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                                                        Part II  
                                 Newpde composite 3e  2P3/2 at r=rH state 
Review Of Part I 
Newpde from Occam’s razor optimized postulate1:                                                                                   
z=zz is the algebraic definition of 1 and adding (small) constant C is trivial in z+C=zz, dC=0 (1) 
A  Substitute  z=1+dz into equation 1 and get  2D Dirac equations for e,v (sect.1.1). 
B  Substitute left side z into right side zz repeatedly in equation 1and get the 2D Mandelbrot set 
A,B together gives 4D Newpde.  So Postulate1®Newpde 
 
I Summary: Algebra Details of the two substitutions (A,B): 
1.1 (Simply  postulate 1. But z=zz is the algebraic definition of 1 and adding constant C (or 
K) is trivial in:)                          zz=z+C, dC=0  (1)    
A   Substitute  z=1+dz into eq.1, get dz+dzdz=C (2)   (or d(dz+dzdz)=0)  with in general (for 

dz= , C<<-¼, soBig-C and so big dz for random time t complex solution dz=dr+idt 
(2a)             Big dz so, dz<<dzdz,. ddz=0 So from eq.2,2a d((dz+dzdz)»d(dzdz)=(dr2-
dr2+i(drdt+dtdr))=0 (2b) 
and take real Minkowski and imaginary component Clifford algebra which for negative and 
positive dr,dt the noninfinite extremum   drdt+dtdr=0= gidrgjdt+gjdtgidr=(gigj+gjgi)drdt =0  (3)                          
Factor dr2-dt2 =ds2 eg., d[(dr+dt)(dr-dt)]=0=[[d(dr+dt)](dr-dt)]+[(dr+dt)[d(dr-dt)]] and solve to 
get: (ds º proper time invariant.)  
     (®±e)               dr+dt=ds, dr-dt=ds  ºds1                               for    +ds®     I, IV quadrants       (4)   
     (®light cone v) dr+dt=ds, dr=-dt,                                for   +ds®    II quadrant             (5)     
       “        “             dr-dt=ds,  dr=dt,                                “                “   III quadrant            (6)    
     (®vacuum)       dr=dt,           dr=-dt         so dt=0=dr                                                       (7)    
We square eq.4  ds12=(dr+dt)(dr+dt) =[dr2+dt2] +(drdt+dtdr) ºds2+ds3=ds12. Since ds3 (is max or 
min) and ds2 (from eq.4) are invariant then so is Circle ds2=dr2+dt2 =ds12-ds3. Note this separate 
ds is a minimum at 45° and so Circleºdz=dseiq=dsei(Dq+qo)= dsei((cosqdr+sinqdt)/(ds)+qo),  qo=45°.We 
define kºdr/ds,  wºdt/ds, sinqºr, cosqºt. dsei45°ºds’. So take the global ordinary dr derivative 

(since flat space) of ‘Circle’  so ,  
Cancel that ei45° coefficient then multiply both sides of eq.8 by h and define dzºy, pºhk.  Eq.8 
then implies (Hermitian) operator hk observables formalism(QM). See next paragraph for real k 
part, (also appendix B3). Eqs 4,5,6,8 and eq.3 Clifford algebra imply 2D Dirac equations for e,v.  
                                                 Needed Big -C to have random t and Hamiltonians (observability) 
 
B  Substitute left side z into right side zz repeatedly of eq.1 to get a Mandelbrot set iteration 
(for small C limit eq.1 cases z»1,0). The right side extremum Cauchy seq. iteration defines real 
k (dr/ds eigenvalues) in eq.8.  It’s left side small drdt (eq.3, d(drdt)=0) extremum is the fractal 
Fiegenbaum pt.=CM Mandelbulb dz’. Note certain Cs have a higher density here so perturbations 
A&B Big g  (1/g)dz boost means small C»dz>>dzdz and so no more quadratic equation but still 
keeps our complex dz and so dt. So we must Fitzgerald contract (boost=g) dz to get small C and 
so z=zz and the postulate of 1. So then boost CM as in dz’=C=CM/g=CM/x=rH so x1 (defining 
mass) must be big. For z=1 in z=1+dz, dz is small and so in CM=xdz, x1 is big and so we got 
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z=zz and the postulate of 1.  But for z=0, dz is big so xo is small and in dCM=dxdz+xddz=0 then 
since ddz=0 then dx small so xo is both stable and small (ºelectron). On small scales dz >>dzdz 
so in eq.2 |dz|»C=constant so can only perturb eq.4 at 45°using (dr-dz’)+(dt+dz’)ºdr’+dt’=ds (9)                                            
since ds=|dz|=C. Define krrº(dr/dr’)2= (dr/(dr-(CM/x1)))2=1/(1-rH/r)2 =A1/(1-rH/r) +A2/(1-rH/r)2  
rºdr. The AI term can be split off from RN (as in classic GR) and so  krr»1/[1-((CM/x1)r))] . So 
we have: ds2= krrdr’2 +koodt’2  +..(10).  Note from eq.3 dr’dt’= ÖkrrdrÖkoodt =drdt so krr=1/koo  so  
given that 2D perturbation we get curved space 4D. For 4D our eq.3 Cliffordalgebra then implies 
(gxÖkxxdx+gyÖkyydy+gzÖkzzdz+gtÖkttidt)2=kxxdx2+kyydy2+kzzdz2-kttdt2=ds2. Multiplying the 
bracketed term by 1/ds &dz then eq 8 implies  4D Newpde gµ(Ökµµ)¶y/¶xµ=(w/c)y  for e,v  (11) 
(covariant derivative still ordinary since y (complex) scalar).   Therefore  postulate1®Newpde   
 
Small C boost gets z=zz (so postulate 1) but also gets the numerical value of Large x1                                          
For that stable z=0 the only way to get stable large x (required by that small C boost) is with the 
Newpde composite 3e  2P3/2 at r=rH state (partII davidmaker.com). So stability (dt’2=(1-rH/r)dt2) 
clocks stop at r=rH  The two positron motion and h/2e quantization of flux BA then gives us the 
exact proton mass mp as a reduced mass for the associated Hund rule tº2S1/2,1S1/2 ºµ states (so 
t+µ=x1, mp=x1/2). We rewrite this in the Kerr metric formalism with the 3rd mass also reversing 
the pair annihilation (Thus virtual pair creation inside the rH volume given s=prH2»(1/20)barns) 
and reducing the inertial frame dragging due to the spin½ x1 thereby adding a Kerr metric -(a/r)2 

angular momentum operator in koo=1-(a/r)2-rH/r=x1+xo-CM/(xor) =t+µ+me-2e2/(xor)= 
1+e+De+2e2/(xor)=koo (Fiegenbaum pt. CM defines charge e2.).  Divide by x1 =1+e to normalize 
for only free electron De energy (Needed for the following two electron applications in 
eqs.15,16) asymptotic local flat space and thereby finally getting back to that initial requirement 
for that free particle z=1, large x1 case:    koo=1-xo/(1+e)-CM/(x1r)=1+De/(1+e) -2e2/(2mpr)   (12)         
also giving us the numerical value of that large x1  (=2mp). With t normalized to t=1 with the 
Newpde ground state e mass then De=me=.0005799 with e=µ=.06.                                    (12a) 

 
                                         Composite 3e 
Table of Contents 
Ch.7 New pde Composite 3e at r=RH 2P3/2 h/e flux quantization z=0 Paschen Back ortho 
(s,c,b) and para (t) energy levels      
Ch.8,9 Frobenius series solution r perturbation of each individual Paschen Back energy 
level ortho, para (s,c,b; t) getting the particle multiplets at each level   
Ch.10,11 New pde high energy Cross-sections and Nuclear Binding energies 
Ch.12  Standard electroweak Model Derivative          
 
                               Toy Model Derivation 
7.1  Derivation of Mainstream Toy Model Composite System  |1>|2>|3> 
Interpretation From Newpde  3e State                                                                                            
To explain the above 3e stability result sect.1.4 implies r=rHP in dt’=0 in dt’2= 
koodt2=(1-rHP/r)dt2  (in the new pde, nucleon radius) and so dt’=0 so that clocks stop. So we have 
complete proton stability in the new pde given eq. 11   2P3/2 at r=rHP fills first (see review section 
just above).   
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Eq.11, 2P3/2 is trifolium shaped y*y so the electron spends 1/3 time in each lobe (fractional 
charge), lobes can’t leave (asymptotic freedom), P wave scattering (jets), 6 P states (6flavors 
udscbt) explaining the major properties of quarks and so explaining the strong interaction. 
Note that ds12¹0 with dt»0 so Ö2ds2=dr2+dt2 implies, after eq.3.6 operator formalism derivatives 
are put in (figure 4 2nd diagram from right), the Klein Gordon equation spin 0 mesons, the 
carriers of the strong force. Also our Mandlebulb analysis implies that the proton mass is 
937Mev (appendix C) implying ultrarelativistic internal electron motion is needed to get this 
mass. Given this ultrarelativistic electron (needed to obtain the much larger proton mass hard 
shell result P. Alberto, R. Lisboa, M. Malheiro and A. S. de Castro, Phys.Rev. .... 58 (1998) 
R628) at rH the field lines must be Fitzgerald contracted to a flat “plate” and thus be high density, 
field lines thus explaining the strength of the ‘strong’ force. Note here we have three 
ultrarelativistic 2P3/2 electrons (2 positrons and one electron) needed to create the proton (which 
as we noted above is much heavier) at r=rH.  Given a central (negative) electron the two outer 
positron 2P3/2 state plates (at 120°) only intersect at the center and so don’t see each other at all 
and so don’t repel each other, explaining why the proton is still a bound state even though the 
two positive positrons are both inside rH (along with that electron). Possible (but low probability) 
positron-electron annihilation inside rH also implies, given the momentum transfer to the third 
particle with strong field plate and large mass (quadruply differential cross-section), that the 
resulting gamma ray will be short lived and pair creation will occur almost immediately within 
rH, since s=1/20 barn»prH2 the cross-sectional equatorial area of the proton, guaranteeing pair 
creation occurs) replacing the previous pair immediately.  

 
Fig1 
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So this is a virtual annihilation-creation process inside rH, implying that this two positron-
single electron state is stable (yet another reason for baryon stability). See eq.11 also. We 
rigorously derive the low mass (<3Gev) hyperon eigenvalues using the Frobenious series 
solutions to eq.11 near r=rH (from 3rdpt, r»rH) in Ch.8-Ch.11.  
 
7.2  Single Electron Probability Trifolium Statistics Inside rH 
  A single electron in the trifolium implies that on average each of the 3 trifolium lobes has (1/3)e 
charge (hence the origin of hyperon fractional charge of the lobes). This allows for a toy model 
in which we give these y*y 2P3/2 at r=rH lobes (not particles) names (quarks, the toys.). 
Clebsch Gordon Coefficients For Newpde state: 2P3/2 at r=rH 
It is well known that (and also implied by the new pde eq.11 with CM) for the composite system 
of two electrons |1>|2> you get, from the analysis of the invariance of the resulting Casimir 
operator J2, the resulting state |JA,JB,J,M> with combined operator JA+JB=J. This is our para state 
t and 3 ortho states below. For the third spin ½ particle of far lower energy (the central electron, 
object B) we have |1>|2>|3> and so the Clebsch Gordon coefficients imply the decomposition 
(2Ä2)Ä2=(3Ä2)Å(1Ä2)=4Å2Å2 so that three spin 1/2 particles group together into four spin 
3/2 and only two spin ½s, 6 states altogether, (the splitting u,d,s,c,b,t).  Note then the majority 
2P3/2 (trifolium core) states. Recall also that the 2P3/2 solution to new pde at r=rH gives a trifolium 
shape, and 2P3/2 fills first. This fills in the broken degeneracy ortho states at the end of part II. 
The states close to the proton mass are filled in by the Frobenius solution below. 
 
