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David Maker

Abstract: z=77+C, 6C=0 (eq.1)

is a very powerful expression that gives both the Dirac equation®*(A) and Mandelbrot set*(B)
together resulting in the New pde(eq.8) and physics(sect.2).

But eq. 1 also has the small C limit of the z=zz algebraic definition of 1,o.

So eq.1 implies (the ultimate) Occam’s razor postulate 1 gives us the physics,fig.1

*(A) Plug z=1+38z into eq.1 and get 8(8z+6282)=0 (eq.2) which splits into a real component
Minkowski metric and imaginary component Clifford algebra. These both imply the (Hermitian)
operator observables formalism, eq.6 (thus QM), and a 2D Dirac equation for e, v.

*(B) Plug in the left side (of eq.1) z into the right side zz repeatedly and use C=0 and get the
Mandelbrot set iteration formula fig.4)

The eq.6 real eigenvalues (i.e., so needs Cauchy sequence from Mandelbrot iteration) makes
(A)&(B) the ONLY possible ‘observable 1’ eq.6 derivation(fig.3) from postulate 1. That Clifford
algebra extremum implies the Mandlebulb real Fiegenbaum pt neighborhood on the next smaller
fractal scale. This perturbation ofthat Dirac eq. gives a 4D New pde eq.8
VR Y Kuu) O = (/c) w whose composite e,v gives the SM and composite 3¢ the baryons, and
whose nonoperator iteration on the next larger fractal scale is the Schwarzschild metric getting
GR(gravity,sect.2).

1 Fill in algebra steps of above points *(A) and *(B)

*(A) So from eq.2 (8z-K)+6z8z=C (constant C and K) which is a quadratic eq. with in-general
complex solution dz=dr+idt. Plug that back into eq.2 with K=8z to initialize to flat space and get
&(dr?+i(drdt+dtdr)-dt?)=0 since dr’-12dt’=ds? is special relativity (Minkowski metric given
12=natural unit constant speed’=c?) invariance. The imaginary extremum is the Clifford algebra
dr’dt’+dt’dr’=y"dry'dt+y'dty"dr=0 since 2drdt=0 here for nonvacuum (see eq.5 below). Factor the
real component and get 3 equations (eg.,e; dr+dt=ds,dr-dt=ds (eq.3),etc.,dr-dt in IV quadrant so
ds>0 (e*only nonzero proper mass), Eq.4 drtdt=ds, dr=*dt light cone (v,7) and eq.5 dr=0=dt is
vacuum. (Note complex unknown K for K#6z+6z’ (8z”)perturbation adds 2 degrees of freedom.)
We just derived space-time (r,t) and special relativity here!

Square eq.3 to get +ds?>=(dr+dt)*>=(dr’*+dt?)+drdt+dtdr implying dr’+dt> =ds? circle invariance at
45° since dr+dt and drdt+dtdr are invariant. So circle §z=dse®= dsei(4>"*(sinddrreosbd)/ds)) Dyefine
dr/ds=k, sinf=r, dz=y, take the r partial derivative, and multiply both sides by ik and define
momentum p=hk=Ev to get the operator formalism: pry=-thoy/0r (so observables p) (eq.6)
All three invariances imply the Dirac equation(2) for e,v. (e=electron, v=neutrino).

We just derived quantum mechanics(QM)!

*(B)That Clifford algebra small drdt area extremum is at the Mandelbulb Fiegenbaum pt. Cyu
figd)on the real axis where the Mandelbrot iteration sequence has that Cauchy seq. subset giving
the real numbers. Postulate 1 (So small C in eq.1.) then requires a new (boost y (fig.1)) frame of
reference togive small fractal baseline 6z’= Cv/y=Cwm/E=ru=C in eq.1 deriving large mass&.=t+p
So K#06z+08z” perturbation is of flat space eq.3 at ~45°: (dr-6z’)+(dt+0z’)=ds= dr’+dt’. (eq.7)



derivative rotation 8z’ since ds invariant. Plugging kn=(dr/dr’)>=1/(1-ru/r)+., r=dr, into that (local
Minkowski metric) ds?=dr?+dt?+.. and using invariant Clifford alg. drdt=dr’dt’= Vic,drVk.dt, we
obtain kx=1/ky and thereby get that 4D GR quadratic form and so a global curved space.

So the Fiegenbaum pt neighborhood perturbation 8z’ of that Dirac equation implies that
generally covariant new pde Y“\/(KHH)GW/GXH:(Q)/C)W (8) with that fractal ru (by10*Xry scale
change). Also note 4D GR «,ytensor. Hermitian operators on these new pde ys are observables

2 New pde Eq.8 applications for z=0 (For small C in eq.1: z=0 then r=rg; z=1,r>11.)
2.1 Composite e,v: +06z’ in eq.7 implies (derivative)iteration of New pde: Bosons
That z=0, 4 axis’ 2X45°=0 (derivative operator iteration of New pde) rotations for e,y implies
the Z,W*,y , the 4 Bosons of the Standard electroweak Model SM so Maxwell’s and Proca’s
equations (Partl, appendix A). Note the nonoperator iteration of the New pde on the next higher
fractal (ruX10%°) scale generates that (above) 4D GR quadratic form Schwarzschild metric (i.e.,
gravity) and so general covariance:

We just derived general relativity (GR) from quantum mechanics in one line! Recall the
New pde zitterbewegung oscillation on the next higher 10%°X larger fractal selfsimilar
cosmological ry scale. With us being in the expansion stage of the oscillation for r<r. this then
explains the expansion of the universe.

