6)    

Note that =Mott scattering term with the ei(rH/2)q our 

resonance term. The other left side coefficients and reciprocal |x| part of Sij comprise the well 
known Rutherford scattering term 
ds/dW=[(Z1Z2e2)/(8peomvo2)]2csc4(f/2)=1.6X104(csc(f/2)/vo)4.  (Note that equation 10.8.6 
applies to the 2P1/2-2P3/2 state electron-electron interaction (i.e., neutron) below). Here pf-pºq. 
Note in equation 10.8.6 the factor ieikq=i(coskq+isinkq). Here we find the rotational resonances 
at the 2P3/2 r=rH lobes associated with maximizing the imaginary part which is icoskq to obtain 
absorption scattering (at kq=p), which here will then be the masses exchanged in inverse beta 
decay. Also a solution to the Dirac component is always a solution to equation 14.1 (but not vice 
versa) if we invoke an integer spin in this resonance term. Here also the p part uses the old De 
Broglie wave length to connect to the p=h/l. In that regard recall that hn/c= h/l=p and for a 
DeBroglie wave fundamental harmonic resonance we have lrot=2pr for a stationary particle of 
spin 1=L (ambient E&M field source gives L=1 De Broglie). 
Coulomb scattering of electrons, taking account spin-spin scattering 
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Mott scattering, relativistic correction to Rutherford scattering  
Ultrarelativistic electron scattering: Electron rest mass m neglected. 
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m/E<<1,  m2 ®0 ,   q2 =(pf-pi)2= -4EE’sin2(q/2).  Proton behaves like a heavy electron of mass 
M. E®1/Ök00 =1/Ö(1-e-De-rH/r).  
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For forward scattering q»w/b*»0  in sin2(q/2)<<1  in the below figure 6. So 
ds/dW=d(1/E2)/dE2(1+tiny)/tiny=((d(1/t)/dt)(1+tiny)/tiny=-(1/t2)(1+tiny)/tiny.                             
t=E2=(energy transfer)2.  
 Ultrarelativistic dependence of 10.8.7 new pde electron differential cross-section on 1/E2. 
E=energy. Recall in this theory this should also be the energy dependence of ultrarelativistic 
proton-proton scattering since protons are made of electrons (in my work) and at very high 
energies(E>>150GeV) the electron cloud binding energies in the proton don't matter anymore 
(that Paschen back binding energy starts becoming negligible at TeV energies): we have free 
electrons hitting free electrons once again.  
For energy transfer t on left side graph (fig.6)  ds/dtµd(1/E2)/dE2=d(1/t)/dt=-1/t2. t=E2.  Energy 
transfer Öt is proportional to 1/p. But p2 is proportional to area which is then proportional to 
1/DE2=1/t.  So s=Area µ1/DE2=1/t.  Ds/DÖs=(1000nb-10nb)/1GeV.   But this is my equation 1 
in figure 6 (also eq.10.8.7) for near forward elastic scattering. For 1GeV»1Ös then this Ds/(1) is 
a measure of ds/dt on the left side forward scattering elastic energy transfer graph since 12=1. 
But square root energy transfer Öt in a scattering event for a beam at a specific energy (let's say 
at 13KeV) is also the abscissa of that big graph (on the left of the totem figure 6). So it is 
possible to get from total cross-section s of electron scattering verse energy Ös:  s/Ös) to ds/dt 
vs t where t=(energy transferred)2 at least at (literally)  ONE  (1GeV) energy transfer. 
The fact that LHC totem measures elastic forward scattering thereby made it possible to test this 
theory (eq.2, 1.11, new pde) at 13TeV (and Ös»2), the very highest energy particles that mankind 
can produce. I could estimate from LHC data the asymptotically infinite beam energy transfer 
(curve) energy (red line) and compare it with my own s/Ös at Ös»2.From the graph of my 
equation 1 (10.8.7): 
 1000nb at Ös=1.5GeV 
100nb at Ös=2GeV 
10nb at Ös=2.5GeV 
But that curve of eq.1 in figure 6 is for one eq.2 electron scattering off of one equation 2 (new 
pde) electron. Since there are 3 such electrons in each of the two protons you must multiply by 9 
to get ds/dt.  
On my QED graph of my eq.1 had s»100nb at about 2»Ös. So multiply by 9 and get Ds/Ds»         
(1000nb-10nb)/((1.5-2.5)Ös)=10-3mb/1GeV. But 12 =1 and there are 3 electrons per proton so we 
multiply by 2: 9X10-3mb/12GeV2»10-2mb/12GeV2 which is sitting in approximately the same t»2 
spot on the left side ds/dt vs t graph of Fig.6. 
So we proved from the data that a ultrarelativistic proton-proton scattering event (~13TeV) is 
equivalent to 6 free electrons scattering off each other with the electrons obeying (2AI) equation 
9, the new pde. Thus the hadron theory that should be used is 2+2+2 at r=rH, not quark theory. 
Note also the cusp is at the proton reduced mass here. It is where (~.5GeV) binding energy must 
be added to break the electrons apart in the head on collision which takes away from the elastic 
scattering energy transfer. So we must apply this theory at much higher energies (eg.,Ös»2). 
Quark theory (QCD) implies some kind of exponential dependence which is not seen in this 
scattering data.  
Hard Shell Scattering Peak Of ds/ds Implies Protons Made of Electrons, not Quarks 
The electron radius at 2.8X10 -15(me/mt)=8.1X10-19m provides the  hard shell cross-section limit. 
For colliding beams we have an additional factor of 2 here.  2(mt+mµ)/me)mp= 6.91347TeV. 
There 3 are electrons in the proton so the proton energy is 3X6.913Tev=20.74TeV»21TeV. So 



