
A Generally Covariant Generalization of the Dirac equation that does not require 
gauges(Newpde) 
                                                            David Maker 
 
Abstract:  In that regard Dirac in 1928 made his equation(1) flat space(2). But space is not in 
general flat, there are forces. 
  So over the past 100 years people have had to try to make up for that mistake by adding adhoc 
convoluted gauge force after gauge force until theoretical physics became a mass of confusion, a 
train wreck, a junk pile. So all they can do for ever and ever is to rearrange that junk pile with 
zero actual progress in fundamental theoretical physics being made,.. forever. 
  By the way note that Newpde(3) gµÖ(kµµ)¶y/¶xµ=(w/c)y   is NOT flat space (4) so it cures this 
problem(5). 
 
References    
(1) gµ¶y/¶xµ=(w/c)y   
(2)Spherical symmetry: (gxÖkxxdx+gyÖkyydy+gzÖkzzdz+gtÖkttidt)2=kxxdx2+kyydy2+kzzdz2-kttdt2=ds2 
kxx=kyy=kzz=ktt=1 is flat space, Minkowski, as in his Dirac equation(1).   
 
(3)  Newpde: gµÖ(kµµ)¶y/¶xµ=(w/c)y  for e,v. So we didn’t just drop the kµn 
(4)  Here  koo=1-rH/r =1/krr,  rH =(2e2)(1040N) /(mc2). The N=..-1,0,1,.. applies to the Nth 
Fiegenbaum point self-similar fractal scale. Newpde from Occam’s razor optimized postulate1:                                                                                   
z=zz is the algebraic definition of 1 and adding (small) constant C is trivial in z+C=zz, dC=0 (1) 
A  Substitute  z=1+dz into equation 1 and get  2D Dirac equations for e,v (sect.1.1). 
B  Substitute left side z into right side zz repeatedly in equation 1and get the 2D Mandelbrot set 
A,B together gives 4D Newpde.  So Postulate1®Newpde 
 
 
 
(5) For N=0 the third order Taylor expansion term of Ökvu gives the Lamb shift and anomalous 
gyromagnetic ratio (without the renormalization and infinities(6))  
For N=-1 (i.e.,e2X10-40) kµn is then the Schwarzschild metric gµn; so we just derived General 
Relativity and the gravity coupling from Quantum Mechanics(QM) in one line. So kuv even 
provides the general covariance of the Newpde. Eq 2a (ref.7) even provides us space-time r,t 
For N=1 (so r<rC) Newpde zitterbewegung expansion stage explains the universe expansion. 
For N=1 zitterbewegung harmonic coordinates and Minkowski metric submanifold (after long 
time expansion) gets De Sitter ambient metric we observe astronomically(B1). 
For N=0  r=rH composite 3e is the baryons and composite e,v is the Standard electroweak Model  
Bosons(append.A). We derived Quantum Mechanics (QM,Newpde) for all N fractal scales!(B3) 
For N=1 for example the QM large wavelength psi's provide the explanation for the large stellar 
speeds v in the halos (eg.,Witten's 'fuzzy'theory). Just set koo=goo in the halo, solve for constant v 
For N=1 there is a ambient fractal self similar (S=½) cosmological Kerr metric Newpde rotation 
so with off diagonal dtdf cross term T violation that then causes the (given CPT) CP violation              
and (the selfsimilar S=½ spin axis) also puts a weak dipole on the cbr sky (thus the ‘axis of evil’) 
For N=0  (Eqs.2-5, ref.7) 2D Roo-(1/2)gooR=Goo=+He+Hv giving s*p=Hv a negative sign and so 
left handed chirality to v for maximally symmetric space (MS) time since then for 2D  Goo=0. If 
not MS, as in a nonzero gravity gradient, Hv (neutrino) thereby gains Goo, i.e., mass. 



References (continued) 
6) Need infinities if flat space Dirac equation. For flat space ¶gik/¶xj=0 as a limit. Then must take 
gkm =1/0= ¥ to get finite Christoffel symbol   Gmijº(gkm/2)(¶gik/¶xj+¶gjk/¶xi-¶gij/¶xk) 
=(1/0)(0)=undefined but still  implying nonzero acceleration on the left side of the geodesic 

equation: So we need infinite fields for flat space. Thus QED requires 

(many such) infinities. But we have in general curved space gij=kij in the New pde so do not 
require that anything be infinite and yet we still obtain for the third order Taylor expansion term 
of Ökµn the Lamb shift and anomalous gyromagnetic ratio correction (sect.1.2). 
 
7)Derivation of Newpde: Physics of self similar fractal scales 
 We can do this using the Occam’s razor optimized postulate 1. For example  
z=zz is the algebraic definition of 1 and adding constant C is trivial in     
                                                         z+C=zz, dC=0                                                          (1)   
  
A   Substitute  z=1+dz into equation 1, get     dz+dzdz-C=0  (or d(dz+dzdz)=0)         (2)    
We asume C has a constant density. Solve eq.2 and in-general get dz=!"±√"%&'

(
,   

C<<-¼, so BIG-C so big dz for (for random time t) complex solution   dz=dr+idt        (3)                                           
Big dz so dz<<dzdz (and ddz»0) in eq.2. So d(dz+dzdz)»d(dzdz)=(dr2-dr2+i(drdt+dtdr))=0 (4) 
and take real Minkowski and imaginary component Clifford algebra which for negative and 
positive dr,dt imply noninfinite extremum drdt+dtdr=0= gidrgjdt+gjdtgidr=(gigj+gjgi)drdt =0  (5)                          
Given that Clifford algebra we get, after factoring dr2-dr2=ds2, 2D Dirac equations for e,v.(dzºy) 
 
B  Substitute left side z into right side zz repeatedly in equation 1 and thereby get the 
Mandelbrot set iteration (with its well known 1040NX fractal selfsimilar N=.,.-1,0,1,..scale 
jumps at Fiegenbaum point CM 2D nonflat extremum dz’). C is not uniform density here. 
 Notes:  Big -C case allows random t and so Hamiltonians H (i.e.,physics)      
           Real eigenvalues of H require the (Mandelbrot set subset) Cauchy sequence, sect.2.3. 
          Big g  (in (1/g)dz) boost means small C»dz>>dzdz (so d(dz’)=0) and so no more quadratic 
          equation but we still keep our complex dz and so dt.  Small C is z=zz postulate 1. 
 