2.2 Composite 3e and r=ry stability (i.e., dt’?>=(1-ru/r)dt?)) and h/e flux quantization effects
That z=0 New pde (2P at r=ru) composite 3e results in rapid e motion Fitzgerald contraction of
E field lines thereby deriving the strong force and so (the much larger mass &/2) baryons. Partll

3) Eq.8 New pde y"\(i,.)0w/dx,=(w/c)y applications for z=1 so r>ru

For z=1 New pde, the 3™ order term in the Taylor expansion of the two square roots Vi, in the
New pde gets the Lamb shift (2) and anomalous gyromagnetic ratio respectively (Partl, sect.1.2.1
thus eliminating the need for renormalization and the resulting infinite charge, infinite mass,
infinite vacuum density, etc.. Thus these square roots cause theoretical physics to give right
answers again (Infinite everything is 0% right).

4) Note on list-define math (from 1(U1)) to create real number algebra(fig.2)

Given this (postulate) | we can use /ist-define (list the many instances of a relation e.g., start with
1U1= 2, then define them all as relation a+b=c) math(appendix B Partl) to replace those famous
set theory axioms, order axioms, mathematical induction axioms (giving N) and the field andring
axioms(1) to generate the numbers N and the algebra of eq.1. Only postulatel for math&physics

Conclusion: We finally understand, everything. An intuitive notion of the postulate of ONE is
Given that 10*°X fractal selfsimilarity astronomers are observing from the inside of what particle
physicists are studying from the outside, the ru of that ONE New pde ‘object’ e we first
postulated. So at big and small scales all we observe is that ONE thing (even baryons are 3e).

References
(1) Royden, ‘Real Analysis’, Pearson modern classics
(2) Bjorken and Drell, ‘Relativistic Quantum Fields’
(3) Partl,Partll,Partll in davidmaker.com for backups



Figures: Equation 1 z=zz+C, 6C=0 gets the new pde (eq.8) and physics and yet the z=zz
algebraic definition of 1 is also the small C limit of equation 1. So eq.1 hints strongly that the
(Ockam’s razor motivated) Postulate 1=Physics is correct:
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Mandelbrot Set
Plug in the left side (of eq.1) z into the right side zz repeatedly and use 3C=0 and get the
Mandelbrot set iteration formula.
The Mandelbrot set Cyv is then (and from the postulate Cw=0), zn+1=znzn+tCwm
(since 0(z’-zz)= O(zn+1-ZnZN)=0(00-00)#0).Z2,=0
Fiegenbaum point Cy smallest real line Mandelbulb on next smaller (baseline) scale.
Mandelbulb areas (drdt) for smallest Clifford algebra extremum drdt. 10** X zoom at
Fiegenbaum point http://www.youtube.com/watch?v=0jGaio87u3 A
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Derivation of New Pde Using Postulate 1
Table Of Contents
Postulate 1 (so ‘define observable 1°) rewritten as:
z=zz+C (1.1.1) , 6C=0,C<0 (1.1.2)
Sect.1.1 For example rewrite eq.1.1.1; 1.1.2 in a more familiar form (by defining z=1+ 8z)
Get 8(6z+ 6z 6z)=0
Sect. 1.2. eq.1.1.1, 1.1.2 imply 1 is a real # (by plugging left z back in right side zz)
Get Mandelbrot set.

Introduction: z=7zz+C,(1.1.1) 0C=0 (1.1.2)

is a very powerful expression that gives both the Dirac equation and Mandelbrot set together
resulting in the New pde(eq.1.2.7) and physics(sect.1.2).

But eq. 1 also has the small C limit of the z=zz algebraic definition of 1,o.

So eq.1.1.1 implies (the ultimate) Occam’s razor postulate 1 gives us the physics,fig.1

Section 1.1 (*A) Solve eq. 1.1.1 and 1.1.2 directly (substitute z=1+3z)

Plug z=1+6z into eq.1.1.1 get (1+02)-(1+6z)(1+8)=C (1.1.3) andso 0zdz+6z+C=0 (1.1.4)
Solving quadratic eq. 1.1.4 we get: 8z=[-1+V(1-4C)]/2. For noise C>Y%  dz=dr+idt (1.1.5)
(So we derived space-time.). Plug 1.1.4intoeq. 1.1.2  8C=8((z-K)+5(6z20z))=0 (1.1.6)

1.1.2 0z=K —flat



We can then always add a (given constant C) in general complex K in §(6z-K+8z8z) =0 to use
K=06z to initialize to local flat (making the K#0z+06z’ cases perturbations in this formulation)
since 0+8(0zdz)= Of (dr+idt)(dr+idt)] = &(dr’ +i(drdi+dtdr)-dr’)=0 is Minkowski (C becomes Cwm
is real) Also since K is complex for unknown K#06z+6z° perturbation (K) merely adds 2 degrees
of freedom as in 22 (Note then 4D keeps C=ds? invariant even if K#3z).

Given 8(6z-K)=0 and eq.1.1.5 &(&&8z)=05/(dr+idt)(dr+idt)]=(dr’ +i(drdi+didr)-di’)=0 (1.1.7)
Next factor the real component of 1.1.7.