Eq.2 Single Electron Probability (trifolium statistics): 
Consistent with the toy model and also the electron or positron moving between lobes, this time 
using integer charge distributed over all three 2P3/2 lobes at r=rH, just randomly put the lobe 
charges (lobe,lobe,lobe) on top of one another Monte Carlo style to determine the probability of 
a given charge in each lobe. For two positrons [(+1/3,+1/3,+1/3)+(+1/3,+1/3,+1/3)] and one 
electron (-1/3,-1/3,-1/3)  (2P3/2) the probability of seeing a +(2/3)e lobe is twice that of seeing a -
(1/3)e lobe so ((2/3,2/3,-1/3 or uud proton) eg.,proton, C and b are the ½ state components of 
(2Ä2)Ä2. For (2P3/2) two positrons [(+1/3,+1/3,+1/3)+(+1/3,+1/3,+1/3)], an electron (-1/3,-1/3,-
1/3) and an outlier electron (2P1/2) (-1/3,-1/3,-/3) the probability of seeing a -(1/3)e lobe is twice 
as high as a +(2/3)e lobe so (-1/3,-1/3,2/3) or ddu Neutron). 
It is well known that (and also implied by the new pde) for the composite system of two 
electrons |1>|2> you get, from the analysis of the invariance of the resulting Casimir operator J2, 
 the resulting state |JA,JB,J,M> with combined operator JA+JB=J.  Using the resulting Clebsch 
Gordon coefficients we find the decomposition 2Ä2=3Å1, m=1,0,-1 ortho triplet state and 
singlet para state, which indeed are well known.(eg., Zeeman or Paschen Back line splitting, 
Ch.8.). 
But for a third spin 1/2 particle we have |1>|2>|3> and so the Clebsch Gordon coefficients imply 
the decomposition (2Ä2)Ä2=(3Ä2)Å(1Ä2)=4Å2Å2 so that three spin 1/2 particles group 
together into four spin 3/2 and only two spin ½ s, 6 states altogether. Note then the majority 
2P3/2 (trifolium core) states.  
We could now quit and use the mainstream quark (our 2P lobes) applications but that theory is 
inadequate (eg., neutron-proton  binding energy, sect.10.7) and instead will proceed to directly 
solve equation 2 using the Frobenius series method. 
Arfken, Mathematical Methods of Physics,  3rd ed. Page 454 
Enge, Harold, Introduction To Nuclear Physics, 1966, Addison Wesley, page. 45 
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             Newpde Composite 3e  2P3/2 at r=rH Model 
Note that we derived g,Zo,W+,W- in Appendix A Of Part I So we derived the E and B fields. 
7.3 Eq.11 B Field Flux Quantization In This Enclosed Current Loop  
Note if a charged particle moves in loop in a field free region that surrounds another region, there 
is trapped magnetic flux f in that region. Also we can include minimal interaction E&M 
momentum/h =k®k+eA/h =eBr/h for uniform B field. If y phase is a unique function on the 
loop then phase kr= (eBr/h)r=(eBrr/h)= e(Barea)/h=eF/h=n2p. F=4.13X10-15 for integer spin. 
Then upon completing a closed loop the particle’s wave function will acquire an additional phase 
factor . But the wave function must be single valued at any point in space.  This can be 
accomplished if the magnetic flux F is quantized: eF/h= pn, n=0±1,±2,±3, so Fo=h/(2e). From  
NIST: 2.067833848X10-15Wb =Fo.    half integer spin½.   Integer spin 2Fo=2(h/2e)=h/e for the 
two positrons. 
  
7.4 Ultrarelativistic Rotator. 
Side View 

On the side of the rotator rH=Re 
 
=Re/2=2.8X10-15m ºrH         (7.1) 

for the ortho 2P state observer (i.e,2P3/2, 2P½) in the horizontal plane and r’H/2= r”. We must 
repeat this integration on the end para states, the radius is shrunk by t+2(e+De) and so is nearly a 
point source S½ state (for the observer above the circle as for the deuterium central electron 
sect.10.7). We next show that the jump from ortho to para must then correspond to the jump 
from e to t fractal quantum state given t is separable and so a orthogonal state transition. 
2rH=2(2.81X10-15=2e2/(mec2), Side view ½(2rH)=rH,  
Top view 2rH. 
 
  Inserting Ortho States By Hand Into Flux  F=B^A 
Recall from above rH= 2.81406X10-15m, c=299792458m/s, e=1.602X10-19C, µo=4pX10-7T-m/A,  
uB=9.274X10-24J/T,  
To insert ortho states into the flux by hand assume a circle with another perpendicular coil 
moving around it with the observer above the circle. The ortho state is put in by hand by dilating 
the current i coil by 2X as in the side view, hence the ^ in section 7.4.  The circle, since it is seen 
above, is then dilated by the full 1/g  Fitzgerald contraction so 2rH®2rH/g in BA=F=B(p(2rH)2).  

( )ò -
2/

0
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CM=e2 in rH=2e2/(mLc2). Eq.1.2 dCM=0 implies drH=0 so that d(2prH2)=0 so minimum area rH is 
given by one of the positrons carrying all the energy 2g seen only in a vertical view (section 7.4) 
like in deuterium as in section 10.7. 
 
B Inside 2rH 
So top view of B field and flux (so 2rH) and flux side view (so 2rH from eq.7.1). So for top view 
of  B field.  
2p(2rH)/Dt=c so (top) Dt=(2p2rH)/c=2p(2X2.8154X10-15)/299792458=1.18X10-22 sec. Current 
only observed along 2/3 length for 2P3/2 and the time and space g s cancel. So for the 2e charges  
i=(2/3)2qg/gt=2X(2/3)1.60218X10-19/1.18X10-22=1811Amps. So from Ampere’s law (top): 
B1=gµ0i/(2(2rH))=g4pX10-7(1811)/(2X2X2.8154X10-15)=g2.02X1011T =B at the center of the big 
circle. So what are these g s? It depends on your frame of reference (side or top view).   
(In section 7.5 below we show they are g=e/De (side) and g=917 (top).). The average B field 
inside the 360° loop is just Bav=2.02X1011T. 
7.5 Consequences Of B Inside rH 
     Explains Magnetostars  
So magnetostars are then merely packed neutrons in Ising model Bav=1011T S|| viewing 
alignment caused by a supernova blast with no ortho state S^ Meisner effect. But the B field 
plates in ordinary neutron stars that have slowed down neutron rotation are merely spread out by 
g so Bav/g=BN»107T. The rapid energy transition ò(B2/2uo)dV between these magnetostar and 
ordinary neutron star states is that FRB (Fast Radio Burst) energy. 
  Boosted B Flux gF=F’ (sect.7.0, constant x1) Inside side view Area=prH2  
F=B||A®gF=F’=(gBA)=gB(prH2)=(917.2)X2.02X1011Xp((2.81406X10-15)2)= 
2X2.3X10-15Wb» F^»F0=2Xh/2e Boson(2e) Fo= NIST: 2X2.067833848X10-15Wb =Fo 
So the flux quantization is responsible for the g=917 and so the proton mass 2g=(2)917 (7.4.1) 
Para State S||   The next B flux quantum number (4Xh/2e) is then the next excited state so 
gB=B||  with then g=917. 
 g4B= (917)(4)2.02X1011=7.5X1014T=B||. The 4 is from the Paschen Back Para alignment. The 
flux quantization also makes para an excited state.  
So all views side view (so rH for flux loop and B field.). So shrink 2rH to rH  (as in sect.7.4 just 
above due to relativistic observation g of central electron and increase B by g in the plates.  
(side) Dt=2prH/c=5.9X10-23, i=2(2/3)1.60218X10-19/5.9X10-23=3620A=1; (side) 
µoi/2rH=8.04X1011T. For S*S=1 
g8.04X1011X=7.5X1014T; example: uBB4= 9.274X10-24 4X7.5X1014=2.77X10-8J=173GeV 
 in section 7.6 Paschen Back calculation. 
 
Ortho State Eq.9.22 Zero Point Energy e  Implies Meisner Effect Nonzero Ortho States 
m=1,0,-1. ge=e/De 
The magnetic field in one of these protons is about 1011T, so large that any spatially oscillating  
charge is going to be forced to induce a counter current that tries to cancel the change in flux 
produced by the charge motion (Faraday's law) relative to the proton. The Frobenius method 
applied to the new pde  has this zero point energy solution eq.9.22 SP hybrid state of the proton 
whose oscillation provides a Cooper pair oscillation  counter current in that huge 1011T  field 
that cancels it out. So at close range there are many pions e/De. (up to 7) and more distant, where 
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the B field drops you only need one: Hence the multi pion interactions observed near the proton 
and resulting Yukawa force. 
The ortho state with B orthogonal to A would not exist without this zero point SP state motion 
since the (SP hybrid so) induced P state spinor has a horizontal component so has dot product 
with horizontal S2 nonzero spinor(for ortho). 
These two B fields (B^ and B||) are put into Paschen Back (eg.,msc2=uBgeB(1+0+0+0))           

   
2 body positron-positron dynamics so ortho(s.c.b) and para(t) states 
on the r=rH shell near q=90°. Paschen Back dynamics 
 
Summary Of Para and Ortho States: two gs: top view Para g=917, Ortho side view g=e/De 
S^ SP hybrid zero point energy eq.9.22: P state so     S1•S2 ¹0, ortho:  ge m=±1,0B=(e/De)B=B^. 
  =(.06/.00058)2.02X1011 =2.27X1013T=B^   (eg., ms=uBB^(1+0+0+0))              
 
S||  Flux quantization g top S|| view both positrons so  S1•S2 ¹0,  para:   gL=0=gB=B|| . 
    =917(4)2.02X1011 =7.5X1014T=B||                (eg., mt=uBB||(1+1+1+1))    
7.6 The two rapidly moving positrons: 2Ä2=3Å1 List of 1 Para SB|| and 3 Ortho SB^  States 
Here Thomas LS LSTº -(LBL*(SAL or SCL))K±gs perturbation is subtracted off the Paschen Back 
energy for both the SB^ and SB|| cases.  
 
SB||=State t non LS coupling para singlet state (the 1 single state in the 3Å1  decomposition)  
B||=7.448X1015T,=B=g(2.02X1011) 
 0°            rH   
 B||uB(mLA+mSA+mLC+mSC)=PE  LST PE-LST     name      Pauli Principle. LEM     S                                                 
  L=0   1   +   1   +   1   +   1         173     0       173         t           even stable  Singlet         para  
SB^ State  B total triplet b,c,s ground state u/d  LS coupling triplet ortho state. LS coupling 
B^»4.043X1012T    (e/De)2.02X1011 =2.27X1013T 
90° SB=±1        rsnf   2P½ = at r=rH.  Here single PEº ½ PE=½D bond=½; D=2. See sect.10.7 
 B^uB(mLA+mSA+mLC+mSC)=PE       LST  »LST-PE name   Pauli Principle         
  m=1      1  +   1   +   1    +  1       5790         1.5+1 (2)             Xb                                      ortho 
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  m=0      1  +   1   +   0    +  0       2471         1.5-0  (2)             Xs                                      ortho 
  m=-1     1  +   1   +   0    +  0       1314         1.5-1  (2)            Xs                                      ortho 
                    Ground State  Pu/d =(1)938              1                    Pu/d                             2P3/2  & 2P1/2 
So a total of 4 states for two positrons (3ortho, 1para). 6 2P3/2  states if you include the central 
electron. Since the proton is the core object for these states we can use the Frobenius solution 
Ch.9 perturbations below for these r>rH deviations from the spin 1 flux quantization 2fE=2h/2e 
above sect.10.13 and X.. We get four multiplets of the three X  one P.   Get ud.  (Chapter 8). The 
above are also boson energy transitions analogous to the principle quantum number photon 
transition emissions of the hydrogen atom.                                            
Other Ortho Consequences 
We can reverse engineer this process by modeling a large decrease in the resulting strong 
magnetic field:  
 Neutron 2P½  1-rH/rH for charge 0 (case 2 Ch.8) is homeomorphically mapped into 1-e with 
added outside particle KE Meisner effect additional outside charge (reducing that rH/rH charge so 
preserving angular momentum a (and so KMQ) in the Kerr metric term (a/r)2. Note the negative 
sign still indicates inside multibody charge is still 0. 
Proton 2P3/2  1+rH/rH (case 1 in Ch.8) is then homeomorphically mapped into 1+e with added 
particle KE. The positive sign indicates nonzero internal multibody charge. See eq.B4. 
For  2P3/2     k00=(1-2e)-De-[(CM/me)r].  The starting point of PartII.                      (B3) 
vector wp. So ultrarelativistic Thomas precession =n3mp =LS energy w is subtracted off from 
Paschen Back energy wp. It adds to 0 in the ground state. lso LEM=NrHhw/c=rX[(EXH)/c](prH2T) 
angular momentum also cancels some of the total angular momentum of objects A,C and B.  
For each ortho state we apply the Frobenius solution perturbation(Ch.9) . The next ortho value is 
mp=2 (for s and later mp=4 for c, mp=6 for the b state) for the next ortho state.  
Calculation Of x1 
We use the equation 1.2.7 energy normalization (meº1) for two reduced mass 2P3/2 
ultrarelativistic positrons at r=rH with ansatz x®x2, in xo®1 in x1=x3+x2+xo. So E=CMx12/xÖ2® 
½x12/x1= ½ /(x2+(2+D)x+(1+D))= (partial fractions)=  ½ ((1(-1/D)/(x+1))+ ((1(1/D)/(x+1+D)= 
positron1 +positron2. So for x®0 then D=1/3684 from the boosted magnetic flux calculation 
2g=3684. 
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Fig.8 
Chapter 8   Frobenius Series Perturbation  To Each Paschen Back State  
Introduction  
Here we start with the ground state magnetic flux energy(u/d) set mb=1, move on to the three 
orthos (s,c,b) with larger mb s (X) and finally to the very high para (t). We are actually perturbing 
the motions at rH by these r in equation 9.5 and so are taking into account the constituents 
of the proton in this way. 
   Also there are then 6 magnetic flux quantization 2P3/2 states. Each flux quantization level has 
its own mp and associated Frobenius solution. So we have ground state mp=1, and excited states: 
mp=1.5=Xs, and also Xc, Xb, each having it’s own Frobenius solution sets. 
 