the ds/ds should level off at proton energy 21TeV. This is in analogy with the Q=s/pr2µds/ds 
(1/sµl) r=l peak of Mie scattering theory. 

 
   Fig6 
Analogy to Mie scattering 

 
Extinction efficiency (Qe) as a function of diffraction parameter x (= 2πr/λ). 
Analogy of Mie scattering with Q=s/pr2. Here the lepton hard shell is at r=2X10-19m.  Note 
analogy of leveling off of ds/ds l=r (i.e.,x=6) as at x=21TeV for LHC. 
Totem 



LHC totem forward scattering gives elastic scattering cross-sections for high energies and so 
small scattering angles. We choose q=1°. 
  %@T

@U
&
Z
= (3) W!
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)(-/*)
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− *&O+)(-/*)
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1 − .99985
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2(. 99985)
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= 1.43𝑋10E>2(2.626𝑋10> − 2.631𝑋10> + .99985) = (1.43𝑋10E>2)52.788	 
=7.55X10-42 =7.55X10-14 barns/steradian.  
This result might be found in the totem data archives. 
 
LHC totem forward scattering gives Coulomb scattering cross-sections for high energies for 
larger (but still small) scattering angles. We choose q=3°. So 
@T
@U
= (3) V!W!

>B!\!+!,)(-/*)
%1 − 𝛽*𝑠𝑖𝑛* -

*
&= 

= (3)
(1)5.33𝑋10E?

4(1.04𝑋10284.7𝑋10E8)
(1 − 1*6.85𝑋10E>) = 8.18𝑋10E29𝑚* = 

=8.17X10-10barns/steradian. This result might be found in totem data archives data.  
 
Meson Multiplets 
"tetra quarks" are merely two mesons bound together! They can bind together more deeply if the 
components of the mesons themselves are bound individually to the components of the other 
meson giving more mass, section 8.11. 
 In this theory (DavidMaker.com, Ch.9-10) this is called singlet and doublet states with one 
bound with more binding energy than the other for those heavy upper 2P Paschen Back states.  
So these look like heavy and light tetraquark states but they are not, they are merely two types of 
meson binding states.  You could predict the energies from the Paschen Back effect associated 
with those large plate fields, section 8.11. 
 