Adr*-dt*) =8 (dr+dt) (dr-dt) ]=5(ds®)=[ [ 5(dr+di)] (dr - di))] +[(dr +di)[5(dr — di)]]=0 (1.1.10)
Solve eq. 1.1.10 and get

(>+e) dr+dt=\2ds, dr-dt=A2ds =ds; (1.1.11) I, IV +ds >0

(—light cone ) dr+dt=\2ds, dr=-dt, (1.1.12) II quadrant
“ «“ dr-dt=\2ds, dr=dt, (1.1.13) 1II quadrant

(—vacuum)  dr=dt, dr=-dt (1.1.14)  dt=0=dr

Equation 1.1.10 gives Special Relativity(SR) ds’=dr?-(1)?dt* (note natural unit constant 1> (=c?)
in front of the dt?). Thus K=0z initializes to locally flat space if also C is real. Note our
quadrants were chosen so that ds>0 giving us observability since the later operator formalism at
45° which also implies that if either dr or dt is zero then everything is zero and we have our
“vacuum” solution 1.1.14 and so not observable.
Note also Imaginary component= ds3 = drdt+dtdr (1.1.8)
Note our previous quadrant choice of dr,dt makes drdt+dtdr and so ds3 positive or zero with zero
being the extremum given eq.1.1.8 are finite extremums since d is undefined. But since dr, dt
(in scalar 2drdt) is not 0 if not eq.1.1.14 vacuum then:

drdt+dtdr=0 (1.1.9)
implies the imaginary extremum is a Clifford algebra (since we assume we are not in the
eq.1.1.14 vacuum where drdt=0 is not the eq.1.1.14 vacuum as in )dr’dt’+dt’dr’=y'dry?dt+
yidty'dr= 2drdt(y'y>+ y?y")=0 so y'yi+yiyi =0, (y*)*>=1 ((y*)>=1 from real component of eq.1.1.7).

Third Invariant

In their respective quadrants all are +ds. Also recall the previous two invariants of dsi,ds3. We
square ds>=(dr+dt)(dr+dt) =dr’+drdt+dt>+dtdr =[dr?+dt?] +(drdt+dtdr) =ds*+ds3;=ds;?. Since ds3
(from 1.1.9, is max or min) and ds? (from 1.1.10) are invariant then so is ds’>=dr>+dt> =ds;>-ds; as
in figure 1 for all angles from the axis extremum. ds® is our 3™ invariant. (Note all three of these
invariants 0ds/0z=0 are satisfied at the Fiegenbaum point, v also at the limacon end, sect.1.2).
Note in fig.1 min ds is at 45°. So ds is diagonal.

dt Vl{ drdt}2
“dr rl “ds
Fig.1 0=45%_ Nth fractal scale
Minimum ds>=dr’+dt? so at 45°: dz=dsel®=dse!(*9*00) §,=45° (1.1.14)

Note in fig.1 45° is always measured from extremum axis’(also in fig.4). So for variation A



SZsteiGstei(A6+6°)= dsei((cosﬁdr+sin6dt)/(ds)+60), 0,=45°. (1115)
So 0=f(t). 8z=dse!*"9_In eq.1.15 we define k=dr/ds, w=dt/ds, sinO=r, cosO=t. dse'*’=ds’=ds.

(rdr tdt
a(dsel(W“LW))
Then eq.1.15 becomes §z = dse _

or
a(dsei(rk+wt))

p = ikéz (1.1.15a)
kéz = —i % Multiply both sides by k. kk=mv=p since k=dr/ds=v/c=2n/A (1.1.15b)

from eq.1.15 for our unit mass &=me. dz=y,(eq.6.6.1) Note we also derived the DeBroglie
wavelengthA=h/mv. (<F>*= [(Fy)*ydt=/y*Fydt =<F> Hermitian).
prY = —ih% which is the observables p; condition gotten from that eq.1.1.15 circle. (1.1.16)

i(sinGdr cos@dt)
= dse ds ds SO

i .dr
1(46) =i—38zs0
ds

operator formalism thereby converting eq.1.1.11, 1.1.12, 1.1.13 into Dirac eq. pdes.

Note these pr operators are Hermitian and so we have ‘observables’ with the associated
eq.1.11-1.13 Hilbert space eigenfunctions 8z (=\, appendix B4). 8z (in z=1-9z) is the probability z is
o (see appendix D).

We derived OM here.

Note rotation to 45° for min ds; in figure 1 on the eq.1.1.14 circle.

1.1.3 Origin Of Math from Eigenvalue of 6z: Since dsocdr+dt can make (dr+dt)/ds a integer:
28z= (1U1)dz=(1.11+1.11)dz=((dr+dt)+(dr-dt))/(k’ds)))dz=-12(ds/ds)0(dz)/Or=-120(5z)/0r
(1.1.16a)

=(integer)k)dz.

So from eq.1.16a we obtain the eigenvalues of: 8z=0,-1 making our z=1+0z eq.1 real numbers
1,0 =z (binary qubits) also observables. So we have come full circle and so use this result to
develop the list-define algebra required to use eq.1-1.2. eg.,”list” as in 1+1=2, 2+1=3; “define”
a+b=c replacing the usual field axioms, order axioms and mathematical induction axiom (that
merely gives N). See appendix C, Part I. Note this third invariant ds also gives us the quantum
mechanics operator formalism (eq.1.1.16). See appendix D.

So we have derived the observables in the postulate of 1.