   8.1 Solution to eq.2 Using Separability: Gyromagnetic Ratios And Low 
Energy  Particles (energy<3GeV)  Derived For ground state Magnetic Flux  

r»rH Application: Gyromagnetic Ratios 
After separation of variables the “r” component of equation 9 can be rewritten as: 

             

                                         (8.1)                                                                                                       

            

                                            (8.2)           

Because the k00 =1-rH/r is point source the object B ambient metric is local and so the vacuum is 
not infinite density (see also sect 6.11) as in the QED ambient metric which is homogenous. 
Comparing the flat space-time Dirac equation to equations 8.1 and 8.2:      
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                                                     (dt/ds)Ökoo=(1/k00)Ökoo=(1/Ökoo)=Energy=E    (8.2a) 
Using the above Dirac equation it is easiest to find the gyromagnetic ratios gy for the spin 
polarized F=0 case. Recall the usual calculation of rate of the change of spin S gives 
dS/dtµmµgyJ from the Heisenberg equations of motion. We note that 1/Ögrr rescales dr in  

 in equation 8.1. Thus to have the same rescaling of r in the second term 

we must multiply the second term denominator (i.e.,r) and numerator  (i.e., J+3/2) each by 1/Ögrr 
and set the  numerator equal to 3/2+J(gy), where gy is now the gyromagnetic ratio. This makes 
our equation 8.1 compatible with the standard Dirac equation allowing us to substitute the gy 
into the standard dS/dtµmµgyJ to find the correction to dS/dt.  
 
Thus again: 
                            [1/Ögrr]( 3/2 +J)=3/2+Jgy, Therefore for J= ½ we have:  
                            [1/Ögrr]( 3/2+½)=3/2+½gy= 3/2+½(1+Dgy)                                  (8.3)       
                                                                      
Then we solve equation 8.3 for gy and substitute it into the above dS/dt equation.  
 
S States: Recall e and De  and S states from eq. 6.4.13. These are zero point energy states 
(eq.9.22) that must also be the source of the Meisner effect canceling of those large B fields. 
Noting in equation 6.4.13 we get the gyromagnetic ratio of   the electron with grr=1/(1+De/(1+e)) 
and e=0 for electron. Thus solve equation 8.3 for Ögrr=Ö (1+De/(1+e))= Ö (1+De/(1+0))=  Ö 
(1+.0005799/1). Thus from equation 8.3 
 [1/Ö (1+.0005799)](3/2 + ½)= 3/2 + ½(1+Dgy). Solving for Dgy gives anomalous gyromagnetic 
ratio correction of the electron  Dgy=.00116  
 
Going to higher energies  (so e¹0 in equation 8.3)  we get the anomalous gyromagnetic ratio 
correction of the muon. From the momentum representation of eq.8.1,8.2:  
2P3/2 states:  Recall the 2P3/2 states from chapter 3. Note also that k can be positive or negative 
since 4pk=Z00 in our Lagrangian with a positive k meaning at least one charge is not canceled. 
Therefore 1/grr =1±k/r+e (using our Frobenius solution expansion near r»rH of eq.9.5 below 
multiply through by (1+e/4)((1+e+..) »1+.08=1+e’ so a pion mass is then added to the protons) 
from the  ±nature of Zoo. Therefore we have two cases from equation B3  at the boundary r=k 
 
CASE 1                               1/grr =1+k/k+e                              charge 1          (core case)                                                          
CASE 2                               1/grr =1- k/k+e                              charge 0          (use m from case 1) 
 
Note: e (9.22) is required because it is the zpe here (like hw½ is the zpe of 1D SHM) external to 
the 3e region. So through the Faraday’s law Meisner effect pops up to cancel that huge 1014T 
internal  B field, hence the origin of the mesonic field. So the e in case 1 and case II is the artifact 
of that large internal B field of section 8.1.                                                                                   
Also the effect of a zero charge is to make metric component goo (=1/grr) contribution zero in 
case 2. Thus the effect of nonzero charge is to increase the dimensionality by adding a metric 
component in eq.2. This provides the reason that Kaluza Klein theory (adding a 5th dimension) is 
so successful at injecting E&M into general relativity. But Kaluza Klein theory is not required 
here because finite CM in eq.1.11 is really responsible for  charge and E&M. 2D is sufficient as 
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we showed in Chapter 1, eq.1.5. The extra 2D degree of freedom is associated with that extra 
real term ddz in the amazing equation 1.6.  
 
CASE 1: Plus +k, therefore is the proton + charge component.  1/grr =1+k/k +e = 2+ e . Thus  
             from equation 8.1, 8.2    (1.5+.5)=1.5+.5(gy), gy=2.8              (8.4) 
The gyromagnetic ratio of the proton  (therefore that  above r» k stability was  indeed proton 
stability as we concluded) mass=mp . dt/dsÖgoo =1/Ögoo =E=mp 
 
 CASE 2:  negative k, thus charge cancels, zero charge:    
           1/grr =1-k/k +e= e   Therefore from equation 8.3 and case 1 1/grr =1+k/k+e  
                                           
            (1.5+.5)=1.5+.5(gy), gy=-1.9,                                                      (8.5) 
the gyromagnetic ratio of the neutron with the other charged and neutral hyperon magnetic 
moments scaled using their masses by these values respectively.   
Chapter 9 
The 3e Energies For particle energy <3GeV Derived  
Using Frobenius Series Solution (at first Paschen Back mp level) 
Perturbation) 
 
9.1 Series Solutions y Ansatz Near r»rH 
mp=1 here. mp determined from Paschen Back energy level (next Paschen Back level mp=2 for s) 
Recall equations 8.1, 8.2: 

                                                                                                                        

                       

Recall from the previous section goo=1-k/r-(ε+Δε). Also recall our Dirac doublet (equation 2AI 
) must have a left handed zero mass component will be called case 1 and case 3 respectively 
below. Also we need the equivalent of the singlet equation 2 is our below case 2. Also in 
equation 2 at r=rH the eigenvalue is De+e+1=2mp for that principle quantum which then must be 
the same for the 2P3/2 state. Here we write out the left handed Dirac Doublet Eq.2 in the general 
representation of the Dirac matrices. Also recall from chapter 8 that the 2P3/2 state (and its sp2 

hybrid) for this new electron Dirac equation gives a azimuthal trifolium, 3 lobe shape and thus a 
l/3 spherical harmonic wavelength so that for covalent bonding r’»rH/3 in koo=1-r’/r. This l/3 
also is used  to calculate P wave scattering (called  “jets” by quark people.)    
 
To use the f & F components of the equation 8.1, 8.2 Dirac equation we write the Dirac equation 
for free particle motion along the symmetry axis z (r=ratio of momentum to energy) to find the 
chirality of the components in the general representation of section 1.6.  We then compare this z 
motion free particle Dirac equation eigenfunction structure with radial component structure to 
arrive at a sense of which components of the radial equation are left handed and which aren’t. 
This step is a little more complicated here because we are not using the chiral representation of 
the Dirac matrices, but the standard representation instead. In any case given that the electron is 
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positive energy, then (as we see below) for the positron  -E  gives left handed f and F implying 
that this object must have a positive charge since this left handedness(doublet, Ch.3) results from 
the fractalness (There is a corresponding argument for G and g).  The proton indeed is positive 
charged. So: 
 

® µc2u1+cpu3-Epu1 

® cpu1- µc2u3-Epu3 

® µc2u2-cpu4-Epu2 

®  -cpu2 -µc2u4-Epu4 

where to get correspondence from these two Dirac equation structures we see that at  +E: uR= 

 =g,  uL= =f;  -E: No (vR=  here), vL= =F, Note  in general (with r»0) here: 

=Y .  So we have the solution that in the standard representation of the left handed 

doublet is given by F and f only for –E of the electron (here a positron needed below for + proton 
hadron excited states) at the horizon. Dirac matrices  

So for the left handed doublet:  we have respectively          (9.4) 

 
Or more succinctly equation 2 in the Dirac doublet form implies in section B2: Note our 
postulate implies C®0 so we are on the dr axis thus dt’=0 so dt’2=(1-rH/r)dt2 (sect.0.1 of Ch.1). 
Thus r=rH=k is a stable point since the clock stops since dt’=0 and the is the Meisner effect 
formalism for canceling out that huge B field at a distance and a;so making it so the protons mass 
is mp, and not much larger. . 
CASE 1                               1/krr =1+k/k+e  =1+ rHM+1/r+ rHM/r +e                                (core case)                                                          
CASE 2                               1/krr =1- k/k+e  =1+ rHM+1/r+ rHM/r +e                  
Normalize out 1+ rHM+1/r. That just divides by 2 since we (at r) are already near the event horizon  
CASE 1                               1/krr =1+k/k+e  =1+ rHM/r +e                        charge 1          (core case)                                                          
CASE 2                               1/krr =1- k/k+e  =1+ rHM/r +e                       charge 0    
So if  |rHM+1/r|=|rHM/r | (use m from case 1) then negative rHM/r means zero charge (so 
rHM+1/r=rHM/r so charge sources cancel out) and positive means charged. (see also above 
sect.B2).  
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Note in sect.1.5 we can have a zero and nonzero charge in the 3rd quadrant (where dt=dr) 
massive Proca boson case given the possibilities in sign we have for ±e’/2 in 
((-e/2) ±e’/2)dr-((-e/2)±e’/2)dt. 
In the first quadrant ds=0 again (section 1.4) so they have to add to zero. +dr+e/2+dt-e/2 and –dr-
e/2-dt+e/2 solutions.  Multiply the second equation by -1, then add the two resulting equations, 
then divide by 2 and get dr+e/4±e/4+dt-e/4±e/4  so that e/2®e/2±e/2. So we multiply each of the 
two ds2 cases (above |dr+dt| discussion) by its own dz, each with its own krr=1/(1-e//r) ®1/(1-
(e/2±e/2)/r) (sect.4.7) implying 2 charges e/2-e/2=0, e/2+e/2=e and so two Proca equation 
massive W,Z. 
See B2. .See above B2: 
 
CASE 1                               1/grr =1+k/k+e           F                   charge 1, m=1  (core case) 2P3/2                                                               
CASE 2                               1/grr =1- k/k+e           F                   charge 0, m from case 1) 2P1/2 
CASE 3                                                                  f                   charge  0, m=0      
                                                                                             
We solve these equations only near r≈kH since that is where the stability is to be found (and also 
fortunately were these equations are linear differential equations).  Thus our first step is to 
expand √grr about this radius and drop the higher order terms.   
 
The Frobenius series solution method can now be used to solve equations 8.1 and 8.2 at r»rH. See 
for example Mathematical Methods of Physics, Arfken 3rd ed. Page 454. First we solve the f in 
equation 8.1, plug that into equation 8.2 and then have an equation in only F. There we substitute 
a series solution ansatz  F= ∑anrn  in the resulting combined equations.  We can then separate out 
the results into coefficients of respective rn and get recursion relations that will give us series 
that must be terminated at some N. Note the energy Eigenvalue ‘E’ will be in this series as 
dt/ds√goo so we can then solve for the mass energy of these hadrons at specific J. We will need 
an indicial equation for the first term to start out this process. Also in this Frobenius solution 
method ‘n’ turns out to be a multiple of ½ and the series must start at n=-1. Finally to get the 
charge zero case the charged case must be done first and its constant masses used in the 
uncharged state calculations. 
 
9.2  CASE 1 Excited States for F, m¹0, q±  2P3/2 
 
Again case 1 is one of the equation 8.1 possibilities. Therefore let R=kH-r, r<<R (for stability) we 
can write in 8.1:  

      (9.1) 

          (9.2) 

          (9.3)                               
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=         (9.4) 

((1- e/4)/Ö2) ( ) »       (9.5)                 

 
Note taking the first term of this Taylor expansion of the square root makes this an 
approximation (<2GeV.). Note that including the above 1±e/4 the compensating (1±e/4) in the 
next r term has the effect of a multiplying the derivative terms by 1±e/4. This rescales r to allow 
us to still say that the stable boundary is still at rH.  Thus we could use it to also rescale t in the 
first term of equations 8.1 and 8.2 or note that (1+e/4) (1+e)=1+5/4e thus renormalizing  1+ e to 
1+4/3e =1+e’ everywhere. Also the 3r2/32kH2 terms must be included. We drop these 
perturbative terms until the end.  Therefore substituting in equation 9.5 we find that equation 8.1 
reads:  

=                                          (9.6)       

; also: 

                                                                             

          

Therefore 

 substituting into  

                                       (9.7) 

We find solving for f and substituting back in: 
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•
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Here r=2kH is a regular singular point. Next substitute in F= ånanrn  with again half integer n 
allowed as well: 
 

+        (9.8) 

+                    (9.9) 

+                                       (9.10) 

                                            (9.11) 
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+                                                       (9.12) 

                                                      (9.13) 

 
Note from equation 9.12 that this series diverges. To terminate the series we now take 9.8 and 
9.11 together and 9.10 and 9.13 together (since they have the same an). For example combining 
the equation 9.8 and 9.11 terms 
 

+

,  

Replacing the normalization mp®mp(1±e ) (from section 4.8): 

- =0         

Therefore after rearranging: 

 ,                                       (9.14) 

 
We have for a general Laurent series ansatz: 

 
Note also that equations 9.8-9.13 imply that the coefficients of a given rn are independent.  Thus 
adding together the coefficients of rn for equations 9.8–9.13 at a given n: 
 
9.9(j-½)an-1+(9.8+9.11)an+(9.10+9.13)(n+1)an+1+9.12(n+2)(n+1)an+2=0   (9.15)  
 
Method of Solving Equation 9.15 
For the outside observer an F=0 finite boundary condition at infinity applies for flat vacuum 
value n=0, j=½ and for ro, r-½, r-1 and for complete vacuum for N=0, J=0. 
Here then the generalized Laurent series  
reduces to ..+ . Thus either set 9.9(j-½)an-1 =0 or 
(9.10+9.13)(n+1)an-1+9.12(n+1)(n+1)an+2 =0 separately in eq.9.15 or set both equal to zero:  
 
J= ½, sets eq.9.9=0 

1) N=-1,    in equation 9.14 gives mass eigenvalue for  X 
                          Exact solution for all possible an, sets none of them to zero. 