References 
Pugh, Pugh, Principles of Electricity and Magnetism, 2nd Ed. Addison Wesley, pp.270 
Bjorken and Drell, Relativistic Quantum Mechanics, pp.60 
Sokolnikoff, Tensor Analysis, pp.304 
 
11.1. W Compton Wavelength Region  
Recall in appendix A me Source Term at r=rH Inside Angle C. 
Analogously from 2AC we get with the eq.3 doublet e±e  the Proca equ (3) neutrino and 
electron D e at r=rH. As in sect.6.13 in k00 we normalize out the muon e. So we are left with the 
electron De in k00 =1- [De/(1±2e)]+[rH(1+ ((e±e)/2))/r] from the two above rightmost (Proca) 
diagrams. So Source = 	𝐸V] =	 /

Q^""
= /

_/E ∆Q
+±!QE

%#S
% (/=(R∓R)/*)

≈ /
(/±R)√∆R

, 𝑎𝑡	𝑟 = 𝑟$S + is for Z 

and – is for W. So W (right fig.) is a single electron De+n perturbation at r=rH=l (since me ultra 
relativistic): So H=Ho+mec2 inside Vw. Ew=2hf=2hc/l,  (4p/3)l3=Vw. For the two leptons  /

P+/!
=

𝜓" = 𝜓2,
/

P+/!
= 𝜓c = 𝜓>  . Fermi 4pt=  2G∭ 𝜓/𝜓*𝜓2𝜓>
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1U
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2∭ 𝜓/𝜓*𝐺
1U
' ≡∭ 𝜓/𝜓*(2𝑚"𝑐*

PU
' )d𝑉d =∭ 𝜓/(2𝑚"𝑐*

PU
' )𝜓*d𝑉d.  (A3)  



What is Fermi G? 2mec2(VW) =.9X10-4Mev-F3 =GF the strength of the weak interaction. 
Derivation of the Standard Model But With No Free Parameters 
Since we have now derived MW, MZ, and their associated Proca equations , mµ,mt,me, etc.,Dirac 
equation figure 2 part.1),  GF, ke2, Bu, Maxwell’s equations, etc. we can now set up a Lagrangian 
density that implies all these results. In thisFormulation Mz=MW/cosqW, so you find the 
Weinberg angle qW, gsinqW=e, g’cosqW=e; solve for g and g’, etc., We will have thereby derived 
the standard model from first principles (i.e.,postulate1) and so it no longer contains free 
parameters! 
Thus we have the interaction  e operating in W radius using the doublet of Ch.3. 
In general then we have obtained an ortho triplet state here since we are merely writing the 
Clebsch Gordon coefficients for this addition of two spin ½ angular momentums: 
|½,½,0,-1>,.. |½, ½,0,0>,..|½,½,,0,1>,.. or  +W Zo, -W. 
Anyway, this small S matrix involves the neutrino and so can allow spin 1/2 neutrino emission 
jumps instead of just the usual E&M spin 1 jumps. 100km/sec metric quantization translates to a 
neutrino rest mass of .165eV. 
 