A,B together (and the g boost) gives:  Newpde  gµÖ(kµµ)¶y/¶xµ=(w/c)y  for e,v                               
with koo=1-rH/r=1/krr,  rH =(2e2)(1040N) /(mc2)                   Summary: Postulate1®Newpde      
 
8) ring of truth: Equation1 bears a striking resemblance to the Mandelbrot set iteration 
formula and yet puts out as imaginary & real components the Dirac eqs. for e,v. They are 
connected! (also via Newpde). So we thereafter just do that big g boost that gets small dz»C and 
so zz=z so postulate1 (g boost also gets the numerical outputs of the Newpde such as that mc2) 
 
   Note this is the first Ockam’s razor optimized (i.e., postulate1) method of deriving theoretical 
physics (We figured it out! Appen.A8), not that ~100 postulates, assumptions, >23 free 
parameters mess (So where do those many postulates come from?). Furthermore, this New pde 
Nth fractal scale approach is clearly the path to breakthrough physics and generates correct 
physical constants as we saw in reference 5. 
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I Summary: Algebra Details of the two substitutions (A,B): 
1.1 (Simply  postulate 1. But z=zz is the algebraic definition of 1 and adding constant C (or 
K) is trivial in:)                          zz=z+C, dC=0  (1)    
A   Substitute  z=1+dz into eq.1, get dz+dzdz=C (2)   (or d(dz+dzdz)=0)  with in general (for 

dz=!"±√"%&'
(

, C<<-¼, soBig-C and so big dz for random time t complex solution dz=dr+idt (2a)             
Big dz so, dz<<dzdz,. ddz=0 So from eq.2,2a d((dz+dzdz)»d(dzdz)=(dr2-dr2+i(drdt+dtdr))=0 (2b) 
and take real Minkowski and imaginary component Clifford algebra which for negative and 
positive dr,dt the noninfinite extremum   drdt+dtdr=0= gidrgjdt+gjdtgidr=(gigj+gjgi)drdt =0  (3)                          
Factor dr2-dt2 =ds2 eg., d[(dr+dt)(dr-dt)]=0=[[d(dr+dt)](dr-dt)]+[(dr+dt)[d(dr-dt)]] and solve to 
get: (ds º proper time invariant.)  
     (®±e)               dr+dt=ds, dr-dt=ds  ºds1                               for    +ds®     I, IV quadrants       (4)   
     (®light cone v) dr+dt=ds, dr=-dt,                                for   +ds®    II quadrant             (5)     
       “        “             dr-dt=ds,  dr=dt,                                “                “   III quadrant            (6)    
     (®vacuum)       dr=dt,           dr=-dt         so dt=0=dr                                                       (7)    
We square eq.4  ds12=(dr+dt)(dr+dt) =[dr2+dt2] +(drdt+dtdr) ºds2+ds3=ds12. Since ds3 (is max or 
min) and ds2 (from eq.4) are invariant then so is Circle ds2=dr2+dt2 =ds12-ds3. Note this separate 
ds is a minimum at 45° and so Circleºdz=dseiq=dsei(Dq+qo)= dsei((cosqdr+sinqdt)/(ds)+qo),  qo=45°.We 
define kºdr/ds,  wºdt/ds, sinqºr, cosqºt. dsei45°ºds’. So take the global ordinary dr derivative 

(since flat space) of ‘Circle’ 
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Cancel that ei45° coefficient then multiply both sides of eq.8 by h and define dzºy, pºhk.  Eq.8 
then implies (Hermitian) operator hk observables formalism(QM). See next paragraph for real k 
part, (also appendix B3). Eqs 4,5,6,8 and eq.3 Clifford algebra imply 2D Dirac equations for e,v.  
                                                 Needed Big -C to have random t and Hamiltonians (observability) 
 
B  Substitute left side z into right side zz repeatedly of eq.1 to get a Mandelbrot set iteration 
(for small C limit eq.1 cases z»1,0). The right side extremum Cauchy seq. iteration defines real 
k (dr/ds eigenvalues) in eq.8.  It’s left side small drdt (eq.3, d(drdt)=0) extremum is the fractal 
Fiegenbaum pt.=CM Mandelbulb dz’. Note certain Cs have a higher density here so perturbations 
A&B Big g  (1/g)dz boost means small C»dz>>dzdz and so no more quadratic equation but still 
keeps our complex dz and so dt. So we must Fitzgerald contract (boost=g) dz to get small C and 
so z=zz and the postulate of 1. So then boost CM as in dz’=C=CM/g=CM/x=rH so x1 (defining 
mass) must be big. For z=1 in z=1+dz, dz is small and so in CM=xdz, x1 is big and so we got 
z=zz and the postulate of 1.  But for z=0, dz is big so xo is small and in dCM=dxdz+xddz=0 then 
since ddz=0 then dx small so xo is both stable and small (ºelectron). On small scales dz >>dzdz 
so in eq.2 |dz|»C=constant so can only perturb eq.4 at 45°using (dr-dz’)+(dt+dz’)ºdr’+dt’=ds (9)                                            
since ds=|dz|=C. Define krrº(dr/dr’)2= (dr/(dr-(CM/x1)))2=1/(1-rH/r)2 =A1/(1-rH/r) +A2/(1-rH/r)2  
rºdr. The AI term can be split off from RN (as in classic GR) and so  krr»1/[1-((CM/x1)r))] . So 
we have: ds2= krrdr’2 +koodt’2  +..(10).  Note from eq.3 dr’dt’= ÖkrrdrÖkoodt =drdt so krr=1/koo  so  
given that 2D perturbation we get curved space 4D. For 4D our eq.3 Cliffordalgebra then implies 
(gxÖkxxdx+gyÖkyydy+gzÖkzzdz+gtÖkttidt)2=kxxdx2+kyydy2+kzzdz2-kttdt2=ds2. Multiplying the 
bracketed term by 1/ds &dz then eq 8 implies  4D Newpde gµ(Ökµµ)¶y/¶xµ=(w/c)y  for e,v  (11) 
(covariant derivative still ordinary since y (complex) scalar).   Therefore  postulate1®Newpde   



 
Small C boost gets z=zz (so postulate 1) but also gets the numerical value of Large x1                                          
For that stable z=0 the only way to get stable large x (required by that small C boost) is with the 
Newpde composite 3e  2P3/2 at r=rH state (partII davidmaker.com). So stability (dt’2=(1-rH/r)dt2) 
clocks stop at r=rH  The two positron motion and h/2e quantization of flux BA then gives us the 
exact proton mass mp as a reduced mass for the associated Hund rule tº2S1/2,1S1/2 ºµ states (so 
t+µ=x1, mp=x1/2). We rewrite this in the Kerr metric formalism with the 3rd mass also reversing 
the pair annihilation (Thus virtual pair creation inside the rH volume given s=prH2»(1/20)barns) 
and reducing the inertial frame dragging due to the spin½ x1 thereby adding a Kerr metric -(a/r)2 

angular momentum operator in koo=1-(a/r)2-rH/r=x1+xo-CM/(xor) =t+µ+me-2e2/(xor)= 
1+e+De+2e2/(xor)=koo (Fiegenbaum pt. CM defines charge e2.).  Divide by x1 =1+e to normalize 
for only free electron De energy (Needed for the following two electron applications in 
eqs.15,16) asymptotic local flat space and thereby finally getting back to that initial requirement 
for that free particle z=1, large x1 case:    koo=1-xo/(1+e)-CM/(x1r)=1+De/(1+e) -2e2/(2mpr)   (12)         
also giving us the numerical value of that large x1  (=2mp). With t normalized to t=1 with the 
Newpde ground state e mass then De=me=.0005799 with e=µ=.06.                                    (12a) 