1.2 (*B)Mandelbrot Set. Iterate z-zz=C (1.1.1), 8C=0, C<0 (1.1.2) to get Cauchy
sequence and so real

Just plug the left side z in z=zz+C back into each z on the right side of eq.1.1.1 and get
z’=7’7"+C since z’=(zz+C)=z. zi=1 instead of 0 with the two Cwus chosen to give the upper and
lower components of the Cauchy sequence. It is the Mandelbrot set displaced by -1. So you can
repeat this step with this new z’=z’z’+C. We get the iteration zx+1=znzn+Cwm With SC=0(zn+1-
znzn ) =0 then implying this choice of Cm defines the Mandelbrot set since (o0-0) cannot be
zero. Our z=zz postulate in eq.1.1.1 has solutions 1,0 and first term in the iteration is z=zi. But
z=71=0 will be used here (z=1 as &, is discussed below). One such sequence zn generated from
this Mandelbrot set definition also provides a Cauchy sequence zn of rational numbers (eg., with

initialization Cv=tsmallrational#<'4) that shows that 1 is a real number(2).

So we have derived the real part of observability. See appendix B also.

Clifford Algebra +Mandelbulbs Implies Fiegenbaum point Making K6z

Scalar component of eq. 1.1.8 8(2drdt)=0 implies smallest area real C extremum Mandelbulb
which is the Fiegenbaum point C= Cy subset of the Mandelbrot setxA Moving Observer



1.2.1 Frame of Reference Is Also Implied by Postulate 1

But Cy is big (|Cm[=1.4011..) so we need a new reference frame to get small C~0 of postulate 1
(eq.1.1.1). Define r’u=6z=Cwm/1 so we (as a Fitzgerald contraction 1/y) boost r’u=boost (as in the
p=Ev=(1/y)(dr/ds) definition 1.1.15b) Cm/1=Cm/y=Cwm/E1=C to get small C=0 (if & is big) and so
get the postulate of 1 in eq.1.1.1 (This is just the tangential instantaneous rotating frame of
reference of the spin’z eq.1.2.7 new pde.). Also for the next smaller fractal baseline 6z>>6z9z in
eq.1.1.4 so 8z=C

z=1 Cm=£0827’, 8z’ in z=1+37’ is small so & is big.

7z~0 Cm=£02’°, 8z’ in z=1+37’ is big so &, is small.

7~0 0Cum= 3(EC)=0(£02)=0002+E000zZ so dE 1s small so small &, is stable ground state of the
new pde.

z=~1 0Cv= O(EC)=0(£02)=0502+E00z so £SOz is small and 0&; can be big so &; can be unstable
The Fiegenbaum point 45° line includes 3 Mandelbulbs so we have 3 &. So C=Cw/1 making the
stable 1 the stable &o. O& is then big so & unstable and also =& is large we have three S="2 new
pde objects (each with its own sect.1.1 neutrino and its own Reimann surface.)

constituting &1=E+Eutme (1.2.0)

in the new pde for r large with &, &u excited states of boosted me.
Thus we have added perturbation 6z’~X~Cwm/E=r’n on eq.1.1.13 constrained by the eq.1.1.6 circle
has to be written at 45° as dr-8z’+dt+6z’=ds=dr’+dt’ since ds is invariant and which is a rotation
0 on the z=1 baseline next smaller fractal scale.
In a boost dt also changes so arctan(dr/dt)=0 changes so 0 gets larger and larger in €' (sect.1.1.3)
and passes by successive branch cuts and so & and &3 and their respective neutrinos (eq. 1.1.10-
1.1.13) (in their assigned quadrants) each having it’s own Reimann surface. These are the
families of the 3 leptons with their associated Reimann surface neutrino. c=Ag=m¢ is the stable
ground state for all three states for large r and so independent Hamiltonian (and momentum)
operators Hy=Ew.

For small r=ry (and same &) the rotational reduced mass &i/2 =m,, is derived in part II from the
B flux h/e quantization and Meisner effect.

Fiegenbaum Point
Go to http://www.youtube.com/watch?v=0jGaio87u3A to explore the Mandelbrot set near the
Fiegenbaum point. The splits are in 3 directions from the orbs. There appear to be about 2.5
splits going by each second (given my PC baud rate) and the next Mandelbrot set comes up in
about 62 seconds. So
327X62 =10N s0 172l0g3=N=82. So there are 10%? splits.
So there are about 10%2splits per initial split. But each of these Mandelbrot set Fiegenbaum points
is a Cm/E=n 1n electron rq.9 (eq.1.2.7 below). So for each larger electron there
are 10%2 constituent electrons (that result from the amazing equation). Also the scale difference
between Mandelbrot sets as seen in the zoom is about 1047, the scale change between the
classical electron radius and 10''ly giving us our fractal universe.
Recall again we got from eq.1 8z+8z6z=C with quadratic equation result:

—-1+vV1-4C . .
0z = — I8 real for noise C<%



creating our noise on the N+1 th fractal scale. So %=(3/2)kT/(mpc?). So T is 20MK. So here we
have derived the average temperature of the universe (stellar average). Recall again

-1++v1-4C

2

whose general solution is complex dz=dr+idt. C>4 implies nonzero imaginary (time) component.
On the next smaller fractal scale 6z+8z6z=C with 0z6z<<4z~C there. But inside the Mandelbrot
set large limacon cusp the /4>5z~C. That cusp is required as a Fiegenbaum point perturbation
because without time there is no “observable” H (Hamiltonian) so z,="4 is the only allowed
perturbation C of the Fiegenbaum point. Note that our boost shrinks the C=Cwm/&, and the
Ya=Cwm/&, as well and so boosts the proper mass &, electron (THE single nonzero proper mass
Hamiltonian) perturbation of C to large &; (in above sect.1.2.1). Note also our Cauchy sequence
initialization C=0 before that boost. So the Cauchy sequence proves that 0 is a real# since there is
a Cauchy sequence of rational numbers here (eg., starts with '4) converging to it. (i.e.,0). 6z is
then Fitzgerald contracted (after the derivation of the new pde so C is boosted at the end) to ~0
(so the postulate of 1 (z=zz) still holds) so we can then say our Cw/&; is real. So this small C
region can thereby be used to get the Cauchy sequence proof of real # as a special case of a
Mandelbrot set iteration. So you could use the Mandelbrot set sequence; -1/4,-3/16,-55/256,...