11.2 Excited Z States 
Put  me in Equation 6.4.1 
The beautiful thing to be noted here is that for the doublet resonance with the 2P3/2 lobe at r=rH 
that minimizes energy you get the spin 1 W and Z and the value of the Fermi G! We have also 
shown that this doublet interaction corresponds to the exchange of massive spin 1 particles 
(recall spin ½ s forbidden by that j-1/2 factor). 
11.3 Probability for 2P3/2 Giving One Decay 1S Product at r»rH In W Region 
In equation 4.12 we note that invariance over 2p rotations using (1+2e)d2q does not occur 
anymore thus seemingly violating the conservation of angular momentum. To preserve the 
conservation of angular momentum the additional angle e must then include its own angular 
momentum conservation law here meaning intrinsic spin½ angular momentum in the S state case 
and/or isospin conservation in the 2P3/2 case at r=rH. In any event we must also integrate to C=e. 
Here we do the E&M component decay given by equation 3.2. 
 Plug in S½ µeif/2, ½(1-g5)y=c into the 4pt. interaction integral. In that regard note that the 
expectation value of g5 is proportional to v µ Heisenberg equation of motion derivative of 
2P3/2µei(3/2)f. We integrate <lepton|baryon> over this W exchange region where we note 
(~1/100)F for 90Gev particle, so dV=((1/100)F)3)=VolW. Also cko=e=106Mev from section 2.1. 
From Ch.3 on the vacuum constituents e and n we note that òòòdt=Vol, c is defined as the 
vacuum eigenfunction. Vacuum expectation sect.B2: S<|vaM>|e|<vacM+1|>=<| 
òòòy*necedV|>=<|Pot|>= eVolume of W. Recall also that appendix A implies that the W and the Z 
are composites. This application of eq.2 for example applies to the 2P½ -2P3/2 electron-electron 
scattering state inside the neutron <Proton2P3/2|Pot|Neutron2P½ -2P3/2>. Plug in S½ µeif/2, ½(1-
g5)y=c Also we can get a weak, strangeness changing (second term below), decay from a 2P½-
2P3/2>mp to the S state branch equation. eq.2 expectation values in the 4pt.. 
=S<lepton|vac>|e|<vac|baryon> =Fermi interaction integral =òòy1*y2y3koccdV= 
òòòy1*(eVolW)cdV= òòòy1*(eVolW)cdV.  Also  dV=dAdf=Kdf. 
So the square root of the probability of being in the final state is equal to the Fermi integral= 
òòy1*(Pot)cdV =òòy1*y2yeDVWcdV= 



=

  

                                (10.8.7) 

with <initial|c|final>2 » transition probability as in associated production with the separate 2P 
proton ground state transition being the identity (DS=0). Factoring out the 2 and then 
normalizing 1 to .97 simultaneously normalizes the 1/4 to .24 in section 3.2. With this 
normalization we can set cosqc=.97 and sinqc =.24. Thus we can identify qc with the Cabbibo 
angle and we have derived its value. We can then write in the weak current sources for hadron 
decay the VA structure:  |cosqC-g5sinqC|.  Thus with the above Cabbibo angle and this CP 
violation and higher order (rH/r)n terms in section 3 we have all the components of the CKM 
matrix. Note we have also derived the weak interaction constant GF here. 
Given the role e plays here in decay we find the expectation value of energy e within the S 
matrix scattering region in chapter 10. 
Recall from section 1.2 the possible mixing of real and imaginary terms in that energy coming 
out of that first order Taylor expansion. There we found the 1+x and 1-x solutions cancel and we 
could ignore the 1+1=2 term as it is still a flat metric. 
 Also there are still extra terms provided by the ‘small’ higher order r2 terms in that Taylor 
expansion so that "higher and lower" than the speed of light mixed condition still can exist (for 
DG¹0. See end of section 4.6 and 10.8.6). In that regard note for the next higher order Taylor 
term at largest curvature d2(1/krr)/dr2 is large negative and r2 is positive implying a net negative 
term and therefore  a neutral charge (see case 2, of section 19.6)! In that case the perturbative 
squared r term appears to overwhelm the rest since the lower order terms then cancel. Note from 
the above we put these neutral conditions also into that decay since net charge is zero in the 
Cabbibo angle derivation. This then appears to be the beta decay condition where the neutrino 
(higher than c) and the electron, (lower than c), decay from this neutral particle condition 
(bottom of section 10.8). The beginning 2P3/2 ground state still exists however in the respective 
Cabbibo angle calculation. Thus those real and imaginary terms coming out of that Taylor 
expansion provide the explanation for beta decay. 

 
Fig.7 
me Source Term Inside Angle 
.See section 0.2 and B2 So W is a single electron De ,n perturbation at r=rH:   H=Ho+2mec2 inside 
Vw. Ew=2hf=2hc/l,  (4p/3)l3=Vw. For the two leptons  /
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Fermi 4pt=  G∭ 𝜓/𝜓*𝜓2𝜓>
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What is Fermi G? 2mec2(VW)/F3 =.9X10-4Mev-F3 =GF the strength of the weak interaction. 
Next we plug the respective ys into y1,y2 in sect.B2.  In that regard the expectation value of g5 is 
speed and varies with ei3f/2 in the trifolium. The spin½ decay proton S½ µeif/2ºy1, the original 
2P1/2 particle is chiral c=y2º½(1-g5)y=½(1-g5ei3f/2)y. Initial 2P1/2 electron y is constant. Plug 
these terms into equation B2 =∭ 𝜓/𝜓*(2𝑚"𝑐*