 
1.2 A  N=0 Application example: 
Separation Of Variables On New Pde 
After separation of variables the “r” component of equation 11 (Newpde) can be written as  
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Using the above Dirac equation component we find the anomalous gyromagnetic ratio Dgy for 
the spin polarized F=0 case. Recall the usual calculation of rate of the change of spin S gives 
dS/dtµmµgyJ from the Heisenberg equations of motion. We note that 1/Ökrr rescales dr in  
+√𝜅00

+
+0
+ 8%9/(

0
/ 𝑓 in equation 13. Thus to have the same rescaling of r in the second term we 

must multiply the second term denominator (i.e.,r) and numerator  (i.e., J+3/2) each by 1/Ökrr and 
set the  numerator ansatz equal to (j+3/2)/Ökrrº3/2+J(gy), where gy is now the gyromagnetic 
ratio. This makes our equation 13, 14 compatible with the standard Dirac equation allowing us to 
substitute the gy into the Heisenberg equations of motion for spin S: dS/dtµmµgyJ to find the 
correction to dS/dt. Thus again: 
                            [1/Ökrr]( 3/2 +J)=3/2+Jgy, Therefore for J= ½ we have:  
                            [1/Ökrr]( 3/2+½)=3/2+½gy= 3/2+½(1+Dgy)                                           (15)                                                                          
Then we solve for Dgy and substitute it into the above dS/dt equation.  
 
Thus in equation 15 we get the gyromagnetic ratio of the electron with eq.12a krr=1/(1+De/(1+e)) 
and e=0 for electron. Thus solve equation 15 with eq.12a values for Ökrr= 1/Ö(1+De/(1+e))=   
1/Ö(1+De/(1+0))=  1/Ö(1+.0005799/1). Thus from equations 15,12,12a 
 [Ö(1+.0005799)](3/2 + ½)= 3/2 + ½(1+Dgy). Solving for Dgy gives anomalous gyromagnetic ratio 
correction of the electron  Dgy=.00116. 
If we set e¹0 (so De/(1+e)) instead of De) in the same koo in eq.11 we get the anomalous 
gyromagnetic ratio correction of the muon in the same way  



Separation of Variables 
After separation of variables the “r” component of equation 11 (Newpde) can be written as  
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  Comparing the flat space-time Dirac equation to the left side terms of equations 13 and 14:      
                                                     (dt/ds)Ökoo=(1/k00)Ökoo=(1/Ökoo)=Energy=E           (16) 
Note for electron motion around hydrogen proton mv2/r=ke2/r2 so KE=½mv2= (½)ke2/r =PE 
potential energy in PE+KE=E.  So for the electron (but not the tauon or muon who are not in this 
orbit) PEe=½e2/r.  Here write the hydrogen energy and pull out the electron contribution. So from 
eq.16: rH’=(1+1+.5)e2/(mt+mµ+me)/2=2.5e2/(2mpc2).                                                    (17) 
 
Variation d(y*y)=0 At r=n2ao  
Next note for the variation in y*y is equal to zero at maximum y*y probability density where 
for the hydrogen atom is at r=n2ao=4ao for n=2 and the y2,0,0 eigenfunction. Also mLc2 
=(mt+mµ+me)c2=2mpc2 normalizes ½ke2  (Thus divide t+µ by 2 and then multiply the whole line 
by 2 to normalize the Taylor expansion result me/2. e=0 since no muon e here.): So substituting 
eqs.17 and eq.12, and 12a values in eq.16: 
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=hf=6.626X10-34 27,360,000 so that f=27MHz Lamb shift. 
The other 1050Mhz comes from the zitterbewegung cloud. 
 
 
 
 
 
 
 
 
 



1.3 Conclusion:  Postulate1 as z=zz, add constant C as in      z=zz+C, dC=0      (1) 
uniquely implies the Newpde given that later small C boost returning us to z»zz. We finally 
found an optimized Occam’s razor physics theory(1).  
So we really did figure it out! For example recall from the introduction that composite 3e  2P3/2 
at r=rH is the proton: The big proton mass implies high g=917 (speed) positrons means Fitzgerald 
contracted E field lines is the strong force. The two positrons have a large x, two body 
motion(partII) so ortho(s,c,b) and para(t) excited (multiplet) states.                                     
Composite e,v at r=rH is the electroweak SM (appendixA). Special relativity was that 
initialization. Eqs.8,11 gave us Quantum Mechanics (B3) and eq.2a gave us r,t space-time.  
   Other fractal (Nth) scales:  That Newpde kµn metric (In eq.10), on the N=-1 next smaller 
fractal scale so rH=10-402e2/mec2º2Gme/c2, is the Schwarzschild metric since koo=1-rH/r=1/krr: we 
just derived General Relativity(gravity) from quantum mechanics in one line. The Newpde 
zitterbewegung expansion component (r<rC) on the next larger fractal scale is the universe 
expansion: we just derived the expansion of the universe in one line.  
  So those precision QED values we derived above from the separation of variables (and smallC 
so large x1 argument (also proving leptons are point like)) in the Newpde are a trivial result of 
a much bigger picture!  But they did allow us to abolish the renormalization and infinities. 
 
  Real# Mathematics from Postulate 1  
The postulate 1 also gives the list-define math(B2) list cases 1È1º1+1, define a=b+c (So no 
other math axioms but 1.) and Cauchy sequence proof of real number eigenvalues from the 
Mandelbrot set iteration formula. That means the mathematics and the physics come from  
(postulate 1®Newpde): everything. Recall from eq.4 that dr+dt=ds. So combining eqs 4&8 
(dr/ds+dt/ds)dz =((dr+dt)/ds)dz=(1)dz and so having come full circle back to postulate 1 as a real 
eigenvalue (1ºNewpde electron).  So, having come full circle then (postulate 1Û Newpde) (8a) 

      
Intuitive Notion Of  (postulate 1ÛNewpde) 
The Mandelbrot set introduces that rH =CM/x1 horizon in koo=1-rH/r in the Newpde, where CM is 
fractal by 1040Xscale change. So we have found (davidmaker.com) that:  Given that fractal 
selfsimilarity astronomers are observing from the inside of what particle physicists are studying 
from the outside, that ONE New pde e electron rH,  one thing.  Everything we observe big 
(cosmological) and small (subatomic) is then that (New pde) rH, even baryons are composite 3e. 
So we understand, everything.  
This is THE only first principles, one simple assumption(1), derivation of theoretical physics. 