0z =

N=tP . So the fractal dimension= D=logN/logr=log(splits)/log(#ru in scale jump)
=log10%3%10g10%* =log(10%°)?)/log(10*)= 2 .

which is the same as the 2D of eq.1.1.5 just below and the Mandelbrot set. The next smaller
(subatomic) fractal scale ri=rp=2¢e*/mcc?, N-1th, r=ruz=2GM/c? is defined as the

Nth where M=10%m, with r;=10*Xr,

z=0,z=1, 0K+#0z generally

1.2.2 K#oz

Recall (dt+dr)*=dr’+dt*+drdt+dtdr =ds? = dr>+dt>+0. Recall small 8z, so small K, C~ 6z-K in
eq.1.1.4 K=x+iy in eq.1.1.4 also adds 2 more degrees of freedom since K can be complex and
nonlocally is a free parameter. Recall that 5[(dr+idt-K-Ki)+dr?-dt*+i§(drdt+dtdr)]=0. In section
1.1 dr+idt-K-K;=0 for flat space initialization.

4degrees of freedom in 2 spatial dimensions in rectangular coordinates

Here 6z#K so given complex unknown K we have 2 additional degrees of freedom K-
8z’|=dx’+dy’ added to 8z to have dx’,dy’,dz’ behave the same for orthogonal dr’=dx?*+dy*+dz>
so (dr’+dt’’=((dx’+dy’+dz’)+dt’)*=dr>+dt>+0=ds? since dr’dt’+dt’dr’=0.

We convert to dx,dy,dz, dt by (dx’+dy’+dz’+dt’)? = (y*dx+yYdy+y*dz+y'dt)? =dr*+dt*=ds? (1.2.0)
(new pde) to keep ds?=C constant implying the Clifford algebra y*y¥+yy#=0, y*y*=1.

4degrees of freedom in 2 spatial dimensions in polar coordinates

Or we just add those 2 new parameters in a

2D rotation at 45° (dr-0z’)+(dt+6z’)=ds (eg.,A0,Ar) (1.2.1)
(since ds is invariant).

In that regard in a moving frame of reference boost dt (recall 3&, gets heavier right up to &:) also
changes so arctan(dr/dt)=0 changes so 0 gets larger and larger in ¢! (sect.1.1.3) and passes
by(successive branch cuts and so &, and &3 and their respective neutrinos (eq. 1.1.10-1.1.13) (in
their assigned quadrants) each having it’s own Reimann surface. These are the families of the 3



leptons with their associated Reimann surface neutrino. {;=Ag=me is the stable ground state for
all three states for large r and so independent Hamiltonian (and momentum) operators Hy=Ew.
From eq.1.1.19 ZCw/&1=1’n in Keo=1-1"n/t for z=1, Cwm/Eo=rn. for z=0. So small 6z implies a AQ
in C; BEq.1.1.14 3z=dse'*>**A9 rotation occurs here implying that the eq.1.1.4 associated
infinitesimal uncertainty +Cw/&1=0z cancel to rotate at 0x45°:
(dr-82)+H(dt+82)=(dr-(Cwm/E) ) +H(dt+H(Cwm/E ) =V2ds= dr’+dt’ (1.2.1)
= 2 rotations from +45° to next extremum (appendix Al below). (1.2.1a)
This also keeps dsi invariant so keeping the eq.1.1.10 ds invariance. Note that by keeping dt not
zero we have already put in background white noise (since then C>%4 in eq.6 & eq.1.1.4) into
eq.1.1.11-1.1.13
Recall z=1+6z so if z=0 then 0=1+03z so |0z| is big in Cm=E(0z-K) so & is small
So for z=0 rotations & is small so big Cm/&, (also 6£=0 so stable, electron, sectl.2.4) from Al
0=Cm/ds&;=45°+45°=90°. In contrast for z=1 &; big so 8=45°-45°~0 since small dz=Cw/&;.
Define Kn=(dr/dr”)?=(dr/(dr-(Cm/&)1)))? =1/(1-ru/r)* =A1/(1-ru/r) +As/(1-1a/r)?
The Ai term can be split off from RN as in classic GR and so  kn=1/[1-((CM/&1)r))]  (1.2.2)
From partial fractions where N+1th scale A1/(1-ru/r) and Nth=A,/(1-ru/r)* with A, small here.
So we have a new frame of reference dr’,dt’. So real eq.1.1.10 becomes 2D®2D:

ds?= Kndr’? +Keodt™ +.. (1.2.3)
So a new frame of reference dr’,dt’. Note from 1.1.8 dr’dt’=VindrVkeodt=drdt s0 kr=1/Koo(1.2.4)
We do a rotational dyadic coordinate transformation of v to get the Kerr metric which is all we
need for our GR applications. Note on the N+1th fractal scale kv is the ambient metric.
So we derived General Relativity (eqgs.1.2.1,1.2.2,1.2.3) by the Cwm rotation of special relativity
(eq. 1.1.10) which shows why we said K8z implies 4D curved space.