PU
' )d𝑉d = òòyS1/2*(2mec2Vw))cdV= 

K∫ 〈𝑒
OV
! [Δ𝜀𝑉]] %1 − 𝛾?𝑒

!e1!&ψ〉 dϕ  

with VA <initial|c|final>2 » transition probability as in associated production. Factoring out the 2 
and then normalizing 1 to .97 simultaneously normalizes the 1/4 to .24 in Ch.3. With this 
normalization we can set cosqc=.97 and sinqc =.24. Thus we can identify qc with the Cabbibo 
angle and we have derived its value. 
G=[G2/(4pN)] miaiP|m|l(x)|2 , x=Smj./mt Eg. 1/tµ=[G2mµ

5/(192p3)](1-me2/mµ
2)6 . 

r<rH Application: Rotational Selfsimilarity With pde Spin: CP violation 
12.1 Fractal selfsimilar spin 
The fractal selfsimilarity with the spin in the (new) Dirac equation 2 implies a selfsimilar 
cosmological ambient metric (Kerr metric) rotation as well as in section 4.1. Thus there will be 
2dstdsf rotation metric cross terms with the dt (without the square) implying time T reversal 
nonconservation and therefore CP nonconservation since CPT is always conserved. We thereby 
derive CP nonconservation from first principles: CP nonconservation is a direct consequence 
of the fractalness.  This adds another matrix element of magnitude ~1/3800 (sect.6.3) for Kaon 
decays thus adding off diagonal elements to the CKM matrix. 
Or for Kerr rotator use 

                 (13.1)
 

 

 , or 
                                                           ds2 =dr2 + dt2 +2dtdr +..                                     
In a polarized state ( ) in 25.3, 25.25 the off diagonal elements are proportional to 
f=(f+c)e–C. Thus if the charge e is conjugated (C, e changes sign), if dr changes sign (P, parity 
changes sign) and dt is reversed (t reversal) then the ds quantity on the left side of equation 1.6 is 
invariant. But if dr (P) changes sign by itself, or even e and P together (CP) change sign then ds 
is not invariant and this explains, in terms of our fractal picture, why CP and P are not conserved 
generally. P becomes maximally nonconserved in weak decays as we saw in above. The degree 
to which this nonconservation occurs depends on the “a” (in eq.3.2.1) transfer <final lal initial> 
(equation 3.2) which itself depends on the how much momentum and energy is transferred from 
the SM+2 to the SM+1 fractal scales as we saw in this section.  Recall chapter 5 alternative 
derivation of that new (dirac) equation pde (eq.2) linearization of the Klein Gordon 
equation(c=1, =1, m=1, eq.2): 

=                (13.2) 
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. This equals 

= if the off diagonal elements zero which is the condition used 
in the standard Dirac equation derivation of the a s and b.  Note that the off diagonal elements 

 are equivalent to the off diagonal elements in equation 5.1 

(and are corrections to 5.2 in fact) so are not zero for parity and CP NONconservation in this 
context (in a rotating universe). So in the context of the Dirac equation the CP violation term 

  (after division by ds2). Thus CP violation goes up as the 
square (pE) of the energy (so should be larger in bottom factories). The section 13.2 below 
Cabbibo angle calculation (not rotation related however) is an example of how this method can 
give the values of the other terms in the CKM matrix. They arise from calculation of <Z> 
between higher order m harmonics. 
This section is important in that we see that CP violation is explainable and calculable in terms 
of perturbative effects on the ambient metric (and therefore the Dirac equation) of a rotating 
universe with nearly complete inertial frame dragging (eq. A6 in the E&M form), CP violation 
doesn’t need yet more postulates as is the case with the GSW model. In fact the whole CKM 
matrix is explainable here as a consequence of this perturbation. 
 