II  Details of Algebra Of Substitutions A,B  into z=zz+C, dC=0  (1) 
postulate 1. But z=zz is the algebraic definition of 1 and adding constant C (or K) is trivial in                                                  
                                          zz=z+C, dC=0                                           (1) 
2.1 A   Substitute  z=1+dz into eq.1, get (1+dz)-(1+dz)(1+dz)+C=0  
so                                       dzdz+dz-C=0  (or d(dz+dzdz)=0)                                            (2) 
with in-general dz=!"±√"%&'

(
, C<<-¼, so BIG |-C| and so big dz for random time t complex 

general solution                                        dz=dr+idt                                                          (2a)                                                                            
Big dz so dz<<dzdz. So from eq.2    d((dz+dzdz)»d(dzdz)=(dr2-dr2+i(drdt+dtdr))=0.     (2b) 
and take real Minkowski and imaginary component Clifford algebra which for negative and 
positive dr,dt the noninfinite extremum drdt+dtdr=0= gidrgjdt+gjdtgidr=(gigj+gjgi)drdt =0  (3)  
Factor dr2-dt2 =ds2 eg., d[(dr+dt)(dr-dt)]=0=[[d(dr+dt)](dr-dt)]+[(dr+dt)[d(dr-dt)]] and solve to 
get: (ds º proper time invariant.)  
     (®±e)               dr+dt=ds, dr-dt=ds  ºds1                               for    +ds®     I, IV quadrants       (4)   
     (®light cone v) dr+dt=ds, dr=-dt,                                for   +ds®    II quadrant             (5)     
       “        “             dr-dt=ds,  dr=dt,                                “                “   III quadrant            (6)    
     (®vacuum)       dr=dt,           dr=-dt         so dt=0=dr                                                       (7)    
We square eq.4  ds12=(dr+dt)(dr+dt) =[dr2+dt2] +(drdt+dtdr) ºds2+ds3=ds12. Since ds3 (is max or 
min) and ds2 (from eq.4) are invariant then so is Circle ds2=dr2+dt2 =ds12-ds3. Note this separate 
ds is a minimum at 45° and so Circleºdz=dseiq=dsei(Dq+qo)= dsei((cosqdr+sinqdt)/(ds)+qo),  qo=45°.We 
define kºdr/ds,  wºdt/ds, sinqºr, cosqºt. dsei45°ºds’. So take the global ordinary dr derivative 
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Note this space time is flat with derivatives=0 
Cancel that ei45°coefficient then multiply both sides of eq.8 by h and define dzºy, pºhk. Eq.8 
then implies (Hermitian) operator hk observables formalism(QM). See B substitution for real k 
part (also appendix B3). Given eqs 8 and 4,5,6 and the above eq.3a Clifford algebra we thereby 
get 2D Dirac equations for e,v. These together imply the (Hermitian) operator observables 
formalism, eq.10  (thus QM), and  2D Dirac eq.for e,v.dzºy,  (<F>*= ò(Fy)*ydt=òy*Fydt 
=<F> Hermitian).	𝑝0𝜓 = −𝑖ℎ )K

)0
 the observables pr condition gotten from eq.8   (9) 

operator formalism thereby converting eq.4-6 into Dirac eq. pdes. So we derived QM here 
(also see B3). (The fractal N=1 cosmology  implies Minkowski+Dirac zitterbewegung 
submanifold give De Sitter Appendix B1) 
                                                 (Needed Big C to have random t and Hamiltonians (observability) 
Origin Of Math from Eigenvalue of dz: Since ds=dr+dt (recall eq.4,8) then                                                              
                      (dr/ds+dt/ds)dz =((dr+dt)/ds)dz=(1)dz                                                              (10)                          
and so having come full circle back to postulate 1 as a real eigenvalue (1ºNewpde electron). So 
(postulate 1Û Newpde) (8a) 
 
 
 
 
 
  



2.2  Iteration Ansatz  (B) for real k eigenvalues 
 Plug in the left side z (of eq.1) into the right side zz repeatedly and use dC=0 and get the 
(fractal) Mandelbrot set iteration formula  zN+1=zNzN+CM , dCM=0  (since d(z’-zz)=              
d(zN+1-zNzN)=d(¥-¥)¹0). zo=0. Note that without dC=0 equation 1 would not yield the 
Mandelbrot set. The Clifford algebra d(drdt)=0 extremum area is drdt at the Fiegenbaum point 
Mandelbulb whose position of C=CM =|-1.4011..| is large but we need C small in z=zz+C since 
z=zz+0 is satisfied by z=1 (and z=o), our postulate1 (bottom right side of fig.1). Recall from eq.2 
dz+dzdz=C. But on the next smaller fractal baseline (at 1040X smaller, zoom) dzdz<< dz»C and 
so all we need is a Fitzgerald contraction boost making dz smaller: C=dz=dz/g=CM/g=CM/x1. (13)  
with x1 defining mass and CM charge. So x1 has to be big for C to be small and so we need a new 
frame of reference, to make dz and therefore C smaller. 
z»1  CM=xdz’, dz’ in z=1+dz’ is small so x1 is big in boosted lepton term C=r’H=CM/x1 new 
pde.k’oo=1-r’H/r. 
z»0  CM=xdz’, dz’ in z=1+dz’ is big (-1) so xo is small.  (So small C occurs only for composite 
3e). dCM=dxdz’+x(ddz’)=0. So dx=0 since ddz»0  
 
2.3 Clifford Algebra +Mandelbulbs Implies Big Right end Cusp and Left end Small 
Fiegenbaum point Extremum Making not flat space (The new 2D Cºdz’ perturbation of dz). 
drdt are areas enclosed by Mandelbulbs of dimensions  drXdt  (of equations 4-6). Scalar 
component of eq. 3a  d(2drdt)=0 implies smallest area dz’ real C extremum Mandelbulb which 
is the Fiegenbaum point C= CM subset of the Mandelbrot set containing that selfsimilar 
fractalness. The big extremum on the right is the cusp of that big single limacon. 

Fig1 
   Right end extremum cusp of Big limacon at z=¼  
On the right end of the Mandelbrot set we get the Mandelbrot set iteration formula starting from 
extremum zo=0, CM=- ¼ that is also uniquely the Cauchy sequence of rational numbers (since 
the sequence started with a rational number -¼) then 1/16=¼¼, 1/256 = (1/16)(1/16), …  with 
limit 0 that implies that 0 in our (later) small C limit application region is a real number so we 
have real eigenvalues                                     (12) 
 (for our later small C limit neighborhood.). Also since right side extremum C= -¼ (in dz	=
!"±√"%&'

(
) we get time (dt¹0 in eq.2a) and so the Hamiltonian (operator) and so observability 

showing why the nonzero C had to be added to z=zz in the first place. 
 
So on the right end of the Mandelbrot set we are merely defining observability of k here 
(i.e., using the above real eigenvalues  hk=p in the eq.8 operator formalism pµy=-i¶y/¶xµ).  



Proper time ds invariance needed for observability also since two comoving sensors measure the 
same thing (e.g.,no Doppler differences). But what’s the use of this operator formalism given it’s 
for flat space, with no forces so still not observable by a 2nd object? We need curved space 
(forces) ‘observability’ as in gµÖkµµpµy=-igµÖkµµ¶y/¶xµ  in the context of the observability of 
“1” in equation 10. But even then 2D flat space is still unobservable so the entire 4D Newpde 
itself becomes the ultimate operator formalism criteria for observability! Observability is then 
the reason we chose that z=1+dz ansatz’ (so at least get operator formalism eq.11 and Newpde), 
and iteration ansatz (so Cauchy seq. and real eigenvalues) and z=zz (and not z=zzzzz let’s  say).  
If it is not observable then why bother? 
 