2) N=0,      in equation 9.14 gives mass eigenvalue for nucleon. dro/dr=0 so all  
              derivative of F terms are then zero and this solution applies inside as well. 
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                   N=0 flat J=0 allowed flat vacuum gives p±  and with free e, j= ½ muon. 
3) N= -½,  in equation 9.14 gives mass eigenvalue of two S s since a plus and  

             minus square root of r.  
 

These 9.9=0 cases have case 2 zero charge representations as well. 
 

N=-1,  Principle QM number Also  a-2 =0                
1) J=0,       in equation 9.14 gives mass eigenvalue for  K  
2) J=1,       gives deuteron mass eigenvalue (bonding) given N=0,J=0 fills first (i.e.,  
                   pion). Thereafter use nuclear shell model-Schrodinger equation many  
                   body techniques with these nonrelativistic lobes with this (bound state)   
                   force acting like a outer layer surface tension, finite height square well   
                    potential . Get a aufbau principle that then gives the D,F,G,..nuclear shell  
                   model states.  Alternatively can fill that first S state in with free 1S½ (next  
                   state to filled state) and we  have j= 3/2   W-  filling  in some (i.e., uds)  of   
                   the 2P3/2 states (see Ch.9) and thereby also deriving from first principles  
                   Gell Man’s 1963 eight fold way for hyperon eigenvalue classification (to  
                   finish that effort need case II zero charge and case III Lo as well). Mp is  
                   replaced by 2 in c hyperons, by 4 for b hyperons as indicated in fig. 16-1  
                   for how to fill in the cbt 2P harmonic states given the requirement to use r2 then. 

 
Also, to include higher order r expansion term effects in equation 9.5 we must include those 
perturbative 1+e/4 and 3r2/32kH2 contributions which gives a n(n-1)/6.4 added to the “n” term 
component inside the radical of equation 9.14. 
In our new pde dJ=o through LS spin-orbit coupling so the three spin½s  and the L=1 add to a 
minimum. 1-½-½+½ =½ =S for the proton with possible Pauli principle non S=½ possibilities 
for larger mass eigenvalue. 
 
Details of Above Solutions for Case 1 
Thus besides the ground state (N=0 Fgroundstate= åanrn = a0r-0=F0 proton) we have the two 
solutions: 
  FN=-1 =åanrn = a-1r-1=F1., j= ½, 0.,            FN=-½ =åanrn =a-½ r–½ =F2. For  j = ½.  0.  
Note the energy eigenvalues (E) can be found from the solution to equation 9.14 and kH =1 with 
E=1=938MeV. Thus 
N= 0, j= ½ then 9.14 gives +Nucleon (ground state) mass eigenvalue.  Note that for the N=0, 
(with J= ½ and also J= 0 in section 9.5) ground state that the charge density is uniform (i.e., 
r=Kµr0 ) for r<k. 
N=-½ ,  j=½   two valued because of the two square root solutions.  Equation 9.14 then gives å±  
(charged sigma particle) 1184Mev  particles, F2 eigenfunction(s).  Actual 1189Mev          
N=-1, j= ½  gives one charged  X particle. Therefore the energy from equation 9.14 is 1327 Mev  
(actual 1321), F1 eigenfunction.  
Case 2 and case 3 give the neutral hyperons and Lo respectively (see case 3 below).  
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9.5 Nucleon Wavefunction: J=1, q¹0, N=-1 of Case 1 
 
Here we recall case 1, section 9.3 above and compute energy eigenvalues for J=0 and J=1.again 
using equation 9.14 in case 1.  
J=0 
N=-1, j=0 E=490 MeV from equation 9.14 case 1. K± . Substitute into strangeness equation 9.34 
case 1 we obtain strangeness =1. 
N=0, j=0 then from equation 9.14 E=139.7 MeV                                                         (9.22)  
case (note again m=1+e=1.061 in 9.14 for outside). This is the nontrivial F zero point energy 
(and so has a fundamental SP hybrid state harmonic) for r<k=e at r=rH. since the square root in 
equation 20.1 becomes imaginary then. Thus the mass of p±  is now the vacuum (e.g., note Fµro 
for N=0 here) e‘at r»k explaining why this fundamental harmonic result for p is used in all the 
successful nuclear force theories such as in the Skyrmion Lagrangian for example. Note that: 
                              m p ± =139Mev=1.3(105.6MeV) =1.3e=.08=e‘                            
 
N=-1,J=1 case 1.  Recall for J=1 we have y µ rsinq µY11 (q,f) double lobe y*y along the z 
axis: From equation 9.14 we find with these inputs that E=1867Mev                             (9.23) 
implying that (because E~2mp and J=1) this eigenstate is responsible for the spin 1 deuteron 
(state). The L=1, 2P state solution(s) are symmetric and so of the form (1/Ö2)(y1y2 + y1y2) =ys 
 and have positive parity even if the 2P y1 and y2 each has negative parity. The Deuteron thus 
has + parity (Enge, 1966). 
Recall if we include the background metric in eq.6.4.11 koo=1+rH/r+2e’+De and 
krr=1/(1+rH/r+De).  So rescaling r®r-e’ =r’for r near rH allows us to use our above solutions 
again. So in equation 8.1  1/Ökrr=y=1/Ö(1+rH/r’+De)y»1/Ö(1+rH/r)y+(e/2)y. Note if we again 
rescale our numerator J=1®1+(e’/2)2 so that we have perturbed our Y1 spherical harmonic with 
a (e/2)Y2 giving a measure of the oblate, non spherical structure (e.g quadrupolar yD and higher.  
e’/2 ».04 from 9.22 therefore the nonspherical component of y is approximately 4% of the total 
y and is often called the tensor component of the Deuteron eigenstate (Enge, 1966).  This 
simplest multiparticle state represents the deuteron state and this is then the explanation for the 
deuteron tensor component of the nuclear force.  
Also the energy of the Deuteron is given just outside the rH boundary (so e’®ie in 6.4.11) by 
ED=Rel 1876/Ökoo=Rel 1876/Ö(1+ie’)+..=1876(1-ie’/2+ (3/8)(ie’)2+..).  So the added real term 
due to the e’ is equal to 1876(3/8)e’2=1876(3/8)(.08)2=4MeV. In free space e’=0 and just outside 
the nucleus it gives this contribution to the Deuteron energy. Thus this (3/8)e’2 is the binding 
energy of the Deuteron.  
Note from the equation 9.15 discussion for N not -1 we can only use J=1/2 and J=3/2 thus are 
restricted for two particles to S and P states (i.e. ½ + ½ =1) which then gives us the hyperons.  
For N=-1 we can use other J and can thereby construct large nuclei. 
The multinucleon nuclei really are the solutions of the indicial equations of 9.15. 
Recall in the shell model a hard shell nuclear outer wall is assumed with free space oscillations 
allowed inside this shell. The solutions to the Schrodinger equation are then spherical Bessel 
functions with corrections for spin orbit interaction, finite well height and tapered wells (Herald 
Enge, Introduction To Nuclear Physics, P.145).  In any case an infinite mean free path for these 
oscillations is assumed to exist inside this shell. So how can there be an infinite mean free path 
inside this extremely high mass density region?  
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In that regard the above 2, J=1, N=-1 2P deuteron state can also be viewed as yet another 
Bogoliubov pairing interaction (such as in the SC section 4.5) giving this infinite mean free path 
of the electron pairs comprising a pion acting as a Cooper pair, just as in SC In the context of the 
section 4.5 pairing interaction model A(dv/dt)/v2 is no longer as small but dv/dt becomes very 
large to due to the ultrarelativistic motion of the electrons inside the nucleons. In any case this 
infinite mean free path for these oscillations (recall Cooper pairs have an infinite mean free path) 
is thereby explained here as a new type of superconductivity. 
 
Spin Orbit Interaction In Shell Model 
Recall the derivation of the shell model from first principles in section 6.12. If equal numbers of 
Neutrons and Protons gyromagnetic ratios then gyP-gyN =2.7-1.9 =.8. 
Since more neutrons in heavier elements: (1/1.1)(.8)=.7. 
R=rH º½ Fermi measured from singularity at 1-½ = ½ . 
From 2P3/2 at r=rH Fitzgerald contraction discussion in section 2.2: r®R=½(1-½) = ¼ Fermi º 
RV(r-rH) so Rv(r-rH)®Kr. From Ch1,sect 4.16  V=1/(r-rH). Spin orbit interaction= 
ao2(1/r)(¶V/¶r)(s•L)= 

 

 45*E&M spin orbit interaction.  

Thus the ao=1Fermi. Thus the nuclear spin-orbit interaction is much larger than the E&M spin 
orbit interaction because the nucleons are much closer to rH than to r=0 and the Fitzgerald 
contraction of the nucleon 2P3/2 state is on the order of ½. 
 
At close range there are higher energies available so the 4mev (=be) in equation 9.3 (if we 
include r2 contributions) becomes the binding energy for the deuteron in goo=1-k/r+be in 8.1 
particles, F2 eigenfunction(s).  Actual 1189Mev          
N=-1, j= ½  gives one charged  X particle. Therefore the energy from equation 9.14 is 1327 Mev  
(actual 1321), F1 eigenfunction ºXs  the fundamental structure for m=1.5. So we reapply the 
analysis all over again for mp->1.5 insteard of 1. 
Case 2 and case 3 give the neutral hyperons and Lo respectively (see main Frobenius series 
solution paper). 
The multinucleon nuclei are the solutions of the indicial equations of 9.15. 
Recall in the shell model a hard shell nuclear outer wall is assumed with free space oscillations 
allowed inside this shell. The solutions to the Schrodinger equation are then spherical Bessel 
functions with corrections for spin orbit interaction, finite well height and tapered wells (Herald 
Enge, Introduction To Nuclear Physics, P.145).  In any case an infinite mean free path for these 
oscillations is assumed to exist inside this shell. So how can there be an infinite mean free path 
inside this extremely high mass density region?  
In that regard the above 2, J=1, N=-1 2P deuteron state can also be viewed as yet another 
Bogoliubov pairing interaction (such as in the SC section 4.4) giving this infinite mean free path 
of the electron pairs comprising a pion acting as a Cooper pair, just as in SC In the context of the 
section 4.5 pairing interaction model A(dv/dt)/v2 is no longer as small but dv/dt becomes very 
large to due to the ultrarelativistic motion of the electrons inside the nucleons. In any case this 
infinite mean free path for these oscillations (recall Cooper pairs have an infinite mean free path) 
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is thereby explained here as a new type of superconductivity. 
 
Particle Lifetimes 
Recall from section 1.1:  koo=1-rH/r so r-rkoo=rH analogous to dr-ctkoo=ds so rH=dsº|dZ|. From 
section 6.7 there are three Dirac equation contributions with one being the ultrarelativistic mn 
contribution. For that contribution we put Dirac as into dr+idt=dZ the free space Dirac equation. 
Dividing by ds gives mass on the right side in that Dirac equation. Because the motion of the mn 
=1eV (Ch.3) particle is ultrarelativistic in these hadrons we apply figure 1-1 dr=dt so q=45° and 
so dZ/ds =eip/4dr/ds for the ultrarelativistic mn (on earth contribution of Ch.3). Note that (eip/4)2=i. 
We add another contribution (for spin ½, N=-1) to get zero charge case II below. For added 2P½ 
(K,±p mesons) there are 3e in rH below (sect.10.3). Thus we obtain:                    
                                              hyperons, Kaons and ±p:                    eip/42e2/mnc2= eip/4r’H=RH 
Recall that domain r=rH was the most stable, the proton state. This stability condition can be 
restated in terms of excess energy above the proton rest mass. Next substitute this m and 
ultrarelativistic mn in the rH in equation 9.14 with this r’H in the relativistic solution of equation 2 
described in Ch.1,sect.1. 

              

» .  

Add to above to 9.14 result to get for the total energy: 

 

Plug (hc/e2 )2 =(1/a)2 back in eq.8.1 and normalize mnc2 to 1/hz with 1/h. Next plug into the time 
propagator eiHt and get for the r’H (decay) term: 

        (9.23) 

 giving hyperon, Kaon, ±p decay times. 
The second term D is also the excess mass above the proton mass. 
For neutrons (939Mev) the excess mass above the proton mass (938Mev) is mp/1000 and 
RH®1000RH,    D®D’ 

 
gives the neutron decay time.  
For mµ muons j=½, N=0 and the excess mass is mp/8.87ºmµ. 
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gives time for muon mµ decay. 
For po decay time  mn®me (E&M decay) along with 8.87®7=mp/mpo in the above equation.

 

For resonances mn®me (E&M decay) in 9.23 gives time of decay. 
Note the second term here contains a ii=-1 and so it is a exponential decay term e–Et with 
.693/E=t the “half life”.  
Thus we get po, ±p, K mesons and hyperon, muon, neutron, resonance half lives from (these 
modifications of) equation 9.23.  
 
9.7 CASE 2 Excited State F, charge=0. 2P1/2 
 
Recall from 9.4 that case 1 implies Eq®m in case 2 (in 9.4). Also  
 1/grr»1-kH/kH+e= e for -e.  Net charge=Zero.  Thus let R=kH+r, r<<R , r’=kHe+r 

                                                          

 

 

»                               

Also   in the Dirac equation 18.1. Therefore equation 19.1 reads: r’=kHe+r 
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            Thus                                                                                                                          

. 