Note the orientation relative to the cosmological spin axis is important in CP violation. 
Integration of the data over a 3 month time (at time intervals separated by a  sidereal day) is 
going to yield different CP violation parameters than if integration is done over a year. 
Miscellaneous 
12.2 GIM Derivation 
    Recall in the GIM (Glashow, Iliopoulos, Maiami) hypothesis that u,d were a pair of left 
handed Fermion states as in V-A . d'=dcosqc+ssinqc,  s'=-dsinqc+scosqc where qc is the Cabbibo 
angle.  Thus u,d are paired, s,c are paired, b,t are paired and we have the V-A transitions.  
 Here we identify the new pde 2P state for r=rH has  Px, Py and Pz states which split in energy due 
to that Paschen Back effect given those ultrarelativistic plates,  into paired spin up and spin down 
states (Px,Px'), (Py,Py'),(Pz,Pz') analogous to the GIM (u,d),(s,c),(b,t). Here the spin orbit 
interaction (LS) coupling energy term is much stronger than the SS coupling term. So we have 
pairs of states J,M,M'> with Px and Py being orthogonal, except for those weak interaction V-A 
terms. The ds2 to ds' transition is through the V-A term. Recall equation the 16.7  |òcf*Gco dV|2= 
=transitionprobability of a ds2 to a ds. of eq.B2 (c=.5(1-g5)y with y in ds2, c in ds)  for V-A 
Cabibbo angle transitions (transitions inside PX separately from PY and separately from Pz) where 
|1|-|g5| replaces the cosqc+sinqc. So in analogy for transitions between PX and PY  
Px'cosqc+Pysinqc=Px', Py'=-Px'sinqc+Py'cosqc. This is a first principles understanding of GIM 
thereby allowing us to derive the electroweak cross-sections (WS).  
Recall  that dz=-1 ,0 solution to eq.2 for C=0 implies dr<0  at least for small C. (low noise). 
because  -1 is on the real r axis. 
                                                      
12.3 Normed Division Algebra, Octonians, E8XE8 and SU(3)XSU(2)XU(1) Basis Change 
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Note from the above that the new pde fractal theory generated the electron 2AI with mass, the 
near zero mass left handed neutrino 1.12. Recall also from above the koo=Ö(1-e-rH/r).  The W 
was generated from a nonzero ambient metric e in that S matrix derivation part of the metric 
coefficient kµn.Interestingly that Normed Division Algebra (NDAR) on the real numbers (as in: 
||Z1||*||Z2||=||Z|||)  from equation 1 implies that octonians (and thereby the largest normal Lie 
group E8XE8) are also allowed. Recall we have that SU(2) Lie group rotation for the 0° extrema  
imbedded in a E8XE8 rotation since one of its subgroups being SU(3)XSU(2)XU(1). This is the 
only subgroup we can use because it is the one that only contains that SU(2). 
 Eigenstates 
Recall the mt=1 was separable at 45° from the rest (of the eq.1.15 diagonal states) since ds is 
constant there for small rotations. So dst can be normalized. 
The B field rotations are here reciprocals of the rotations in the Mandelbulbs since koo=1-rH/r and 
so rH/r®xdr for B field motion given smaller radius r means high energy xdr.  So the ortho state 
is the smaller e Mandelbulb eigenstate and the para state is the larger t limacon Mandelbulb 
eigenstate.  
 