Left end small extremum Fiegenbaum point Fractalness 
So Clifford algebra d(drdt)=0 extremum (eq.3a) on the left end of the Mandelbrot set is the 
Fiegenbaum point CM                                                                                                   (11a) 
Go to http://www.youtube.com/watch?v=0jGaio87u3A  to explore the Mandelbrot set near the 
Fiegenbaum point. The splits are in 3 directions from the orbs. There appear to be about 2.5 
splits going by each second (given my PC baud rate) and the next Mandelbrot set comes up in 
about 62 seconds. So 
32.7X62 =10N so 172log3=N=82. So there are 1082 splits. 
So there are about 1082splits per initial split. But each of these Mandelbrot set Fiegenbaum points 
is a CM/xºH in electron (eq.18 below). So for each larger electron there are 1082 constituent 
electrons. Also the scale difference between Mandelbrot sets as seen in the zoom is about 1040, 
the scale change between the classical electron radius and 1011ly giving us our fractal universe.  
Recall again we got from eq.1 dz+dzdz=C with quadratic equation result: 
 dz	= !"±√"!&'

(
.  is real for noise C<¼ creating our noise on the N+1 th fractal scale. So 

¼=(3/2)kT/(mpc2).  So T is 20MK.  So here we have derived the average temperature of the 
universe (stellar average).   
N=rD . So the fractal dimension= D=logN/logr=log(splits)/log(#rH in scale jump) 
=log1080/log1040 =log(1040)2)/log(1040)= 2 . 
which is the same as the 2D of eq.1.1.5 just below and the Mandelbrot set. The next smaller 
(subatomic) fractal scale r1=rH=2e2/mec2, N-1th, r2=rH=2GM/c2 is defined as the 
 Nth where M=1082me with r2=1040Xr1 
 
2.4 Big g boost so Small C  (so z=zz and postulate 1 in our own reference frame) 
Big g  (in (1/g)dz) boost means small C»dz>>dzdz (so d(dz’)=0 and z=zz) and so no more  
quadratic equation but we still keep our complex dz and so dt. Also the 2D high concentration 
C=dz’ thereby breaks the flat 2D dr,dt degeneracy so curved space 2Ä2=4D. Recall   (dt+dr)2 

=dr2+dt2+drdt+dtdr =ds2 = dr2+dt2+0. But we must still must imbed 2D dz’ perturbation in a 2D 
manifold. 
4degrees of freedom in 2 spatial dimensions in rectangular coordinates. we have 2 additional 
degrees of freedom dz’ added to dz to have dx’,dy’,dz’ behave the same for orthogonal 
dr2=dx2+dy2+dz2 so (dr’+dt’)2= ((dx’+dy’+dz’)+dt’)2 =dr2+dt2+0=ds2 since dr’dt’+dt’dr’=0. We 
convert to dx,dy,dz, dt by    (dx’+dy’+dz’+dt’)2 = (gxdx+gydy+gzdz+gtdt)2 =dr2+dt2=ds2     (13) 
(new pde) to keep ds2=C constant implying the Clifford algebra gµgn+gngµ=0, gµgµ=1. 
 
 



4degrees of freedom in 2 spatial dimensions in polar coordinates. for eq.2 small 
C(»dz>>dzdz, in eq.2 so |dz|»C=constant (from eq.1). Thus C=CM/gºrH.. Certain Cs have higher 
density in the Mandelbrot set and small dz=C so these dz’s are 2D perturbations of the otherwise 
flat space dr,dt. where we assumed a constant density of Cs. 
A,B together So since ds=|dz|=C we can only perturb eq.4 at 45° using curved space 
Fiegenbaum point dz’ as that Circle rotation to keep that ds (proper time) radius invariant.  Note 
that Fiegenbaum point dz’ is an independent 2D perturbation of eq.4.  So we just add those 2 
new parameters in a 2D rotation at 45° since ds invariant   (dr-dz’)+(dt+dz’)ºds (eg.,Dq,Dr)  (13)                  
Eq.13 gives metric tensor force of eq.17 and equivalent Boson exchange force Appendix A   
So small dz implies a Dq in C1 Eq.9  dz=dsei(45°+Dq) rotation occurs here implying that the eq.8 
associated infinitesimal uncertainty ±CM/x1=dz’ cancel to rotate at q»45°: ). On very small scales 
dz >>dzdz so in eq.2 |dz|»C=constant (from eq.1) so since ds=|dz|=C high concentration 
(Mandelbrot set components) C=dz’ perturbs dr,dt in eq.4. But we can only perturb eq.4 at 45° 
using:                       (dr-dz’)+(dt+dz’)=(dr-(CM/x1))+(dt+(CM/x1)) =dsº dr’+dt’.           (14)      
= 2 rotations from ±45° to next extremum (appendix AI below).                                     (15) 
This also keeps ds1 invariant so keeping the eq.4 ds invariance. Note that by keeping dt not zero 
we have already put in background white noise (since then C>¼ in eq.2) into eqs.4-6 
 Recall zº1+dz so if z=0 then 0=1+dz so |dz| is big in CM=x(dz) so x is small. 
So for z=0 rotations x is small so big CM/xo (also dx=0 so stable, electron, sect.2.1) so big  
q=CM/dsxo=45°+45°=90°. In contrast for z=1 x1 big so q=45°-45°»0 since small dz=CM/x1. 
Define             krrº(dr/dr’)2=(dr/(dr-(CM/x1)))2 =1/(1-rH/r)2 =A1/(1-rH/r) +A2/(1-rH/r)2  
The AI term can be split off from RN as in classic GR and so      krr»1/[1-((CM/x1)r))]      (16)   
From partial fractions where N=0 scale A1/(1-rH/r) and Nth=A2/(1-rH/r)2 with A2 small here.  So 
we have a new frame of reference dr’,dt’. So real eq.4 becomes 2DÄ2D:                                                    
                                                      ds2= krrdr’2 +koodt’2 +..                                                                               (17) 
and so a new frame of reference dr’,dt’. Note from 3 dr’dt’=ÖkrrdrÖkoodt=drdt so krr=1/koo   
We do a rotational dyadic coordinate transformation of kµn to get the Kerr metric which is all we 
need for our GR applications. The kµn of the Newpde on the N-1th fractal scale (10-40Xe2) is the 
Schwarschild metric where koo=1-rH/r =1/krr   where N=-1, rH=2Gme/c2º10-40X2e2/mec2. So we 
have derived General Relativity (and gravity) from quantum mechanics in one step!  
Note on the N=1th fractal cosmological scale kµn is the ambient metric. 
So we derived General Relativity (eqs.14,15,16,17) by the CM rotation of special relativity (eq. 
4) which shows why we said K¹dz +dz’ implies C perturbation is 4D curved space. Use eq.13. 
Defining relation for Clifford algebra gµs (spherical symmetry): Recall we derived a Clifford 
algebra eq.3 implying (gxÖkxxdx+gyÖkyydy+gzÖkzzdz+gtÖkttidt)2=kxxdx2+kyydy2+=ds2.(spherical 
symmetry).Multiply the term between the brackets by dz/ds and use eq.8	to get the 4D 
                                    New pde         gµÖ(Ökmm)¶y/¶xµ=(w/c)y  for e,v:                                (18)          
Covariant derivative here is a ordinary derivative since y is scalar. 
x mass and CM =e=e2 charge 
So x is defined to be mass and CM is defined to be charge.  One result is that from eq.17 we have 
nonzero e in (dr-e)ºdr’. So from 17   ds2=dr’2+dt’2=dr2+dt2+dre/2-dte/2-e12/4      (19)         
From eq.5  the neutrino is defined as the particle for which  -dr’=dt (so can now be in 2nd 
quadrant dr’, dt’ so dre/2-dte/2 has to be zero and so e has to be zero therefore e2/4 is 0 and so is 
pinned as in eq.5 (neutrino). dzºy. So on the light cone CM=e=mdr =0 and so the neutrino is 