Relation Between The Nth And N+1th Fractal Scale (Reduced Mass) Metrics kv
Recall (sect.6.30 he well known additional (a/r)> Kerr metric term as in Koo=1-(a/r)>-2GM/(c?r) in
the N+1 fractal scale. Also in the Nth scale reduced mass system &i/2=m;. Given the spin’
selfsimilarity the Kerr metric exists but is a mere observed perturbation due to inertial frame
dragging observable only due to a nearby object B. So we have two equal masses on the N+1th
fractal scale, hence we can use the reduced mass just as we do with the m,. We can then do our
scale transformation from one reduced mass system to another avoiding many complications. So
multiply keo~[ 1-(Cwm/(&ir))] by 1-¢ to then get [ 1-e-Ae-Cwm/(Eor)] and then we are required to
normalize (section 1.2) by 1-¢ for 2D homogenous isotropic space-time which is then in the
reduced mass m; system (partll). Locally normalizing out the 1+¢ is equivalent to that &; boost.
Normalizing Given reduced mass systems for both the larger and smaller fractal scales to jump
to the next fractal scale electron we then merely multiply Cw/E, by 10%°. So keo=1-Ac/(1-¢)-
(10*°Cwm/Eo)/r so that -Ae—>(a/r)?, M=10%m., 10%°2¢?/mcc? =10*°Cwm/Eo—> 2GM/c?. So ru—>rul 0%,
Koo= 1-CMm/Eo)/r = 1-(a/r)*-ru/r= 1-E1-(Cwm/Eo)/r, N+1th fractal scale, and 1/m—m (since
ru=2¢e*/mec* —-2GM/c?) defining G.

1.2.3 4D and eq.1.2.2 in eq.1.1.11
Note from the distributive law square 1.11: (dr+dt+..)>=dr?>+dt>+drdt+dtdr+.But Dirac’s sum of
squares=square of sum is missing the cross term drdt+dtdr requiring the y* Clifford algebra. So
this is the same as if those cross terms drdt+dtdr=0 as in eq.1.1.9. So equation 1.1.9 with 4D
1.1.11, automatically implies a Clifford algebra y*y"+y'y* =0, (y*)>=1. From eq.1.2.7 there is also



the covariant coefficient k. (y*)*=kuu. So after multiplying both sides by dz=y causes the 4D
operator equation 1.1.16 to cause eq.1.1.11—>
ds=(y! Vi1 1dxi+y? \/Kzde2+y3 Vic3 3dX3+y4\/K44dX4)SZ—)

V(i) OW/Ox, =(w/C) 1.2.7)
o=mrc*/h. Eq.1.2.7 is our new 4D pde which implies eigenfunctions 8z (=) and with Cy>0 gets
leptons for z=1,0 and also 1.1.12 (v pinned to the light cone so Cv=¢/ru=0). For z=0 3¢ see Partll
(in sect.1.2 we show that the Standard electroweak Model comes from the composite of e,v at
r=ry and in partll we show that the 2P3. particle physics at r=rn.

So we have derived the  for which the observability operator formalism applies.
So all we did here is to define observable 1

Given | is “meaningful” (an observable is not just a squiggle on a piece of paper) we can finally

just, as in Occam’s razor, “postulate 1”  (to get math and physics, davidmaker.com

Applications

1.2.3 Add ground state energy Ae to ru/r for r=large

Inverse Separability implying Nth scale operator formalism and frame of reference forces
So there exists a eq.1.2.7 (y*V(icu.)Oy/dx,=(w/c)y)x on every Nth fractal scale (10*°X larger than
a given previous fractal zitterbewegung scale ry) with an individual separate horizon run barrier
to observability (sect.2.5) between every two such space-like scale intervals given. Koo=1-ran/t.
Given these independent 1.2.7 equations, as in the usual differential equation separability, we
can invoke a “inverse separability” Wpoin=WN*WN+1%... o, given the usual zitterbewegung
Y=eime"2m)t = il ei(E+A9) (gect. 1.2) Ae=E, with e!¢™9)y the asymptotic y value (i.e.,r—>0). Also
note the Vicoo multiplier in equation 1.2.7: Thereafter after normalizing each y*y to 1 as usual
we have: [In(oo(W*WIN=T IN(oo(W*y)N)=I IN(1oon)=€ G 20N+ lEH A yas (1.2.31).

The frame of reference provided by each y gives our forces (eg., sect.7.3)

This inverse separability makes the rectangular method apply to all fractal at once.