                                    Therefore 

    Using                   r=r’+kHe 

 
Multiplying both sides by |E-mp| we obtain: 

 

- + + + 

=0.  Multiplying both sides by r’2 we obtain:  

+  

= 

Defining r’ºr2 and doing the derivatives in the new variable: 

   and 

= = 

 Substituting these expressions for the derivatives in: 
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+ 

- + 

= 

+ - 

- + - = 

+ - 

- + -

=0.  

Combining terms noting simplification due to combining the an+2 terms 

+ + 

+ =0 

Next we write the individual eigenfunctions as: 

=0.  

Thus since these series terms add to zero:  
 

                                                        (9.24) 

=0.  Here  r’=r2 so                                                                         

                                                                                       (9.25)  

-                                                                                 (9.26) 

J=1/2 with N=1 solves the indicial equation implied by 9.24-9.26. Recall from 9.4 that m=proton 
in this case (case 2).  The energy in 9.24 is then that of a neutral particle (q=0) with the mass of 
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the neutron so E =Eq =m=mN. See equation 9.23b for neutron lifetime and 2P3/2 for neutron 
spherical harmonic state, section 10.3) But in case 2 and equation 9.23 then  the previously 
derived charged spin ½  hadrons må, mX can also be put back into the Dirac equations for 
‘m’(instead of the proton).  Thus the charged, må, mX from equation 9.14 can be put into the “m” 
in 9.24 which gives the neutral  E=m=mN, mX..  må has a N=1/2 and so does not satisfy the 
above equations and so does not exhibit a stable neutral å.  Recall the W- (which is J=3/2) is not 
J= ½ so doesn’t have a neutral counterpart as does the proton and these other J= ½ hyperons. 
Recall the iterated Dirac equation is the Klein Gordon (in c with J=0) equation eigenstate 
transitions.  
J=0, q=0 Case 2  
Recall J=0 is allowed in every case.  
m=1 proton, j=0 in equation 9.24 means K Long. Equation 9.23 gives K long mass eigenvalue:  
1+(0+3/2)(0-1/2)/1=1/4. Thus Ö.25 =.5.  Thus .5X938X1.06=497 MeV=Klong. Note case 2 is zero 
charge and note also from section 9.8 that the Strangeness=2|Ö.5|=2*.707 »1 as in strangeness 
equation 9.34 below.  
m»1 for Neutron then in 9.24 we have  K short,  if m=mX and J=0 then Do Long.    
If m=mX  j=0, and neutral then 9.24 gives Do Short.  
 
9.8 CASE 3 m=0, so yL, f state, charge=0 (lower case of equation 9.5).  
 
In case 3 there is no central force therefore N=0 and j=½ in f. This is the m=0 left handed 
doublet case of Chapter 3.  Let R=kH-r, r<<R for stability we can write: 
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From the above equation 9.27 if (and j= ½) mp=0 then   

          

Therefore (with j= ½) from equation 9.27 for small r.   In any case: 

 

                                

Solving for f and substituting back in 9.27 
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+      (9.28) 

+                      (9.29) 

                              (9.30) 

+                                           (9.31) 

                                         (9.32) 

We now take 9.27 and 9.30 together and 9.29 and 9.32 together (since they have the same an). 
Thus there are 4 independent series (with 9.28 and 10.31) here.  The equation 9.27 and 9.30 nth 
terms give: 

+

, 

At some value of n=N we have for a solution 

+ =0 

 therefore rearranging: 

    (9.33)                                                                   

Recall from the equation 9.4 ‘f’ case that we have mp=m=0, and zero charge therefore no central 
force thus N=0 in fµro in equation 8.1.  Therefore since there is small r and dr0/dt=d1/dt=0 in the 
equations just above equation 9.27 along with 9.33 then the 9.27-9.32 equations add to zero and 
thus are solved. Also the j=3/2 (so L=1) case is not allowed since that requires a central force to 
give L¹0, j= ½ and of course j=0 is allowed here. Thus 
N= 0, j= ½, m=0 then from 9.33 we have E=1115.8 Mev Lo 

 

N=0, j=0, h mass and also gives m=.56 (with m=0) in 9.33 used in gyromagnetic ratio 
calculation for f. Recall e=.08 (with m=0) for F in 9.14. This is the nontrivial f state zero point 
energy for r<k since Y=y+c from our observability definition. Note Kaons then give no strange 
bound states because this mass is real (in contrast to the imaginary pion mass in 9.22). 
 
9.9 Strangeness 
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Recall that in 9.14 (which applies to Case 1 and Case 2) the energy is E2=mo2+ (j2+1.7071j-
1.10355- (j (.53033))+.7642))N)/kH2. Now mo2 and E is conserved (mo is a constant) here and 
thus it appears that energy conservation implies that the square root of j2+1.7071j-1.10355)-
(j.5303+.7642)N ºS must be conserved. Therefore E2=m2 +S2 then and “S” is conserved for the 
charged core states and thus for the neutrals given that in section 9.8 that Eq®m then (for f state 
m=0 we also have S»E for L).  We could also write E2=m2 +C2 for the next 2P state eigenstates 
(call C charm if you want) which would also have their own associated production (since <|> not 
zero). Thus, as an example, normalizing to a factor of 2X: 
 
2XSQR[(.5(.5303)+.7642)(0)]=0=Snucleon, 2XSQR|[( .5(.5303)+.7642)(-1)|»2=SX, 
2XSQR|[.5(.5303+.7642)(-½)]| »1=SS,  2X SQR|[(1.52+1.7071(1.5)-1.10355-
(1.5(.5303+.7642)))(-1)]|»3=SW.                                                                               (9.34)    
                                                                              
Strangeness is only an approximate conservation law in the examples in 9.34 but there is enough 
conservation at least for the “associated production” and we have not yet included the weak 
interaction here. This is a direct derivation of strangeness, instead of just having postulated it 
as it is in the standard model and QCD. Strangeness isn’t strange anymore. 
 
Charm, bottom, top: In chapter 9 equation assuming hard spherical shell.  We obtain other (less 
stable, resonances) particle groups using equation 9.5 by taking the quadratic approximation of 
grr (i.e., include the (3/32)(r/kH)2 term in 9.5) Using 10.8 instead of just the linear approximation 
we used above. Recall that the perturbative (3/32)(r/kH)2  term had to be included since it gave a 
»20Mev correction to the hyperon masses. 
C Meson Mass Derivation From Potential Of Chapter 10 And The New Pde eq.9 
C Spherically Symmetric Wave Function Required 
         PROGRAMFracsN 
         DOUBLE PRECISION A,B,C,D,E,F,H,I,I1,J,KK 
         DOUBLE PRECISION K1,K2,K3,K4,N1,N2,N3,N4,R,W,X,Y,Z 
         DOUBLE PRECISION Y1,E1,E2,MM1,MM2,MM3,EE,JJ     
         integer N,M,M1 
         DIMENSION EE(400) 
C      Variational principle on E with respect to I and Y1, 
C      RungeKutte on D equation 8.1. Y=2 width Deuteron 
C      pion oscillation resonance modeled between 0 and Y=2. 
         H=0.001 
         mH=2 !harmonic number for oscillation inside Y=2. 
C      mN=1 gives pion 0 and K+-,mN=2 gives pi+- and Ko resonance 
         ep=0.08*mH   !pion 1st and 2nd harmonic resonance added to Y1 
         W=1.0+ep !pion mass added to nucleon. 
         J=0.0  !spin 0 mesons 
         X=0.0001   !mass energy increments 
         I1=100000000.0 
         A=0.0 
         B=0.0 
         C=0.0            
         E=0.0 
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         KK=78.8   !gives MeV energy units 
         JJ=J*1. 
         Y1=2.0+ep  !pion  increases Y1. 
50     D=.0000001 
         I1=0.0 
         F=.0000001 
         Y=Y1 
60     R=Y 
          V=1.0/(1.0+ep-R) !chapter 14 potential for spin 0 
          E1=E 
          K1=((W-E-V)*F)+(((J-0.5)/R)*D) 
          N1=((E+W+V)*D)-(((J+1.5)/R)*F) 
          R=R+(0.5*H) 
          V=1.0/(1.0+ep-R) 
          K2=((W-E-V)*(F+(0.5*H*N1)))+(((J-0.5)/R)*(D+(0.5*H*K1))) 
          N2=((E+W+V)*(D+(0.5*H*K1)))-(((J+1.5)/R)*(F+(0.5*H*N1))) 
          K3=((W-E-V)*(F+(0.5*H*N2)))+(((J-0.5)/R)*(F+(0.5*H*K2))) 
          N3=((E+W+V)*(D+(0.5*H*K2)))-(((J+1.5)/R)*(F+(0.5*H*N2))) 
          R=R+(.5*H)  
          V=1.0/(1.0+ep-R) 
          K4=((W-E-V)*(F+(H*N3)))+(((J-0.5)/R)*(D+(H*K3))) 
          N4=((E+W+V)*(D+(H*K3)))-(((J+1.5)/R)*(F+(H*N3))) 
          E=E1 
          F=F+((H/6.0)*(N1+(2.0*N2)+(2.0*N3)+N4)) 
          D=D+((H/6.0)*(K1+(2.0*K2)+(2.0*K3)+K4)) 
           I=(F*F)+(D*D) 
 100   I1=I1+(I*(R+(0.5*H))*(R+(0.5*H))) 
          IF((abs(R-1.0-ep)).LT.(0.9*H))THEN 
          Y=Y-(2.0*H) 
          GOTO 60 
          ENDIF 
         Y=Y-H    
         IF(Y.LT.0.0)THEN 
          GOTO 200 
          ENDIF 
          GOTO 60 
 200   E=E+X 
          C=I1 
          IF(B.LT.A)THEN 
 
          GOTO 310 
          ENDIF 
          GOTO 312 
 310   IF(C.GT.B)THEN 
          ENDIF 
 312   IF(B.GT.A)THEN 
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          GOTO 315 
          ENDIF 
          GOTO 320 
 315   IF(C.LT.B)THEN 
          print *,'  ' 
          print *,'E=',(E-X)*KK,' J=',J,' max I' 
          ENDIF 
 320   IF(E.GT.8.0)THEN 
          GOTO 349 
          ENDIF 
          A=B 
          B=C 
 330   GOTO 50 
 349   print*,'program finished' 
 350   stop 
          End 
C Results for spin 0,L=0 are 
C For mN=1 get 135MeV po and 493K± for resonance with 1 meson.  
C For mN=2 get 139Mev p± and 497Mev Ko for resonance with two mesons in ordinary nuclear 
matter nucleus would split before K energy created. In a neutron star however K s could be 
created. 
This fortran computer program only requires a few seconds to run on a PC. On the other hand 
lattice gauge theory programs (assuming a SU(3) lattice) require massive computing power and 
really do not duplicate high energy liquid state strong interactions anyway. 
Here the pion is a r=2RH proton with no net rotation and the central electron in a m=0 state so net 
spin =0 . s>>1/20Barn so annhilation occurs outside rH and the pion decays. 
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Chapter 10 
 
r»rH Application:  2P3/2 Half Integer Spherical Harmonics Solutions. This is 

a continuation of Chapter 9 
10.2 Overview of 2P3/2 Solutions to Equation 9 (the New Dirac equation) at r»rH in the 
Context of the Equivalence Principle (single charge e) Implication 

Allowing this single charge ‘e’ to move near and inside that stable singularity radius r»2q2/mc2 
in the Ögij in this new Dirac equation (equation 2) as we see below makes the motion relativistic 
but stable requiring all the Dirac equation spherical harmonic solutions, not just the ones allowed 
by the Schrodinger equation. Also the next order of approximation above the hard shell for our 
goo horizon rH =2e2/mec2 is the harmonic oscillator V a r+1 giving the SU(3) SYMMETRY of the 
three dimensional harmonic oscillator. The +1 in the exponent of V (instead of the inverse 
square law-1) also reverses the sign on the exchange integral 
±òψ*111(r’)ψ*lmn(r”)V(r’,r”)ψlmn(r’)ψ111(r”)dt=J  designating the symmetric and antisymmetric 
states), making here then the J=3/2 state m=-3/2 and 3/2  
(i.e.,y =Y3/23/2(q,f)+Y--3/23/2(q,f) =2P3/2 eigenspinor) the first ground state that varies with 
azimuthal angle(baryons) above the already filled 1S (in analogy with helium) on the energy 
ladder instead of the expected ½  and –½ (these ½ s by the way give 2P1/2 in the ψ*ψ of the next 
higher P orbital slots) that vary with azimuthal angle (baryons). 
 
Also recall the identity (exp(if)+exp(-if))/2 =cosf. The Y 3/23/2 orbital is a exp(i3/2f) and Y-3/23/2 
orbital is exp(-i3/2f) and thus from the identity the summed state is cos(3/2f) with probability 
density y*y=cos2(3/2f),  the trifolium three lobed shape. Thus there are TWO +e s giving a net 
charge of +2/3e in each lobe because the +electron charge ‘e’ is in each orbital lobe on the 
average only 1/3 the time (FRACTIONAL CHARGE) giving the many scattering properties (such 
as jets) associated with the angular distribution of multiple fractional charges interior to this 
horizon. The lobe ‘structure’ can't leave (ASSYMPTOTIC FREEDOM) as in the Schrodinger 
equation case or move so is NONRELATIVISTIC in contrast to its rapidly moving me constituent. 
 