uncharged and also massless in this flat space. Also see Ch.2 for nonflat results. Eq.4: 2D Recall 
eq.4 electron is defined as the particle for which dr»dt so dre/2-dte/2 cancels so e1 (=CM) in eq.19 
can be small but nonzero so that the d(dr+dt)=0. Thus dr,dt in eq. 4  are  automatically both 
positive  and so can be in the first quadrant. Eq. 4 is not pinned to the diagonal so e2/4 (and so 
CM) in eq.A1 is not necessarily 0. So the electron is charged since CM is not 0. 
3 Small C Boost Applications so that z»zz and the postulate of 1 holds  
  Composite 3e baryons. But there is one stable multiparticle case of stable z=0: 
composite 3e at r=rH (see partII for details) composed of stable z=0 (electrons) 

Below we find the value of the leptonic Newpde stable x1 needed for this small C boost.      
By the way the z= 0 case can still have this same C boost to small C (as the z=1 case) for the 3 
lepton case (composite 3e). Again, for small C (boost) for z=zz need large x1                                          
For that stable z=0 the only way to get large x (required by that small C boost) is with the 
Newpde composite 3e  2P3/2 at r=rH state (partII). So stability (dt’2=(1-rH/r)dt2)clocks stop at r=rH  
The two positron motion and h/e quantization of flux BA then gives us the exact proton mass mp 
as a reduced mass for the associated Hund’s rule tº2S1/2,1S1/2 ºµ states (so t+µ=x1, mp=x1/2). 
We rewrite this in the Kerr metric formalism with the 3rd mass also reversing the pair 
annihilation (with virtual pair creation inside the rH volume given s=prH2»(1/20)barns) and 
reducing the inertial frame dragging due to the spin½ x1 thereby adding a Kerr metric -(a/r)2 

angular momentum operator in in koo=1-(a/r)2-rH/r=x1+xo-CM/(xor) =t+µ+me-2e2/(xor)= 
1+e+De+2e2/(xor)=koo (Fiegenbaum pt. CM defines charge e2.).  Divide by x1 =1+e to normalize 
for only free electron De energy (Needed for the previous separation of variables two 
applications) asymptotic local flat space and thereby finally getting back to that initial 
requirement for that free particle z=1, large x1 case: 
                                        koo=1-xo/(1+e)-CM/(x1r)=1+De/(1+e) -2e2/(2mpr)                          (12) 
also giving us the numerical value of that large x1  (=2mp). With t+µ normalized to t=1 with the 
ground state e mass then De=me=.0005799 and e=µ=.06.   (12a) 

So that small real C boost derives the baryons and Bosons and makes the leptons point like 
particles since rH=CM/x1 is small. 



 
Fig.2 
 
 
 
Appendix A    Composite e,v  Top line of Fig.2 triangle composite e,v application  
 A1 z=0 and equation 13 imply two 45° rotations And Give SM Bosons 
For z=0 dz’ is big in z=1+dz and so we have again ±45° min ds and so two possible 45° rotations 
so through a total of two quadrants for ±dz’ in eq.13.Note in fig.3 dr,dt is also a rotation.  Thus 
from equation 8 for (q) angle rotations  qdzº(dr/ds)dz= -i∂(dz)/¶r for the first 45°rotation. So we 
got through one Newpde derivative for each 45° rotation.  For the next 45° rotation it is then a 
second derivative qqdz’=eiqpeiq’dz= ei(qp+q)dz= (dr/ds)((dr/ds)dr’)=-i¶(-i¶(dr’))/¶r)¶r=-¶2(dr’)/¶r2 
large angle rotation in figure 3.  For z=1, dz’ small so 45°-45° small angle rotation in figure 3. 
Do the same with the time t and get for z=0 rotation of 45°+45° then qqdz’=(d2/dr2)z’+(d2/dt2)z’    
(A1)                      

fig.3° 
So DS=½+½  =1 or ½-½=0. So DS=½+½=1 making 2 body (at r=rH) S=1 Bosons. Note we also 
get these Laplacians characteristic of the Boson field equations by those 45°+45° rotations so 
eq.13 implies Bosons accompany our leptons (given the dz’), so these leptons exhibit “force”.  
 
A3 2D Eq.18 2P½ at r=rH, for z=0   Composites of e,v  (from boost) Using Equation 13                                                               
So z=0 allows a large C z rotation application from the 4 different axis' max extremum (of eq.11) 



branch cuts gives the 4 results:  Z,+-W, photon bosons of the Standard Model. So we have 
derived the Standard Model of particle physics in this very elegant way (from the four axis’). 
You are physically at r=rH if you rotate through the electron quadrants (I, IV).. So we have large 
CM dichotomic 90° rotation to the next Reimann surface of eq.13, eq.A1 (dr2+dt2)z’’ from some 
initial extremum angle(s) q.  Eq.13 solutions imply complex 2D plane Stern Gerlach dichotomic 
rotations using eq.A1 thereby using Pauli matrices si algebra, which maps one-to-one to the 
quaternionA algebra.  Using eq.13 we start at some initial angle q and rotate by 90° the noise 
rotations are: C=z”= [eL,vL]T ºz’()+z’(¯) ºy()+y(¯) has a eq.13  infinitesimal unitary 
generator z”ºU=1-(i/2)en*s), nºq/e in ds2=UtU. But in the limit n®¥ we find, using elementary 
calculus, the result exp(-(i/2)q*s) =z”. We can use any axis as a branch cut since all 4 are eq.11 
large extremum so for the 2nd rotation we move the branch cut 90° and measure the angle off the 
next diagonal since Pauli matrix dichotomic rotations are actually axis rotations, leaving our e 
and v directions the same.  In any case (dr+dt)z’’in eq.11 can then be replaced by eq.A1   
(dr2+dt2 +..)z” =(dr2+dt2+..)equaternionABosons because of eq.A1.  Then use eq. 13 to R rotate: z”: 

 
Figure 4. See eq.13.   The Appendix A4 derivation applies to the far right side figure. 
Recall  from eq.13  2CM=45°+45°=90°, gets Bosons.  45°-45°= leptons. 
v in quadrants II(eq.) and III (eq.11). e in quadrants I (eq.4) and IV (eq.6).  
Locally normalize out 1+e . For the composite e,v on those required large z=0 eq.13 rotations for 
C®0,  and for stability r=rH (eg.,for 2P½, I®II, III®IV,IV®I) unless rH=0 (II®III)  
 