Object B And Kerr Contribution 6.4.16 koo=1-ru/r —1-(a/r)?>-ru/r=1/k, from eq.1.2.4
Note from Kerr metric contribution eq. 6.4.16 given space-like ry barrier separations the
operators (sect.2.5) are on quantities only within a given fractal scale. Here Ae is N+1 th and ru
Nth so as an operator equation: Ae(ruyn)=0, ru(Aeyn+1)=0, etc. (partlll application ) in:

2 2
il e o B 2 ) R e e G IR R
’1_£_r_H 2(1-¢) 2r  8\r 1-e\r 2(1-¢) 2r  8\r
1—-¢€ T

(1.2.32)
And since A (=r>-2mr+a?) is also in the denominator of the Kerr metric k. we still have eq.1.2.4
Koo~ 1/Kir

Add zero point energy state ¢ to ru/r for  F=IH 1.2.33

We earlier derived for the new pde (above) ZCwm/ZE=rn for free space fundamental

t+ut+me=&; 3 free leptons for r=large, With same (required) & and simple deflation to ru (r=ru)
and rotation to B flux quantized ®=h/e we describe baryons, the r=rg solution to the new pde.
Given the Meisner effect two terms in Cm/Eo-Cm/Eo+Cwm/E1 are equal. The Meisner effect arises
because of periodic virtual annihilation (Partll) inside 2P3, at r=ry and so a change in current in



Faraday’s law. So the new pde describes both free leptons (r—o) and baryons (r=ry). That
Meisner effect cloud is the pions (partll). So add zero point energy state € to ru/r for r=rp.
For 2P3/2 state. (for 2P1/> the Es are separate and so Taylor expansion term &/2 gets added).
Recall from section 1.2, (eq.1.2.0) that:
G\ _ 6z,
(6)=5(s)
Starting with t+u+me=&; we (more generally) rotate to the B flux quantization ®=h/e plus

deflation of <5Zl
02,

_[$11 f12]<521) -1 0 <5Z1)_ (621)
Rotatedz+deflatedz & 6. l\6z, + [ 0 —A] 52.) = & 52,

it e g erran + decn = &,

Partial fractions with 2 body € Meisner effect implies the first two fractions have the same
magnitude and so fix the value of rotation &;;, deflation A and so (determinant) M: Recall that the
Clifford algebra drdt extremum gave us the Fiegenbaum point and inside the next smaller fractal
scale Mandelbrot set the particle masses.along the 45°angle.

rg=
Cy+Cp+Cym _ Cm _ Cm Cm + Cm

) to ry all the while conserving required &; mass energy

£ rxric 5, &, T M Koo and so the energy 1Ko,  (1.2.30)

So we have that baryon 3e composite. Note XCwm/&1=C makes C small in eq.1.1.1 preserving the
postulate of 1 also.

Back to r— Electron Hamiltonian From 6.6.15 Add Ag/(1+¢)

We can rewrite eq.1.2.8 and 1.2.32 for the electron assuming ambient (Kerr) metric (so
Koo=1/Krr) as:

tauon + muon As Ty,
E, = — (tauon + muon + PET + PEu.) Koo =1 — _
1 Ae 1y, 1+ r
T 14+¢ r

Note for electron motion around hydrogen proton mv?/r=ke?/r*> so KE=Yamv?= (Y)ke?*/r =PE
potential energy in PE+KE=E. So for the electron (but not the tauon or muon who are not in this
orbit) PEe=Y2e*/r. Note also all we did in 1.2.8 is to write the hydrogen energy and pull out the
electron contribution. So from 1.2.9: rp=(1+1+.5)2¢e*/(m+my+me)/2=2.5¢%/(mpc?).

1.2.4 Variation 3(Ey*y)=0 At r=n’a,

Next note the 2,00 eigenfunction variation in energy is equal to zero at maximum y*y
probability density where for the hydrogen atom is at r=n’a,=4a,. Also mrc?
=(my+my+me)=2mpc? normalizes Y4ke?:

tauon + muon + m,
E, = — (tauon + muon + PEt + PEW) =

e
T
Jl—mecz—ﬂ
r

, 1 2.5¢? , .3(25e*\* . 2m,c?
Z(mrc +m#C )E-}'ZWTHLC —2§ W m;c + >

2

(2'562 ) mie? (1231

_ 2mec? e? 3 ( 2.5
rmpc?

= 2Me® 4 9% o3
2 4r 8

3
8

2 2 2 e2
) mpce = meycC +;—2

rmpc?



So: AEe=2§( = )2 myc? =

rmpc?

_ 53 2.5(8.89X109)(1.602X10_19)2 2 27 812
AE =2 8 [(4(.53X10-10))2((1.67X10-27)(3X108)2] (2(1'67X10 )(3X10 )

=hf=6.626X10* 27,360,000 so that f=27MHz Lamb shift.
The other 1050Mhz comes from the zitterbewegung cloud.

Using Separability of eq.1.2.7 to get Gyromagnetic Ratio
After separation of variables the “r” component of equation 1.2.7 can be rewritten as:

dt d j+3/2
{(5 ‘. mp]+mp}F —hc( g, o+l jfzo (12.10)
{(? goompj—mp}fm{ g, oLt 2jF=o (12.11)

Comparing the flat space-time Dirac equation to equations 1.2.10 and 1.2.11
(dt/ds)Vkoo=(1/x00)Vikoo=(1/Vkoo)=Energy=E  (1.2.12)
Using the above Dirac equation it is easiest to find the gyromagnetic ratios gy for the spin
polarized F=0 case. Recall the usual calculation of rate of the change of spin S gives
dS/dtecmecgy] from the Heisenberg equations of motion. We note that 1/Ng: rescales dr in

( lg.. diJr S+ 3/2j f in equation 1.2.10. Thus to have the same rescaling of r in the second
r r

term we must multiply the second term denominator (i.e.,r) and numerator (i.e., J+3/2) each by
1/\gr and set the numerator equal to 3/2+J(gy), where gy is now the gyromagnetic ratio. This
makes our equation 1.2.10 compatible with the standard Dirac equation allowing us to substitute
the gy into the standard dS/dtocmecgyl to find the correction to dS/dt. Thus again:

[1/Vge]( 3/2 +1)=3/2+Jgy, Therefore for J= % we have:

[1/ge]( 3/2+V5)=3/2+Ysgy= 3/2+V4(1+Agy) (1.2.13)
Then we solve for gy and substitute it into the above dS/dt equation.

