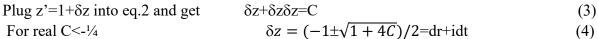
A Generally Covariant Generalization of the Dirac equation that does not require gauges (Newpde) David Maker

Abstract: My essay is simple: Penrose in a utube video implied that the Mandelbrot set (fractal) might contain physics. Here we merely showed how to find it from z'=z'z'+C'. Start with an:

Occam's razor *optimized* (i.e., $\delta C=0$, ||C||=noise) POSTULATE OF 1 So z=zz (1) is the algebraic definition of 1,o. So add constant C (i.e., z'=z'z'-C, $\delta C=0$) (2)) Solve eqs.1.2 for z'. (Use this $z'=1+\delta z$ to find $\delta z=\psi$ in the Newpde.)

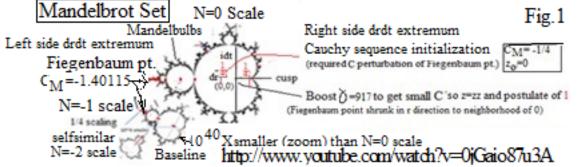
So just postulate1

I Solving eqs.1,2 for z' requires z=0 iteration and successive approximation Iteration (eq.1 gives z=0)



is complex. To find C itself substitute z' on left (eq.2) into right z'z' repeatedly & get iteration $z_{N+1}=z_Nz_N-C$. $\delta C=0$ requires us to reject the Cs for which $-\delta C=\delta(z_{N+1}-z_Nz_N)=\delta(\infty-\infty)\neq 0$.

Eq1 solution is 1,0 so initial $z=z_0=0$ gets the Mandelbrot set C_M (fig1) out to some $||\Delta||$ distance from C=0. Δ is found from $\delta C = (\partial C_M / \partial (||C||)) d||C||=0$ extremum giving the Fiegenbaum point $||C_M|| = ||-1.40115..||$ global max given this $||C_M||$ is largest in fig.1.



Successive approximation (to z=0)

N=-1 C_M= Δ extremum solution $||\Delta|| << 1$ must perturb $z \approx 0$ with C_M= $\delta z'=\Delta$ given $\delta z'\delta z'<<\delta z'$ for this $|\delta z'|<<1$ in eq.3. So $0\approx z'\approx 1+\delta z$, $\delta z=-1+\Delta$ (4a) in eq.3: $\delta(\delta z+\delta z\delta z)=\delta\delta z(1)+2\delta\delta z(\delta z)=\delta\delta z(1)$ $+2(\delta\delta z)(-1+\Delta)=\delta\delta z(-1+2\Delta)=\frac{1}{2}\delta(\delta z\delta z)+\delta\delta z\Delta\approx\frac{1}{2}\delta(\delta z\delta z)=0=(\text{plug in eq.4})=\delta\delta z\Delta+\frac{1}{2}\delta[(dr+idt)(dr+idt)]$ (If $\delta z C^2$ at least locally $\delta\delta z=0\approx\frac{1}{2}\delta[(dr^2-dt^2)+i(drdt+dtdr)]=0$ (5)

Factor eq.5 real $\delta(dr^2-dt^2) = \delta[(dr+dt)(dr-dt)] = 0 = [[\delta(dr+dt)](dr-dt)] + [(dr+dt)[\delta(dr-dt)]] = 0$ (6)

so $(\rightarrow \pm \mathbf{e})$ dr+dt=ds, dr-dt=ds =ds₁ for +ds \rightarrow I, IV quadrants (7)

Note these quadrants are used in appendix A. Also note the positive scalar drdt of eq.7 (since Ist quadrant) implies the eq.5 *non* infinite extremum imaginary drdt+dtdr=0= $\gamma^i dr \gamma^j dt + \gamma^j dt \gamma^i dr$ = ($\gamma^i \gamma^j \gamma^j + \gamma^j \gamma^i$)drdt so Clifford algebra ($\gamma^i \gamma^j + \gamma^j \gamma^i$)=0, $i \neq j$. (7a)

$$(\rightarrow \text{light cone } v) \text{ dr+dt=ds, dr=-dt,} \qquad \text{for } +\text{ds} \rightarrow \text{ II quadrant} \qquad (8)$$

""" "" "" """ """ """ III quadrant (9)

 $(\rightarrow vacuum, z=1)$ dr=dt, dr=-dt so dt=0=dr (So eigenvalues of dt, dr=0 in eq.11) (10)

We square eq.7 ds₁²=(dr+dt)(dr+dt) =[dr²+dt²] +(drdt+dtdr) =ds²+ds₃=ds₁². Since ds₃ (is max or min) and ds₁² (from eq.7) are invariant then so is Circle ds²=dr²+dt² =ds₁²-ds₃ also implying the rest of the Cifford algebra $\gamma^{i}\gamma^{i}$ =1 in eq.7a, no sum on i. Note this separate ds is a minimum at

45° (that Mandebrot set rotation) given the eq.7 constraints and so Circle= δz =dse^{i($\Delta\theta+\theta_0$)}= dse^{i((cos\theta dr+sin\theta dt)/(ds)+\theta_0)}, θ_0 =45°. We define k=dr/ds, ω =dt/ds, sin θ =r, cos θ =t. dse^{i45°}=ds'. Take

ordinary derivative dr (since flat space) of 'Circle' $\frac{\partial \left(dse^{i\left(\frac{rdr}{ds}+\frac{tdt}{ds}\right)}\right)}{\partial r} = i\frac{dr}{ds}\delta z$ so $\frac{\partial (dse^{i(rk+wt)})}{\partial r} = ik\delta z$, $k\delta z = -i\frac{\partial \delta z}{\partial r}$ (11). (<F>*= $\int (F\psi)^*\psi d\tau = \int \psi^*F\psi d\tau = <F>$ Hermitian). The observables dr \rightarrow k \rightarrow pr condition gotten from eq.11 **operator formalism** thereby converting eq.7-9 into Dirac eq. pdes. Cancel that e^{i45° coefficient then multiply both sides of eq.11 by \mathbf{h} and define $\delta z \equiv \psi$, $p \equiv \mathbf{h}k$. Eq.11 then becomes the familiar: $p_r\psi = -i\hbar\frac{\partial \psi}{\partial r}$ (11)