A4  Quadrants II®III rotation eq.A2  (dr2+dt2+..)equaternion A =rotated through CM in eq.11. 
example CM in eq.A1 is a 90° CCW rotation from 45° through v and antiv  
A is the 4 potential. From eq.3 we find after taking logs of both sides that Ao=1/Ar    (A2)                                                                                         
Pretending we have a only two i,j quaternions but still use the quaternion rules we first do the r 
derivative:  From eq. A1 dr2dz =(¶2/¶r2)(exp(iAr+jAo))=(¶/¶r[(i¶Ar¶r+¶Ao/¶r)(exp(iAr+jAo)] 
=¶/¶r[(¶/¶r)iAr+(¶/¶r)jAo)(exp(iAr+jAo)+[i¶Ar/¶r+j¶Ao/¶r]¶/¶r(iAr+jAo)(exp(iAr+jAo)+ 
(i¶2Ar/¶r2 +j¶2Ao/¶r2)(exp(iAr+jAo)+[i¶Ar/¶r+j¶Ao/¶r][i¶Ar/¶r+j¶/¶r(Ao)] exp(iAr+jAo)   (A3) 
Then do the time derivative second derivative ¶2/¶t2(exp(iAr+jAo) =(¶/¶t[(i¶Ar¶t+¶Ao/¶t) 
(exp(iAr+jAo)]=¶/¶t[(¶/¶t)iAr+(¶/¶t)jAo)(exp(iAr+jAo)+ 
[i¶Ar/¶r+j¶Ao/¶t]¶/¶r(iAr+jAo)(exp(iAr+jAo) +(i¶2Ar/¶t2 +j¶2Ao/¶t2)(exp(iAr+jAo) 
+[i¶Ar/¶t+j¶Ao/¶t][i¶Ar/¶t+j¶/¶t(Ao)]exp(iAr+jAo)                                                            (A4) 
Adding eq. A2 to eq. A4 to obtain the total D’Alambertian    A3+A4= 
 [i¶2Ar/¶r2+i¶2Ar/¶t2]+ [j¶2Ao/¶r2+j¶2Ao/¶t2]+ii(¶Ar/¶r)2+ ij(¶Ar/¶r)(¶Ao/¶r) 
+ji(¶Ao/¶r)(¶Ar/¶r)+jj(¶Ao/¶r)2 ++ii(¶Ar/¶t)2+ij(¶Ar/¶t)(¶Ao/¶t)+ji(¶Ao/¶t)(¶Ar/¶t)+jj(¶Ao/¶t)2  .   
Since ii=-1, jj=-1,  ij=-ji the middle terms cancel leaving [i¶2Ar/¶r2+i¶2Ar/¶t2]+  
[j¶2Ao/¶r2+j¶2Ao/¶t2]+ii(¶Ar/¶r)2+jj(¶Ao/¶r)2 +ii(¶Ar/¶t)2+jj(¶Ao/¶t)2   



Plugging in A2 and A4 gives us cross terms  jj(¶Ao/¶r)2+ii(¶Ar/¶t)2 = jj(¶(-Ar)/¶r)2+ii(¶Ar/¶t)2  

=0. So  jj(¶Ar/¶r)2  =- jj(¶Ao/¶t)2  or taking the square root:   ¶Ar/¶r + ¶Ao/¶t=0              (A5 ) 
i[¶2Ar/¶r2+i¶2Ar/¶t2]=0,   j[¶2Ao/¶r2+i¶2Ao/¶t2]=0  or ¶2Aµ/¶r2+¶2Aµ/¶t2+..=1                 (A6)  
A4 and A5 are Maxwell’s equations (Lorentz gauge formulation) in free space, if µ=1,2,3,4.                      
                                                     �2Aµ=1, �•Aµ=0                                                           (A7)  
A5 Other 45°+45° Rotations (Besides above quadrants  II®III)  
For the composite e,v on those required large z=0 eq.13 rotations for C»0,  and for stability r=rH 
for 2P½ (I®II, III®IV,IV®I) unless rH=0 (II®III) are: 
Ist®IInd quadrant rotation is the W+ at r=rH. Do similar math to A2-A7 math and get instead 
a Proca equation 
E=1/Ö(koo) -1=[1/Ö(1-De/(1-e)-rH/r)]-1=[1/Ö(De/(1-e))]-1. Et=E+E=2/Ö(De/(1-e))=W+ mass. 
Et=E-E gives E&M that also interacts weakly with weak force. 
IIIrd ®IV quadrant rotation   is the W-.  Do the math and get a Proca equation again. 
E=1/Ö(koo) -1=[1/Ö(1-De/(1-e)-rH/r)]-1=[1/Ö(De/(1-e))]-1. Et=E+E=2/Ö(De/(1-e))=W- mass. 
Et=E-E gives E&M that also interacts weakly with weak force. 
IVth ® Ist quadrant rotation is the Zo.   Do the math and get a Proca equation. CM charge 
cancelation.  
E=1/Ö(koo) -1=[1/Ö(1-De/(1+e)-rH/r)]-1=[1/Ö(De/(1+e))]-1.  Et=E+E=2/Ö(De/(1+e))-1=Zo mass. 
Et=E-E gives E&M that also interacts weakly with weak force. Seen in small left handed 
polarization rotation of light. 
 IInd®IIIrd quadrant rotation   through those 2 neutrinos gives 2 objects. rH=0 
E=1/Ökoo -1=[1/Ö(1-De/(1+e)]-1=De/(1+e). Because of the +- square root E=E+-E so E rest mass 
is 0 or De=(2De)/2 reduced mass. 
Et=E+E=2E=2De is the pairing interaction of SC. The Et=E-E=0 is the 0 rest mass photon 
Boson.  Do the math (eq.A2-A7) and get Maxwell's equations. Note there was no charge CM on 
the two v s. 
Note we get the Standard electroweak Model particles out of composite e,v using required eq.13 
rotations for z=0. 
For z=0 composite 3e (For new pde 2P3/2, rapidly moving two positrons, 1 slow electron.) is 
ortho s,c,b and para t particle physics. See partII.davidmaker.com 
For z=1 the new pde applies to QED with large r. See separation of variables section. 
 