 Meta Theory Of Couplings In SM 
From the 1.15 diagonal on the Mandelbrot set: m=mL=1+e+iDe=mt+mµ+me . 
mv2/rH=qvB (1) 
prH2B=Fo     (2)    
v=c. Solve Eq.1 and eq.2 for q:   
q=mcprH/Fo. (3) 
The effect of the E field lines coming together by Fitzgerald contraction g imply a force increase 
that can be realized by invoking an effective charge increase e®q’.or in V/dr’=Electric field with 
r=rH in dr’2=krrdr2=[1/(1-rH/r)]dr2  (The charge e itself really does not change.).  
For m=mµ =e   2P3/2 state (So ultrarelativistic so E field line contraction.). From equation 3 
q’= e, H®e2  E&M for the Nth fractal scale, Gravity for the N+1th fractal scale. 
For m=mt  +me  as meson.  2P3/2 state (so ultrarelativistic).  From equation 3: 
q’=46e,    H®(46e)2  Strong Force. 
For m=me=iDe +v, v small, 2P½, dr’2=krrdr2=1/(1-rH/r)dr2. So V/dr’=E small.  From equation 3: 
q’=ie/200,  H®iq’V so y(t)=eiiq’Vty(to)= e-q’Vt y(to). 
exponential decay with a force q’2=40000X smaller than the E&M.  Weak interaction. 
dr‘ large allowing large uncertainty principle dr‘ for small nonrelativistic mass me in 
(dr’•mec)³h/2). This occurs for small externally observed dr and mec in the 2P½ state and 1S½ 
state at r=rH. But these are decay states (PartII Sect.7.3).  Given these strength and decay 
parameters we can alternatively integrate over the rc volume our W and Z particles to get the 
Fermi G 4pt coupling of weak interaction theory in the SM. W is then a virtual intermediary 
here.  So we just derived all 4 forces from that diagonal on the Mandelbrot set. 
 
Calculations:  So for the Kerr mass ortho state (2nd Mandelbulb)  (a/r)2 =e+De (thus added to 1) 
at r=rH , for (N+1):  mev2/r=qvB so mev/(qB)=(1-2e)mµc/qB=r.   Thus (1-2e)mµc/q=rB=  
(1-2e)(1.883X10-28)(299792458)/(1.6022X10-19)=.3525(1-2e) 
Fo/(rB)=Fo/[0.3525(1-2e)]=Bpr2/(rB)=pr. 
rH=1.359X10-15(2)/[(.3526)p(1-2e)]=2.805X10-15m=e2/mec2 for 2P states (eq.7.1). 
 



 Compare and contrast with the mainstream Toy Model 
12.4  Derivation of Mainstream Toy Model Composite System  |1>|2>|3> 
Interpretation From Newpde  3e State                                                                                            
To explain the above composite 3e stability result sect.2 implies r=rHP in dt’=0 in dt’2= 
koodt2=(1-rHP/r)dt2  (in the new pde, nucleon radius) and so dt’=0 so that clocks stop. So we have 
complete proton stability in the new pde given eq. 11   2P3/2 at r=rHP fills first (see review section 
just above).   
2P3/2 is trifolium shaped y*y so the electron spends 1/3 time in each lobe (fractional charge), 
lobes can’t leave (asymptotic freedom), P wave scattering (jets), 6 P states (6flavors udscbt) 
explaining the major properties of quarks and so explaining the strong interaction. Note that 
ds12¹0 with dt»0 so Ö2ds2=dr2+dt2 implies, after eq.3.6 operator formalism derivatives are put in 
(figure 4 2nd diagram from right), the Klein Gordon equation spin 0 mesons, the carriers of the 
strong force. Also our Mandlebulb analysis implies that the proton mass is 937Mev (appendix C) 
implying ultrarelativistic internal electron motion is needed to get this mass. Given this 
ultrarelativistic electron (needed to obtain the much larger proton mass hard shell result P. 
Alberto, R. Lisboa, M. Malheiro and A. S. de Castro, Phys.Rev. .... 58 (1998) R628) at rH the 
field lines must be Fitzgerald contracted to a flat “plate” and thus be high density, field lines thus 
explaining the strength of the ‘strong’ force.  
 

 
Note here we have three ultrarelativistic 2P3/2 electrons (2 positrons and one electron) needed to 
create the proton (which as we noted above is much heavier) at r=rH.  Given a central (negative) 
electron the two outer positron 2P3/2 state plates (at 120°) only intersect at the center and so don’t 
see each other at all and so don’t repel each other, explaining why the proton is still a bound 
state even though the two positive positrons are both inside rH (along with that electron). 
Possible (but low probability) positron-electron annihilation inside rH also implies, given the 
momentum transfer to the third particle with strong field plate and large mass (quadruply 
differential cross-section), that the resulting gamma ray will be short lived and pair creation will 
occur almost immediately within rH, since s=1/20 barn»prH2 the cross-sectional equatorial area 
of the proton, guaranteeing pair creation occurs) replacing the previous pair immediately.  
12.4  Single Electron Probability Trifolium Statistics Inside rH 