Nonlocality: $\delta\delta z \neq 0$ so forces. Still $\delta\delta z \Delta \approx 0$ so $\delta ds^2 = 0$ in eq.5 (exactly 0 if new dr', dt' in eq.12) N=-1 extremum $C_M/\gamma = \delta z' = \Delta$ still perturbs dr,dt so for $\theta_0 = 45^\circ$ on that ds Circle that equation 4a small Δ must imply a slightly modified eq.7: $(dr-\Delta)+(dt+\Delta)=(dr-\delta z')+(dt+\delta z')=dr'+dt'=ds$ (12) $\delta z' = C_M / \gamma$ for small (Fitzgerald contracted γ) $\delta z'$. Eq.12 for z =0 implies a $\pm 45^\circ$ rotation, thereby generating the Standard electroweak Model (appendix A). But for z=1, implying that tiny Δ rotation, eq.12 generates GR (below). Thus Equation 7a, 12 implies metric coefficients $\kappa_{\mu\nu}$ Using eq.12 define $\kappa_{rr} = (dr/dr')^2 = (dr/(dr-(C_M/\xi_1)))^2 = 1/(1-r_H/r)^2 = A_1/(1-r_H/r) + A_2/(1-r_H/r)^2$, r = dr. The partial fractions A_I term can be split off from RN and so $\kappa_{\rm rr} \approx 1/[1 - ((C_{\rm M}/\xi_1)r))]$ (13) $ds^2 = \kappa_{rr} dr'^2 + \kappa_{oo} dt'^2 + ...$ (C_M defined to be charge, $\gamma \equiv \xi_1$ mass). So we have: (14) $dr'dt' = \sqrt{\kappa_{rr}} dr' \sqrt{\kappa_{oo}} dt' = dr dt$ so From eq.7a $\kappa_{\rm rr} = 1/\kappa_{\rm oo}$ (15) We do a rotational self similarity dyadic coordinate transformation of $\kappa_{\mu\nu}$ to get the Kerr metric which is all we need for our GR applications. So from eqs.4,5,14,15 we found the relation between x_i,x_j pairs: $\left(\sum_{i=1}^{2} \gamma^{i} \sqrt{\kappa_{ii}} dx_{i}\right)^{2} = \sum_{i=1}^{2} \kappa_{ii} d^{2} x_{i}$ (14a). So given this added 2D Δ perturbation we get curved space 2D \otimes 2D=4D *independent* x₁,x₂ \rightarrow x₁,x₂,x₃,x₄. Also assuming orthogonality dr²=dx₁²+dx₂²+dx₃² (as r $\rightarrow \infty$ in eq.13,15) the right side of eq.14a therefore has the 2 in the sum replaced by a 4 implying the left side then has to be in eq.14a for the 2D form to be a special case (of any $2 x_i x_i$): Imposing orthogonality thereby creates 6 pairs of eqs.4&5. So $(\gamma^{x}\sqrt{\kappa_{xx}}dx+\gamma^{y}\sqrt{\kappa_{yy}}dy+\gamma^{z}\sqrt{\kappa_{zz}}dz+\gamma^{t}\sqrt{\kappa_{tt}}idt)^{2}=\kappa_{xx}dx^{2}+\kappa_{yy}dy^{2}+\kappa_{zz}dz^{2}-\kappa_{tt}dt^{2}=ds^{2}.$ eq.14a becomes: Multiplying the bracketed term by $1/ds \& \delta z = \psi$ so eq 11 implies 4D Newpde:

 $\gamma^{\mu}(\sqrt{\kappa_{\mu\mu}})\partial\psi/\partial x_{\mu} = (\omega/c)\psi$ for e,v, $\kappa_{oo}=1-r_{H}/r = 1/\kappa_{rr} r_{H}=e^{2}X10^{40N}/m N(=.-1,0,1.)$ (16) =C_M/ γ (from sect.2) C_M=Fiegenbaum point. So: **postulate1** \rightarrow Newpde. syllogism

There are several important results that we see immediately follow from this Newpde and its $\kappa_{\mu\nu}$: For N=0 the third order Taylor expansion term of $\sqrt{\kappa_{\mu\nu}}$ gives the Lamb shift and anomalous gyromagnetic ratio (without the renormalization and infinities (see appendix D)).

For N=-1 (i.e., e^2X10^{-40}) κ_{ij} is by inspection the Schwarzschild metric g_{ij} ; so we just derived General Relativity and gravity constant G *from* Quantum Mechanics in one line.

So κ_{uv} provides the general covariance of the Newpde. Eq 4 *even* provides us space-time r,t. For N=1 (so r<r_c) Newpde zitterbewegung expansion stage explains the universe expansion (For r>r_c it's not observed, per Schrodinger 1932 paper.).

For N=1 zitterbewegung harmonic coordinates *and* Minkowski metric submanifold (after long time expansion) gets the De Sitter ambient metric we observe (D16).

For N=0 Newpde r= r_H composite 3e is the baryons (appendixC) and Newpde r= r_H composite e, *v* is the Standard electroweak Model (appendixA).

So Penrose's intuition was right on! There is physics in the Mandelbrot set, all of it