Finally we solve the problem with the new pde using a computer program, set the boundary 
conditions as if the Deuteron was a square well. See end of chapter 9 for the fortran program. In 
any case we can build the hyperons and mesons with integer charges e, don’t need the fractional 
charges. 
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10.3 Trifolium Diagram 

 
 

 
                               Figure 10-1 Trifolium diagram  



86 
 

 
Fig2 Note we get a similar shape to the trifolium with lattice QCD theory. 
 
. 

Fig.3 Second diagram is the E field of a ultrarelativistic 
charged particle (“Electronic Motion”, McGraw Hill, Harman) 
 Thus the neutron charge configuration allows for the creation of both the W and the Hv and the 
proton charge configuration does not allow this. 
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Fig.4 
10.5 Two (e+e+e at r»rH) Objects: The Deuteron  
The only stable lepton state in this theory so far are 2 (eq.2 in 4D)  and e+e+e at r=rH with the 
latter being internally unstable but regenerative through that particle (re)creation step above 
(fig6).  Also if a second e+e+e object is nearby a 2P1/2 state (sect.1.6, eq.2) the second proton 
picks up the electron making this state also regenerative and stable (Deuteron). According to 
sec.7.3 the neutron in deuteron decays but its electron is then transferred to the other proton and 
it then days creating a net oscillation. For the electron at rH between the protons in the deuteron 
the electric potential energy PEe is still 2ke2/rH because r’H for the electron is ~10-18 m. But time 
dilation still makes rH (=2X10-15m) clock stop dt’2=(1-rH/r)dt2.So the z=0 stable orbit is still at rH 
 
Schrodinger Equation For Many Deuterons  
Equation 9 iterated for Bosons is the Klein Gordon equation.  Here we derive the SHM 
Schrodinger equation version for the deuteron. From the energy component of polarized 
representation of equation 8.1, 8.2: and using iterated (as in bosonic, here deuterons)  
E2=p2c2+m2oc4 = 
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=V+1         (10.8.1)                                                                                        

Note the resemblance of E2=p2c2+m2oc4 to the Schrodinger equation if the E2 =[rH/(r-rH)]+1, 
p2c2®k2  2nd derivative of equation 10.8.1. r’H=[3Ö((6Z/4p)]rH in eq.10.8.1. Note for low energy 
large r mec2(V)»PE=ordinary E&M potential energy. For high energy small r in contrast then 
V+1»0=E2. 
 
From the new pde model r=rH=2.817X10-15 (DavidMaker.com, partI, eq.1.2.7) 
So given the Schrodinger equation we can use the well known SHM and rotation mathematics. 
The nucleus is somewhere you would expect the equipartition of energy to hold (recall it holds 
quite well in a hot gas).. So as usual, given those ultrarelativistic positrons in each proton, as is 
well known PEe provides the highest escape speed in KE =½mv2 which in turn provides the 
½kx2 potential energy for the spring SHM model since the SHM also provides the same high 
speeds which you cannot exceed.  Recall this same max ½kx2 gives us hwo(½) in the SHM 
quantum model for the oscillation (model energy). 
PE=2e2/rH=2(9X109)(1.602X10-19)2/2.8X10-15 =1.7X10-13J. 
1.7X10-13/1.602X10-19=1.06X106eV=1.06Mev. Binding energy=1.1Mev 
From the equipartition of energy that free space 3D PE equals oscillation energy SHM equals the 
rotational energy LS so in the deuteron you have these three sources of binding energy.   The 
single neutron binding energy is =PE=NE                                      
So from the Equipartition of energy: 
PE=SHM=LS 
PE+SHM+LS=BindingEnergyD 
MeasuredBindingEnergy=BindingEnergyD-NE 
Then subtract the neutron binding energy because it doesn’t count in the binding energy  
Equipartition of Energy 
The central electron in the deuteron is also doing 1D simple harmonic motion!  The (1/2)krH2 
SHM PEosc =2e2/rH gives (the same escape velocity v in (1/2)mv2) =hwo½=2e2/r (=1.1Mev).  
This electrostatic PE=2ke2/rH=½krH2 is hwo½, the zero point energy oscillation. So PErot= 
PE=2e2/rH=2(9X109)(1.602X10-19)2/2.8X10-15 =1.7X10-13J. 
1.7X10-13/1.602X10-19=1.06X106eV=1.06=1.1Mev=KEOsc 
The rotation degree of freedom energy (J(J+1)/(8p2I)=KErot also contributes  = energy from the 
equipartition of energy so KE1D=KErot=KEosc=1.1Mev.  So 
KE1D+KEosc+KErot=1.1+1.1+1.1=3.1Mev from the equipartition of energy in Deuterium. 
Subtract off the neutron PEe and get [(1+1+1)-1]1.1=2.2Mev binding energy of the Deuteron. 
The nucleus is made of Deuterons. The odd neutron just adds an excess PEe=PE3D.   
 We can continue this use of the equipartition of energy for larger and large nuclei which makes 
it just M(1.1+1.1+1.1))=energy for each deuteron in the nucleus where M ps a integer..  
Note we did not have the absurd assumptions of 1D and motion through a vacuum as in the shell 
model.  The 1D arises from the electron motion between the two protons which also moves in a 
vacuum between the two protons. So we recreated the shell model without all its silly 
assumptions and know why it works! 
10.6 Recall for J=1 we have y µ rsinq µY11 (q,f) double lobe y*y along the z axis: From 
equation 9.14 we find with these inputs that E=1867Mev                             (9.23) 
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 The deuteron. The only stable lepton state in this theory so far are 2e and 3e at r=rH with the 
latter being internally unstable but regenerative through that particle (re)creation step above 
(fig6).  Also if a second 3e object is nearby a 2P1/2 state (sect.1.6, eq.1.2.7) the second proton 
picks up the electron making this state also regenerative and stable (Deuteron).  
The two protons are stuck at the line of sight horizon rH»2.88X10-15m. Because of the 
ultrarelativistic motion in the transverse direction there is that Fitzgerald contraction down to 
nearly a point (lepton, S½ states) allowing Maxwell’s equations to again be used and also 
showing we can use +e+e-e=+e charge for the center of each proton. A Gaussian pillbox can then 
be defined obtaining the usual ke2/r potential energy for each central positive e. Define  
r=2.88/Ö2.  So the average distance to the central Deuteron electron from all 3 electrons is  
(rÖ2+rÖ2+r)/3=(2Ö2r+r)/3=2.6=rH’.  Tabulated D charge radius=2.128X10-15 m»rH. Note the 
middle electron is also at 2rH/2=rH since it has side to side wobble. From the equipartition of 
energy PEe=SHM so potential energy is PE=SHM +PEe so =2PEe and PE is provided by both 
protons on the central electron potential energy e2/rH+e2/rH between the electron and 2 protons is 
PEe=2e2/rH . NB= neutron binding energy. 

 
Rotational energy at rH 
The equation used here is the iterated new pde eq.2 (2nd derivative with eq.10.8.1) with SHM 
approximation of bond vibration spring potential energy with  PE=2ke2/rH= ½kxo2=p2/2m=hwo/2 
with 3D spherical harmonics with rotational energy [h2/(2I)](L(L+1))= [h2/(2mr2)](L(L+1))= 
[h2c2/(2mc2r2)](L(L+1))= [h2c2/(hwr2)](L(L+1))= [hc2/((c/r)r2)](L(L+1))= [hc/r](L(L+1))=           
hwo(L(L+1)).  Given k00= 1-De-rH/r . at r=rH (where the electron is located here). So from Ch.8  
Energy=1/Ök00 then m=1/ÖDe in that in [h2/(2mr2)](L(L+1)) then m=1/ÖDe.  So 
[h2/(2mr2)]=1.2Mev = hwo. 
Comparison with QCD SU(3) 
The 3D components of the SHM tensor Aij=(1/(2m))(pipj+m2w2xixj)  and components of L 
satisfy Poisson bracket relations  SU(3). So by including as a perturbation the rotation, the 3D 
SHM version gives SU(3) symmetry in the S derived from those Aij  (Herbert Goldstein, 
‘Classical Mechanics’ 2nd edition, pp.425) which holds in both the classical and QM case then 
(So we have just explained the origin of the adhoc QCD gauged alternative to this nuclear 
physics.) 
Multiple Deuterons  
  So there are then simple rules to follow for finding nuclear binding energy. They come out of 
the new pde and use the conservation of energy.  Use equipartition of energy.  
1) Number of bonds gives number of PE+LS (1PE=1.11Mev). LS=1 for PE=1. 
2) LS=PE except if extra electron 
3) Mhw(N+D/2) equally distributed among all bonds. N is SHM quantum number, D dimension. 
Equipartition of energy between Eosc , PE and LS.except (when extra electron). 
4) subtract neutron number since binding energy does not include them. 
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    1.11XN= Mev 
 10.7 Details of Finding Binding Energies:  
Deuterium.   P-e-P   Note PE plus LC.   Subtract 1neutron+1p 
E=Eosc +PE+LS =1+1+1 =3. 3-1 =2,  1.11X2=2.2 Mev 
   Neutron is then ½ Deuteron (since we then dropped 2P3/2).:3/2=1.5Mev 
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>    
Multiple nucleons constrain inside each Deuteron to PE+SHM,so no LS. Excited state=SHM#=2   
So Bond#XSHM#X(SHM+PE)+LS=BE If straight line then LS=0                   
 He3.   Straight line  Bond#XSHM#X(SHM+PE)=2X2X2/3=8/3                   P-n-P                                                                                                                                                                                                                                        
3(8/3)+1/3=8, 8-1=7, 7X1.11=7.6  Mev                                                                             
Tritium. Not straight line so Bond#XSHM#X(SHM+PE)+LS= BE.              n-   n        
Extra electron  so   3(8/3)+3/3=9, 9-1=8,  8X1.11=8.6 Mev.                               P                      
 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
He4    For rotation SHM=rot=3/3, 1D rot for each deuterium dumbbell  so 2/3+1/3=3/3=1 
  6X2X(2/3)+3/3=24/3+1=8+1=9 
9+9+9=27.                                                                       P  - N 
 27-2=25    25X1.11=27.75, 28/4=7 P-N, magic#              P                                                                        
Lithium. Note 2 more bonds so +2PE1.  Subtract 3n and 3P 
  10+10+10=30.  30-3=27,  27X1.11=30                30/6=5        
5 other 4nucleon 2P isotopes and isotones.eg., 
Carbon is 3 He4  -2P  so 28+1=29, 3X29=87,  87/12=7.3. 
Rest of even #nuclei multiples of He4 and D, odd number add 1.  
Instead of N in hw(N+½) going up as in the shell model the N in Nhw(1+½) and Nhw(2+2/2) 
goes up (as well as PE and L). So we still have the same spherical harmonics (S,P,D,F,G,..) 
states and the binding energy per nucleon is approximately constant from carbon onward. 
Neutron  
If the deuteron broke up most of the energy is be in the single proton 1.3MeVand the remaining 
1/3 would be in the 2P½  state .78MeV. Add .511 for the electron and get 1.3Mev, the excess 
mass of a neutron above a proton. 
Radius Of Proton: Average both the cos2 edge ((1/2)r) and axial width (near zero)  
(2.81713/2+0)/Ö2=.98F=rp. But the spectroscopic and scattering methods that are used to 
measure rp do not assume a singularity physics at 2.8F/2=rHp/2 so allow for the slightly larger 
radius in practice proton radius= rp = 1.1F.  The shell model sect.6.12 also requires this average 
radius and so has that inner and outer metric (sect.6.11, 3.1 ) as in sect 3.1 just like all solutions 
of eq. 2AI. 
1,1,1  deuteron 
3,3,3  He3 
3,4,3 Tritium.   (extra e) 
9,9,9 He4 
10,10,10 Lithium 
30,30,30 C   
We actually understand the nucleus of the atom from first principles this way.   
For history of the alternative Shell model, also see study by A.E.S. Green in 1956).   
 
10.8 High (>100Gev) Energy Solutions 
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Note at high energy the electrons in the 2P3/2 lobes (e.g., udd) would appear stationary, not 
averaged blob (density distributions). We are back to having single ‘e’ (not fractional “e”) 
scatterers again. Thus at very high energies (>100GeV) single e (not fractional charge) should 
once again dominate scattering and we should no longer see these “jets” (which in the above 
context is mere P wave scattering) caused by higher probability emission in these trifolium lobe 
directions. Also note that rH in koo is a hard shell and therefore Van der Waals type liquid 
equation of state at >100Gev energies.  Note by the way that the 6th 2P resonance is observable at 
these energies.   
Let <A’| represent the outgoing scattering wave immediately after a incident plane wave scatters 
off V. Let |A> be the 2P3/2 hyperon state for r=rH having the V. Thus at r=rH  V itself will have 
the 2P3/2*2P3/2  =y*y trifolium shape and thus commute with |A> since they constitute the same 
structure (2P3/2 commutes with itself). So since V commutes with |A> then <A’ also is a 2P3/2 
state or we have <A’|V|A>=0 and so no scattering into such states. Thus a type of ‘P wave 
scattering’ results from an incident plane wave. Thus we explain the origin of the ‘jets’ that are 
otherwise ascribed to scattering off quarks. 
Note that when the mean free path d during the interaction time is very short (d<<(1/3) 2prH) 
there is no more smearing between the 2P3/2 lobes and we have scattering off of independent 
point particles and the 2P3/2 state ceases to be relevant in the scattering and so the jets disappear. 
(jet quenching). Thus at extremely high energy the scattering is from charge e (not 1/3e) again 
and there are no more jets above top energy. LEP actually observed this effect just before it was 
shut down. 
 