  A single electron in the trifolium implies that on average each of the 3 trifolium lobes has (1/3)e 
charge (hence the origin of hyperon fractional charge of the lobes). This allows for a toy model 
in which we give these y*y 2P3/2 at r=rH lobes (not particles) names (quarks, the toys.). 
Clebsch Gordon Coefficients For Newpde state: 2P3/2 at r=rH 
It is well known that (and also implied by the new pde eq.11 with CM) for the composite system 
of two electrons |1>|2> you get, from the analysis of the invariance of the resulting Casimir 
operator J2, the resulting state |JA,JB,J,M> with combined operator JA+JB=J. This is our para state 
t and 3 ortho states below. For the third spin ½ particle of far lower energy (the central electron, 
object B) we have |1>|2>|3> and so the Clebsch Gordon coefficients imply the decomposition 
(2Ä2)Ä2=(3Ä2)Å(1Ä2)=4Å2Å2 so that three spin 1/2 particles group together into four spin 
3/2 and only two spin ½s, 6 states altogether, (the splitting u,d,s,c,b,t).  Note then the majority 
2P3/2 (trifolium core) states. Recall also that the 2P3/2 solution to new pde at r=rH gives a trifolium 
shape, and 2P3/2 fills first. This fills in the broken degeneracy ortho states at the end of part II. 
The states close to the proton mass are filled in by the Frobenius solution below. 
 
Eq.2 Single Electron Probability (trifolium statistics): 
Consistent with the toy model and also the electron or positron moving between lobes, this time 
using integer charge distributed over all three 2P3/2 lobes at r=rH, just randomly put the lobe 
charges (lobe,lobe,lobe) on top of one another Monte Carlo style to determine the probability of 
a given charge in each lobe. For two positrons [(+1/3,+1/3,+1/3)+(+1/3,+1/3,+1/3)] and one 
electron (-1/3,-1/3,-1/3)  (2P3/2) the probability of seeing a +(2/3)e lobe is twice that of seeing a -
(1/3)e lobe so ((2/3,2/3,-1/3 or uud proton) eg.,proton, C and b are the ½ state components of 
(2Ä2)Ä2. For (2P3/2) two positrons [(+1/3,+1/3,+1/3)+(+1/3,+1/3,+1/3)], an electron (-1/3,-1/3,-
1/3) and an outlier electron (2P1/2) (-1/3,-1/3,-/3) the probability of seeing a -(1/3)e lobe is twice 
as high as a +(2/3)e lobe so (-1/3,-1/3,2/3) or ddu Neutron). 
It is well known that (and also implied by the new pde) for the composite system of two 
electrons |1>|2> you get, from the analysis of the invariance of the resulting Casimir operator 
J2,  the resulting state |JA,JB,J,M> with combined operator JA+JB=J.  Using the resulting Clebsch 
Gordon coefficients we find the decomposition 2Ä2=3Å1, m=1,0,-1 ortho triplet state and 
singlet para state, which indeed are well known.(eg., Zeeman or Paschen Back line splitting, 
Ch.8.). 
But for a third spin 1/2 particle we have |1>|2>|3> and so the Clebsch Gordon coefficients imply 
the decomposition (2Ä2)Ä2=(3Ä2)Å(1Ä2)=4Å2Å2 so that three spin 1/2 particles group 
together into four spin 3/2 and only two spin ½ s, 6 states altogether. Note then the majority 
2P3/2 (trifolium core) states.  
We could now quit and use the mainstream quark (our 2P lobes) applications but that theory is 
inadequate (eg., neutron-proton  binding energy, sect.10.7) and instead will proceed to directly 
solve equation 2 using the Frobenius series method. 
Arfken, Mathematical Methods of Physics,  3rd ed. Page 454 
Enge, Harold, Introduction To Nuclear Physics, 1966, Addison Wesley, page. 45 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
  



 
 
 
 
 
 

 

 
 
 
 
 
 
                                                                                             
               
 
 
 
 
 
 