Object B Effect On Inertial Frame Dragging  
The fractal implications are that we are inside a cosmological positron inside a proton 2P3/2 at 
r=rH state.  The cosmological object (electron) we are inside of is a positron and call it object A 
which orbits electron object B with a given distant 3rd object C. Object B is responsible for the 
mass of the electron since it’s frame dragging creates that Kerr metric (a/r)2=mec2 result used in 
eq.12. So Newpde ground state mec2 is still the fundamental Hamiltonian eigenvalue here as in 
the defining relation for the Fermi 4 point E= òytHydV= òytyHdV= òytyG.  All the interaction 
occurs inside rH (4p/3)l3=VrH. "
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Application of Eq.A8 To Ortho states 
The ortho state (partII) changes spin  (eg., as in 2nd derivative eq.A1)  so 2nd derivative 
 S((gµÖkµµdxµ)-ik)(gnÖknndxn+ik)c =S((gµÖkµµdxµ)-ik)y so ½(1±g5)y=c. In that regard the 
expectation value of g5 is speed and varies with ei3f/2 in the trifolium. The spin½ decay proton S½ 

µeif/2ºy1, the original ortho 2P1/2 particle is chiral c=y2º½(1-g5)y=½(1-g5ei3f/2)y. Initial 2P1/2 
electron y is constant. Start with initial ortho state c. These g5  terms then modify  equation A8 

to read  =∭ 𝜓"𝜓((2𝑚-𝑐()𝑑𝑉0;
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=deriving the 13° Cabbibo angle.  With previously mentioned CP result get CKM matrix. 
 
Object C Effect on Inertial Frame Dragging and GF found by using eq.A8 
again 
Review of 2P3/2 Next higher fractal scale (X1040), cosmological scale proton.Observor inobjectA 

 
Recall mec2 is the energy gap for object B. Recall for the positron motion 𝛾 = "

S"!=
/

>/

=917 and  

E=(1/9172)E’ in the forward or backward direction of the CA line. 1/cosq away from forward 
direction line(the weakest E field direction), toward the line in the object B direction.  But object 
C is 30° from object B direction and ½Eqr =KE for circular motion with v 30° from object B 

direction.  Also recall law of cosines r2=12+12+2(1)(1)cos120°=3,  So r=B1 − @T,96°@/

@/ √3= 

.866=cos30°. So Eqr =DE= (mec2/((cos30°)9172) =mec2/728000. So energy gap is 
DE=(mec2/((cos30°)9172)=mec2/728000. The weak interaction occurs inside of rH with those 
electrons me. The G can be written for E&M decay as (2mc2)XVrH=  2mc2 [(4/3)prH3]. 
So for weak decay from equation A8 it is GF= (2mec2/728,000)VrH=GF  the strength of the 
Fermi weak interaction constant which is the coupling constant for the Fermi 4 point weak 
interaction. Note 2mec2/729,000=1.19X10-19J.So DE=1.19X10-19/1.6X10-19=.7eV which is our 
DE for the weak interaction inside GF.   
 
A8 Derivation of the Standard Model from Newpde But With No Free 
Parameters 
Since we have now derived MW, MZ, and their associated Proca equations, and mµ,mt,me, etc., 
Dirac equation, G, GF, ke2, Bu, Maxwell’s equations, etc. we can now write down the usual 
Lagrangian density that implies these results. In this formulation Mz=MW/cosqW, so you find the 
Weinberg angle qW, gsinqW=e, g’cosqW=e; solve for g and g’, etc., We will have thereby derived 



the standard model from first principles (i.e.,postulate1) and so it no longer contains free 
parameters!  
Appendix B  
B1 N=1 fractal scale ambient  (cosmological) fractal scale metric 
The superposition of the harmonic coordinate conditions of the Newpde (&Dirac equation) 
zitterbewegung (r<rC) harmonic coordinates and Schwarzschild metric (local limit is Minkowski) 
eq.17 give the De Sitter metric we observe. After a large expansion we have 
Minkowski ds2=-dxo2+Si=1n dxi2                                                                                                              
Submanifold is –x02+Si=1nxi2=α2                                                                                                                
In static coordinates r,t :     (the New pde harmonic coordinates xi  for r<rH)                                                                                                                    
xo=Ö(α2-r2)sinh(t/α):                                                                                                                                                                               
x1=Ö(α2-r2)cosh(t/α):                                                                                                                                          
xi= rzi        2≤i≤n     zi is the standard imbedding n-2 sphere. Rn-1. which also imply the De Sitter 
metric:       ds2=-(1-r2/α2)dt2+(1-r2/α2)-1dr2+ dW2n-2                  our ambient metric.     
B2 List-Define Mathematics from postulate 1 
More fundamental than the  zz=z {1,0 }solutions is the set theory: {set,Æ}  
The null set Æ is the subset of every set. In the more fundamental set theory formulation 
{Æ}Ì{all sets}Û{0}Ì{1} since Æ=ÆÈÆÛ0+0=0, {{1}È Æ}={1}Û1+0=1. 
So list 1È1º1+1º2, 2È1º1+2º3,..all the way up to 1082 (see Fiegenbaum point) and define all 
this list as a+b=c, etc., to create our algebra and numbers which we use to write equation 1 
z=zz+C, dC=0 for example. Combining eqs 4 (dr+dt=ds) and 8 (dr/ds+dt/ds)dz =((dr+dt)/ds)dz 
=(1)dz and so having come full circle back  to postulate 1 but as a real eigenvalue (1 Newpde 
observable electron).  So Postulate 1Û Newpde.     
B3 Quantum Mechanics Is The Newpde  
In z=1-dz  dz*dz is (defined as) the probability of z being 0. Recall z=0 is the xo=me solution to 
the new pde so dz*dz is the probability we have just an electron. 1 then is the probability we 
have the entire x1=t+µ complex (sect.2.1), that includes the electron e (Observed EM&QM).  
Note z=zz also thereby conveniently provides us with an automatic normalization of dz. Note 
also that (dz*dz)/dr is also then a one dimensional probability ‘density’. So Bohr’s probability 
density postulate for y*y (º(dz*dz)) is derived here. It is not a postulate anymore.   
Note the electron observer eq.4 (eq.18) has two parts (dr+dt &dr-dt, same kind of d(pA-pB) 
conservation relation as between Alice and Bob, Bell’s stuff) that solve eq.2b together we could 
label observer and object with associated eq.4 wavefunctions dzºy1, dzºy2. So if there is no 
observer eq.4 (So no y1) then eq.4 doesn’t hold at all and so there is no object y2 wavefunction. 
Thus the wave function “collapses” to the wavefunction ‘observed’ (or eq.2b does not even 
hold). Hence we derived the Copenhagen interpretation of Quantum Mechanics(QM).  
ddz=0 holds for both A and B substitution cases (not just at 45°) so dr2+dt2 is an operator wave 
equation(A2), that holds all the way around the circle, gives waves. In eq.9, error C is a dz’ angle 
measure on the dr,idt plane. One extremum ds is at 45° so the largest C is on the diagonals (45°) 
where we have eq.4 extremum holding:  particles. So a wide slit has high uncertainty, large C 
(rotation angle) so we are at 45°(eg., particles, eq.11 photoelectric effect).  For a small slit we 
have less uncertainty so smaller C not large enough for 45° so only the wave equation A1 holds 
(small slit diffraction). Thus we proved wave particle duality. Equation 10 (sect.2.1) also counts 
units N of (dt/ds)=hw=hck  on the diagonal so that E=pt=hw for all energy components, 



universally. Thus eq.10 (sect.2.1) counting N detours around the usual quantization of the E&M 
field with SHM. Equation 11 Newpde is still the core idea since it creates the eigenfunction 
dzºy in the first place, directly. So with eq.11 (and so eq.10, eq. 8) we really have derived 
Quantum Mechanics.  