10.9 Charge Independence Of The Strong Interaction 
It is well known that the strong interaction is approximately the same magnitude between 
Neutron-Proton, Neutron-Neutron and Proton-Proton pairs and thus is ‘charge independent’. 
Also note our theory deals with electrons only which only has charge dependence if certain QM 
effects are ignored.  But recall the orthogonality of S and P states as in <S|P>=0, <S|S>=1, 
<P|P>=1 given all the superscript and subscript substates (e.g.,S and m) are the same as well in 
the bra and kets. The ordinary nuclear interaction here is due to a covalent bond (sharing 
electrons) which is also a very strong interaction (bond) at r=rH and is dependent on the spin S 
and m state and not so much on the sign of the charge. Thus these QM (valence, spin) effects are 
very strong at r=rH. Thus the charge independence of the strong interaction is really an S state 
independence and 2P3/2 state dependence at r=rH of a 2P3/2 structure interacting with an S state.  
 

.  
Fig.5 
There are no gauges required in this theory and the QCD SU(3) is such a gauge. We have found 
that hadrons are excited states composed of these half integer spherical harmonic lobes.              
 
Chapter 11 Scattering Cross-Sections 
From the energy component of polarized representation of equation 8.1, 8.2: and using iterated 
(as in bosonic) section 9.13 E2=p2c2+m2oc4 = 
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=V+k         (10.8.1)                                                                                        

Note the resemblance of E2=p2c2+m2oc4 to the Schrodinger equation if the E2 =k2+1/(r-rH) +1 of 
equation 10.8.1 is substituted into it. We interpret this equation as representing a bounded 
volume with energy E=V+k therefore allowing us to use that V in the usual Gauge theory 
method and so substitute it into the ordinary Dirac equation as gauge force. term. So we use    
1/(r-rH) instead of 1/r. in the Dirac equation S matrix. 
We use the equation 4.1 source and proceed in the usual way of Bjorken and Drell (here 
1/r®1/(r-rH/2) to construct the one vertex S matrix for the new Dirac equation 9. Recall the ½ 
came from the square root in equation 4.1. Thus the k in the integrand denominator is found from 
the result of our V=–1/(r-rH/2) potential in equation 10.8.1 instead of the usual Coulomb 
potential 1/r in the large r limit (so a free electron otherwise): 

      (16.5) 

rescaling r®r’+rH=r and t®t’+(rH/c)ºt to minimize the resonance energy in pf-pi. We then 
obtain: 

For so: 

Sifº »                                                           

(10.8.6)    

Note that =Mott scattering term with the ei(rH/2)q our 

resonance term. The other left side coefficients and reciprocal |x| part of Sij comprise the well 
known Rutherford scattering term 
ds/dW=[(Z1Z2e2)/(8peomvo2)]2csc4(f/2)=1.6X104(csc(f/2)/vo)4.  (Note that equation 10.8.6 
applies to the 2P1/2-2P3/2 state electron-electron interaction (i.e., neutron) below). Here pf-pºq. 
Note in equation 10.8.6 the factor ieikq=i(coskq+isinkq). Here we find the rotational resonances 
at the 2P3/2 r=rH lobes associated with maximizing the imaginary part which is icoskq to obtain 
absorption scattering (at kq=p), which here will then be the masses exchanged in inverse beta 
decay. Also a solution to the Dirac component is always a solution to equation 14.1 (but not vice 
versa) if we invoke an integer spin in this resonance term. Here also the p part uses the old De 
Broglie wave length to connect to the p=h/l. In that regard recall that hn/c= h/l=p and for a 
DeBroglie wave fundamental harmonic resonance we have lrot=2pr for a stationary particle of 
spin 1=L (ambient E&M field source gives L=1 De Broglie). 
Coulomb scattering of electrons, taking account spin-spin scattering 
.  
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Mott scattering, relativistic correction to Rutherford scattering  
Ultrarelativistic electron scattering: Electron rest mass m neglected. 

 
 
 

                                              (10.8.7) 
m/E<<1,  m2 ®0 ,   q2 =(pf-pi)2= -4EE’sin2(q/2).  Proton behaves like a heavy electron of mass 
M. E®1/Ök00 =1/Ö(1-e-De-rH/r).  
For forward scattering q»w/b*»0  in sin2(q/2)<<1  in the below figure 6. So 
ds/dW=d(1/E2)/dE2(1+tiny)/tiny=((d(1/t)/dt)(1+tiny)/tiny=-(1/t2)(1+tiny)/tiny.                             
t=E2=(energy transfer)2.  
 Ultrarelativistic dependence of 10.8.7 new pde electron differential cross-section on 1/E2. 
E=energy. Recall in this theory this should also be the energy dependence of ultrarelativistic 
proton-proton scattering since protons are made of electrons (in my work) and at very high 
energies(E>>150GeV) the electron cloud binding energies in the proton don't matter anymore 
(that Paschen back binding energy starts becoming negligible at TeV energies): we have free 
electrons hitting free electrons once again.  
For energy transfer t on left side graph (fig.6)  ds/dtµd(1/E2)/dE2=d(1/t)/dt=-1/t2. t=E2.  Energy 
transfer Öt is proportional to 1/p. But p2 is proportional to area which is then proportional to 
1/DE2=1/t.  So s=Area µ1/DE2=1/t.  Ds/DÖs=(1000nb-10nb)/1GeV.   But this is my equation 1 
in figure 6 (also eq.10.8.7) for near forward elastic scattering. For 1GeV»1Ös then this Ds/(1) is 
a measure of ds/dt on the left side forward scattering elastic energy transfer graph since 12=1. 
But square root energy transfer Öt in a scattering event for a beam at a specific energy (let's say 
at 13KeV) is also the abscissa of that big graph (on the left of the totem figure 6). So it is 
possible to get from total cross-section s of electron scattering verse energy Ös:  s/Ös) to ds/dt 
vs t where t=(energy transferred)2 at least at (literally)  ONE  (1GeV) energy transfer. 
The fact that LHC totem measures elastic forward scattering thereby made it possible to test this 
theory (eq.2, 1.11, new pde) at 13TeV (and Ös»2), the very highest energy particles that mankind 
can produce. I could estimate from LHC data the asymptotically infinite beam energy transfer 
(curve) energy (red line) and compare it with my own s/Ös at Ös»2.From the graph of my 
equation 1 (10.8.7): 
 1000nb at Ös=1.5GeV 
100nb at Ös=2GeV 
10nb at Ös=2.5GeV 
But that curve of eq.1 in figure 6 is for one eq.2 electron scattering off of one equation 2 (new 
pde) electron. Since there are 3 such electrons in each of the two protons you must multiply by 9 
to get ds/dt.  
On my QED graph of my eq.1 had s»100nb at about 2»Ös. So multiply by 9 and get Ds/Ds»         
(1000nb-10nb)/((1.5-2.5)Ös)=10-3mb/1GeV. But 12 =1 and there are 3 electrons per proton so we 
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multiply by 2: 9X10-3mb/12GeV2»10-2mb/12GeV2 which is sitting in approximately the same t»2 
spot on the left side ds/dt vs t graph of Fig.6. 
So we proved from the data that a ultrarelativistic proton-proton scattering event (~13TeV) is 
equivalent to 6 free electrons scattering off each other with the electrons obeying (2AI) equation 
9, the new pde. Thus the hadron theory that should be used is 2+2+2 at r=rH, not quark theory. 
Note also the cusp is at the proton reduced mass here. It is where (~.5GeV) binding energy must 
be added to break the electrons apart in the head on collision which takes away from the elastic 
scattering energy transfer. So we must apply this theory at much higher energies (eg.,Ös»2). 
Quark theory (QCD) implies some kind of exponential dependence which is not seen in this 
scattering data.  
Hard Shell Scattering Peak Of ds/ds Implies Protons Made of Electrons, not Quarks 
The electron radius at 2.8X10 -15(me/mt)=8.1X10-19m provides the  hard shell cross-section limit. 
For colliding beams we have an additional factor of 2 here.  2(mt+mµ)/me)mp= 6.91347TeV. 
There 3 are electrons in the proton so the proton energy is 3X6.913Tev=20.74TeV»21TeV. So 
the ds/ds should level off at proton energy 21TeV. This is in analogy with the Q=s/pr2µds/ds 
(1/sµl) r=l peak of Mie scattering theory. 

 
Analogy to Mie scattering 
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Extinction efficiency (Qe) as a function of diffraction parameter x (= 2πr/λ). 
Analogy of Mie scattering with Q=s/pr2. Here the lepton hard shell is at r=2X10-19m.  Note 
analogy of leveling off of ds/ds l=r (i.e.,x=6) as at x=21TeV for LHC. 
Totem 
LHC totem forward scattering gives elastic scattering cross-sections for high energies and so 
small scattering angles. We choose q=1°. 
  = 

 
 

=7.55X10-42 =7.55X10-14 barns/steradian.  
This result might be found in the totem data archives. 
 
LHC totem forward scattering gives Coulomb scattering cross-sections for high energies for 
larger (but still small) scattering angles. We choose q=3°. So 

= 

 
=8.17X10-10barns/steradian. This result might be found in totem data archives data.  
 
Meson Multiplets 
"tetra quarks" are merely two mesons bound together! They can bind together more deeply if the 
components of the mesons themselves are bound individually to the components of the other 
meson giving more mass, section 8.11. 
 In this theory (DavidMaker.com, Ch.9-10) this is called singlet and doublet states with one 
bound with more binding energy than the other for those heavy upper 2P Paschen Back states.  
So these look like heavy and light tetraquark states but they are not, they are merely two types of 
meson binding states.  You could predict the energies from the Paschen Back effect associated 
with those large plate fields, section 8.11. 
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11.1. W Compton Wavelength Region  
Recall in appendix A me Source Term at r=rH Inside Angle C. 
Analogously from 2AC we get with the eq.3 doublet e±e  the Proca equ (3) neutrino and 
electron D e at r=rH. As in sect.6.13 in k00 we normalize out the muon e. So we are left with the 
electron De in k00 =1- [De/(1±2e)]+[rH(1+ ((e±e)/2))/r] from the two above rightmost (Proca) 
diagrams. So Source =  + is for Z 

and – is for W. So W (right fig.) is a single electron De+n perturbation at r=rH=l (since me ultra 
relativistic): So H=Ho+mec2 inside Vw. Ew=2hf=2hc/l,  (4p/3)l3=Vw. For the two leptons  

  . Fermi 4pt=  

2G   

.  (A3)  
What is Fermi G? 2mec2(VW) =.9X10-4Mev-F3 =GF the strength of the weak interaction. 
Derivation of the Standard Model But With No Free Parameters 
Since we have now derived MW, MZ, and their associated Proca equations , mµ,mt,me, etc.,Dirac 
equation figure 2 part.1),  GF, ke2, Bu, Maxwell’s equations, etc. we can now set up a Lagrangian 
density that implies all these results. In thisFormulation Mz=MW/cosqW, so you find the 
Weinberg angle qW, gsinqW=e, g’cosqW=e; solve for g and g’, etc., We will have thereby derived 
the standard model from first principles (i.e.,postulate1) and so it no longer contains free 
parameters! 
Thus we have the interaction  e operating in W radius using the doublet of Ch.3. 
In general then we have obtained an ortho triplet state here since we are merely writing the 
Clebsch Gordon coefficients for this addition of two spin ½ angular momentums: 
|½,½,0,-1>,.. |½, ½,0,0>,..|½,½,,0,1>,.. or  +W Zo, -W. 
Anyway, this small S matrix involves the neutrino and so can allow spin 1/2 neutrino emission 
jumps instead of just the usual E&M spin 1 jumps. 100km/sec metric quantization translates to a 
neutrino rest mass of .165eV. 
 
11.2 Excited Z States 
Put  me in Equation 6.4.1 
The beautiful thing to be noted here is that for the doublet resonance with the 2P3/2 lobe at r=rH 
that minimizes energy you get the spin 1 W and Z and the value of the Fermi G! We have also 
shown that this doublet interaction corresponds to the exchange of massive spin 1 particles 
(recall spin ½ s forbidden by that j-1/2 factor). 
11.3 Probability for 2P3/2 Giving One Decay 1S Product at r»rH In W Region 
In equation 4.12 we note that invariance over 2p rotations using (1+2e)d2q does not occur 
anymore thus seemingly violating the conservation of angular momentum. To preserve the 
conservation of angular momentum the additional angle e must then include its own angular 
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momentum conservation law here meaning intrinsic spin½ angular momentum in the S state case 
and/or isospin conservation in the 2P3/2 case at r=rH. In any event we must also integrate to C=e. 
Here we do the E&M component decay given by equation 3.2. 
 Plug in S½ µeif/2, ½(1-g5)y=c into the 4pt. interaction integral. In that regard note that the 
expectation value of g5 is proportional to v µ Heisenberg equation of motion derivative of 
2P3/2µei(3/2)f. We integrate <lepton|baryon> over this W exchange region where we note 
(~1/100)F for 90Gev particle, so dV=((1/100)F)3)=VolW. Also cko=e=106Mev from section 2.1. 
From Ch.3 on the vacuum constituents e and n we note that òòòdt=Vol, c is defined as the 
vacuum eigenfunction. Vacuum expectation sect.B2: S<|vaM>|e|<vacM+1|>=<| 
òòòy*necedV|>=<|Pot|>= eVolume of W. Recall also that appendix A implies that the W and the Z 
are composites. This application of eq.2 for example applies to the 2P½ -2P3/2 electron-electron 
scattering state inside the neutron <Proton2P3/2|Pot|Neutron2P½ -2P3/2>. Plug in S½ µeif/2, ½(1-
g5)y=c Also we can get a weak, strangeness changing (second term below), decay from a 2P½-
2P3/2>mp to the S state branch equation. eq.2 expectation values in the 4pt.. 
=S<lepton|vac>|e|<vac|baryon> =Fermi interaction integral =òòy1*y2y3koccdV= 
òòòy1*(eVolW)cdV= òòòy1*(eVolW)cdV.  Also  dV=dAdf=Kdf. 
So the square root of the probability of being in the final state is equal to the Fermi integral= 
òòy1*(Pot)cdV =òòy1*y2yeDVWcdV= 

=

  

                                (10.8.7) 

with <initial|c|final>2 » transition probability as in associated production with the separate 2P 
proton ground state transition being the identity (DS=0). Factoring out the 2 and then 
normalizing 1 to .97 simultaneously normalizes the 1/4 to .24 in section 3.2. With this 
normalization we can set cosqc=.97 and sinqc =.24. Thus we can identify qc with the Cabbibo 
angle and we have derived its value. We can then write in the weak current sources for hadron 
decay the VA structure:  |cosqC-g5sinqC|.  Thus with the above Cabbibo angle and this CP 
violation and higher order (rH/r)n terms in section 3 we have all the components of the CKM 
matrix. Note we have also derived the weak interaction constant GF here. 
Given the role e plays here in decay we find the expectation value of energy e within the S 
matrix scattering region in chapter 10. 
Recall from section 1.2 the possible mixing of real and imaginary terms in that energy coming 
out of that first order Taylor expansion. There we found the 1+x and 1-x solutions cancel and we 
could ignore the 1+1=2 term as it is still a flat metric. 
 Also there are still extra terms provided by the ‘small’ higher order r2 terms in that Taylor 
expansion so that "higher and lower" than the speed of light mixed condition still can exist (for 
DG¹0. See end of section 4.6 and 10.8.6). In that regard note for the next higher order Taylor 
term at largest curvature d2(1/krr)/dr2 is large negative and r2 is positive implying a net negative 
term and therefore  a neutral charge (see case 2, of section 19.6)! In that case the perturbative 
squared r term appears to overwhelm the rest since the lower order terms then cancel. Note from 
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the above we put these neutral conditions also into that decay since net charge is zero in the 
Cabbibo angle derivation. This then appears to be the beta decay condition where the neutrino 
(higher than c) and the electron, (lower than c), decay from this neutral particle condition 
(bottom of section 10.8). The beginning 2P3/2 ground state still exists however in the respective 
Cabbibo angle calculation. Thus those real and imaginary terms coming out of that Taylor 
expansion provide the explanation for beta decay. 

 
Fig.7 
me Source Term Inside Angle 
.See section 0.2 and B2 So W is a single electron De ,n perturbation at r=rH:   H=Ho+2mec2 inside 
Vw. Ew=2hf=2hc/l,  (4p/3)l3=Vw. For the two leptons    . 

Fermi 4pt=  G   

. (A3)  
What is Fermi G? 2mec2(VW)/F3 =.9X10-4Mev-F3 =GF the strength of the weak interaction. 
Next we plug the respective ys into y1,y2 in sect.B2.  In that regard the expectation value of g5 is 
speed and varies with ei3f/2 in the trifolium. The spin½ decay proton S½ µeif/2ºy1, the original 
2P1/2 particle is chiral c=y2º½(1-g5)y=½(1-g5ei3f/2)y. Initial 2P1/2 electron y is constant. Plug 
these terms into equation B2 =  òòyS1/2*(2mec2Vw))cdV= 

 

with VA <initial|c|final>2 » transition probability as in associated production. Factoring out the 2 
and then normalizing 1 to .97 simultaneously normalizes the 1/4 to .24 in Ch.3. With this 
normalization we can set cosqc=.97 and sinqc =.24. Thus we can identify qc with the Cabbibo 
angle and we have derived its value. 
G=[G2/(4pN)] miaiP|m|l(x)|2 , x=Smj./mt Eg. 1/tµ=[G2mµ

5/(192p3)](1-me2/mµ
2)6 . 

r<rH Application: Rotational Selfsimilarity With pde Spin: CP violation 
12.1 Fractal selfsimilar spin 
The fractal selfsimilarity with the spin in the (new) Dirac equation 2 implies a selfsimilar 
cosmological ambient metric (Kerr metric) rotation as well as in section 4.1. Thus there will be 
2dstdsf rotation metric cross terms with the dt (without the square) implying time T reversal 
nonconservation and therefore CP nonconservation since CPT is always conserved. We thereby 
derive CP nonconservation from first principles: CP nonconservation is a direct consequence 
of the fractalness.  This adds another matrix element of magnitude ~1/3800 (sect.6.3) for Kaon 
decays thus adding off diagonal elements to the CKM matrix. 
Or for Kerr rotator use 

                 (13.1)
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 , or 
                                                           ds2 =dr2 + dt2 +2dtdr +..                                     
In a polarized state ( ) in 25.3, 25.25 the off diagonal elements are proportional to 
f=(f+c)e–C. Thus if the charge e is conjugated (C, e changes sign), if dr changes sign (P, parity 
changes sign) and dt is reversed (t reversal) then the ds quantity on the left side of equation 1.6 is 
invariant. But if dr (P) changes sign by itself, or even e and P together (CP) change sign then ds 
is not invariant and this explains, in terms of our fractal picture, why CP and P are not conserved 
generally. P becomes maximally nonconserved in weak decays as we saw in above. The degree 
to which this nonconservation occurs depends on the “a” (in eq.3.2.1) transfer <final lal initial> 
(equation 3.2) which itself depends on the how much momentum and energy is transferred from 
the SM+2 to the SM+1 fractal scales as we saw in this section.  Recall chapter 5 alternative 
derivation of that new (dirac) equation pde (eq.2) linearization of the Klein Gordon 
equation(c=1, =1, m=1, eq.2): 

=                (13.2) 

. This equals 

= if the off diagonal elements zero which is the condition used 
in the standard Dirac equation derivation of the a s and b.  Note that the off diagonal elements 

 are equivalent to the off diagonal elements in equation 5.1 

(and are corrections to 5.2 in fact) so are not zero for parity and CP NONconservation in this 
context (in a rotating universe). So in the context of the Dirac equation the CP violation term 

  (after division by ds2). Thus CP violation goes up as the 
square (pE) of the energy (so should be larger in bottom factories). The section 13.2 below 
Cabbibo angle calculation (not rotation related however) is an example of how this method can 
give the values of the other terms in the CKM matrix. They arise from calculation of <Z> 
between higher order m harmonics. 
This section is important in that we see that CP violation is explainable and calculable in terms 
of perturbative effects on the ambient metric (and therefore the Dirac equation) of a rotating 
universe with nearly complete inertial frame dragging (eq. A6 in the E&M form), CP violation 
doesn’t need yet more postulates as is the case with the GSW model. In fact the whole CKM 
matrix is explainable here as a consequence of this perturbation. 
 
Note the orientation relative to the cosmological spin axis is important in CP violation. 
Integration of the data over a 3 month time (at time intervals separated by a  sidereal day) is 
going to yield different CP violation parameters than if integration is done over a year. 
Miscellaneous 
12.2 GIM Derivation 
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    Recall in the GIM (Glashow, Iliopoulos, Maiami) hypothesis that u,d were a pair of left 
handed Fermion states as in V-A . d'=dcosqc+ssinqc,  s'=-dsinqc+scosqc where qc is the Cabbibo 
angle.  Thus u,d are paired, s,c are paired, b,t are paired and we have the V-A transitions.  
 Here we identify the new pde 2P state for r=rH has  Px, Py and Pz states which split in energy due 
to that Paschen Back effect given those ultrarelativistic plates,  into paired spin up and spin down 
states (Px,Px'), (Py,Py'),(Pz,Pz') analogous to the GIM (u,d),(s,c),(b,t). Here the spin orbit 
interaction (LS) coupling energy term is much stronger than the SS coupling term. So we have 
pairs of states J,M,M'> with Px and Py being orthogonal, except for those weak interaction V-A 
terms. The ds2 to ds' transition is through the V-A term. Recall equation the 16.7  |òcf*Gco dV|2= 
=transitionprobability of a ds2 to a ds. of eq.B2 (c=.5(1-g5)y with y in ds2, c in ds)  for V-A 
Cabibbo angle transitions (transitions inside PX separately from PY and separately from Pz) where 
|1|-|g5| replaces the cosqc+sinqc. So in analogy for transitions between PX and PY  
Px'cosqc+Pysinqc=Px', Py'=-Px'sinqc+Py'cosqc. This is a first principles understanding of GIM 
thereby allowing us to derive the electroweak cross-sections (WS).  
Recall  that dz=-1 ,0 solution to eq.2 for C=0 implies dr<0  at least for small C. (low noise). 
because  -1 is on the real r axis. 
                                                      
12.3 Normed Division Algebra, Octonians, E8XE8 and SU(3)XSU(2)XU(1) Basis Change 
Note from the above that the new pde fractal theory generated the electron 2AI with mass, the 
near zero mass left handed neutrino 1.12. Recall also from above the koo=Ö(1-e-rH/r).  The W 
was generated from a nonzero ambient metric e in that S matrix derivation part of the metric 
coefficient kµn.Interestingly that Normed Division Algebra (NDAR) on the real numbers (as in: 
||Z1||*||Z2||=||Z|||)  from equation 1 implies that octonians (and thereby the largest normal Lie 
group E8XE8) are also allowed. Recall we have that SU(2) Lie group rotation for the 0° extrema  
imbedded in a E8XE8 rotation since one of its subgroups being SU(3)XSU(2)XU(1). This is the 
only subgroup we can use because it is the one that only contains that SU(2). 
 
7.3 Eigenstates 
Recall the mt=1 was separable at 45° from the rest (of the eq.1.15 diagonal states) since ds is 
constant there for small rotations. So dst can be normalized. 
The B field rotations are here reciprocals of the rotations in the Mandelbulbs since koo=1-rH/r and 
so rH/r®xdr for B field motion given smaller radius r means high energy xdr.  So the ortho state 
is the smaller e Mandelbulb eigenstate and the para state is the larger t limacon Mandelbulb 
eigenstate.  
 
 Meta Theory Of Couplings In SM 
From the 1.15 diagonal on the Mandelbrot set: m=mL=1+e+iDe=mt+mµ+me . 
mv2/rH=qvB (1) 
prH2B=Fo     (2)    
v=c. Solve Eq.1 and eq.2 for q:   
q=mcprH/Fo. (3) 
The effect of the E field lines coming together by Fitzgerald contraction g imply a force increase 
that can be realized by invoking an effective charge increase e®q’.or in V/dr’=Electric field with 
r=rH in dr’2=krrdr2=[1/(1-rH/r)]dr2  (The charge e itself really does not change.).  
For m=mµ =e   2P3/2 state (So ultrarelativistic so E field line contraction.). From equation 3 



101 
 

q’= e, H®e2  E&M for the Nth fractal scale, Gravity for the N+1th fractal scale. 
For m=mt  +me  as meson.  2P3/2 state (so ultrarelativistic).  From equation 3: 
q’=46e,    H®(46e)2  Strong Force. 
For m=me=iDe +v, v small, 2P½, dr’2=krrdr2=1/(1-rH/r)dr2. So V/dr’=E small.  From equation 3: 
q’=ie/200,  H®iq’V so y(t)=eiiq’Vty(to)= e-q’Vt y(to). 
exponential decay with a force q’2=40000X smaller than the E&M.  Weak interaction. 
dr‘ large allowing large uncertainty principle dr‘ for small nonrelativistic mass me in 
(dr’•mec)³h/2). This occurs for small externally observed dr and mec in the 2P½ state and 1S½ 
state at r=rH. But these are decay states (PartII Sect.7.3).  Given these strength and decay 
parameters we can alternatively integrate over the rc volume our W and Z particles to get the 
Fermi G 4pt coupling of weak interaction theory in the SM. W is then a virtual intermediary 
here.  So we just derived all 4 forces from that diagonal on the Mandelbrot set. 
 
Calculations:  So for the Kerr mass ortho state (2nd Mandelbulb)  (a/r)2 =e+De (thus added to 1) 
at r=rH , for (N+1):  mev2/r=qvB so mev/(qB)=(1-2e)mµc/qB=r.   Thus (1-2e)mµc/q=rB=  
(1-2e)(1.883X10-28)(299792458)/(1.6022X10-19)=.3525(1-2e) 
Fo/(rB)=Fo/[0.3525(1-2e)]=Bpr2/(rB)=pr. 
rH=1.359X10-15(2)/[(.3526)p(1-2e)]=2.805X10-15m=e2/mec2 for 2P states (eq.7.1). 
 
 
 
 
 
 
 
 