S States: Noting in equation 1.2.13 we get the gyromagnetic ratio of the electron with
gr=1/(1+Ae/(1+¢)) and €=0 for electron. Thus solve equation 1.2.13 for Vg.=V (1+A&/(1+€))=
V(1+Ae/(1+0))=  (1+.0005799/1). Thus from equation 1.2.13

[1A (1+.0005799)](3/2 + Y5)= 3/2 + Y(1+Agy). Solving for Agy gives anomalous gyromagnetic
ratio correction of the electron Agy=.00116.
If we set e#0 (so Ae/(1+¢€)) instead of A¢) in the same ko, (in equation 1.2.8a) in eq.1.2.7 we get
the anomalous gyromagnetic ratio correction of the muon in the same way
SUMMARY

Given the fractalness astronomers are observing from the inside of what particle physicists are
studying from the outside, that ONE new pde electron ry of eq.1.2.7. one thing.
The universe really is infinitely simple.
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(1) Penrose in a utube video implied that the Mandelbrot set might contain physics. Here we
merely showed how to find it. The fractal neighborhood of the Fiegenbaum point is a subset. In
fact all we done here is to show how to obtain physics from the Mandelbrot set.

(2) Cantor: Ueber die Ausdehnung eines Satzes aus der Theorie der trigonometrischen Reihen,
“Ueber eine elementare Frage der Mannigfaltigkeitslehre” Jahresbericht der Deutschen
Mathematiker-Vereinigung.Mandelbrot set sequence z, same as Cauchy seq.z, so reall.

MORE Applications Of section 1
Appendix A
Al z=1 Charge Associated With These Two Eigenfunctions (since charge=¢=Cw not 0)
One result is that from eq.1.18 we have nonzero ¢ in (dr-¢)=dr’
So from 1.2.3: ds?>=dr’?+dt’>=dr*+dt*+dre/2-dte/2-g1%/4 (A1)
From eq.1.1.12 the neutrino is defined as the particle for which -dr’=dt (so can now be in 2"
quadrant dr’, dt’ fig.2 can be negative) so dre/2-dte/2 has to be zero and so € has to be zero
therefore £2/4 is 0 and so is pinned as in eq.1.1.12 (neutrino). 8z=y. So on the light cone

Cym=e=mdr =0 and so the neutrino is uncharged and also massless in this flat space. Also see
Ch.2 for nonflat results.

1.1.11: 2D Recall eq.1.11 electron is defined as the particle for which dr=dt so dre/2-dte/2
cancels so €1 (=Cwm) in eq.1.16 can be small but nonzero so that the 5(dr+dt)=0. Thus dr,dt in eq.
1.1.11 are automatically both positive and so can be in the first quadrant. 1.11 is not pinned to
the diagonal so £€2/4 (and so Cwm) in eq.1.2.2 is not necessarily 0. So the electron is charged since



Cu is not 0. This then explains the positioning of the +e,-e, v vectors in figure 2.
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Note for finite C in 1.2.7 we also break the two 2D degeneracies (in eq.1.1.11) giving us our
4D.

A2 z=0 Implies Large AO=Cw/E, extremum to extremum Rotation In The Plane:

Recall all observable z satisfy eq.1.1.15 so that zoce®®. So Fiegenbaum point (2°) source ry to be
observed and so there is a second rotation. Eq.1.1.14 a 45° rotation 8z,8z= ¢'%¢%=5z"=¢!Op0)=.
i0z/0r. So a 45°+45° rotation gives: 82,0z’ = e'%e¥'=57"=¢!®*0=_i927 /312 z=0 implies a
rotation Cw/&, that we must rotate by 6=Cuwy that adds a spin’ (since it goes through a 45° lepton)
and then -Cy subtracts it using eq.1.1.4. For example start at 0° and rotate through +45°=Cwy
through the 1% quadrant (electron) dr+dt=2ds in fig.1, fig.3 and get:

+45°, [(dr+dt)/(ds\2)]z=z1+21.. Do z1, and z1, separately. 8z,0z= ¢'%Pei®=57’=ciOr+*0=_igz /dr ,
82,07’ = €%V =57"=e/®P*9=_i927 /31> So just for zi,: z1,=-idz/dr (partial derivatives). Then do
the -Cwm rotation:

-45°, (dr/ds)z1,=z2,. So -idzi/dr=z2,=-i[(d/dr)(-id/dr)z= (d*/dr?)z. Do both and get for

45°+45° rotation dr’z+dt’z— (d¥/dr?)z+(d?*/dt*)z (A2)
So S='2+2=1 making z=0 real Bosons, not virtual. Note we also get the Laplacians characteristic
of Bosons by those 45°+45° rotations so eq.1.1.4 implies Bosons accompany our leptons, so they
exhibit “force”. Note 2 small C rotations for z=1 can’t reach 90° 2 particles. So it stays leptonic.
With eq.1.1.16 and eq.1.2.7 we then have eigenfunctions z. This time however a// variations
dC=0 (even the 45° rotation to branch cut extremum) are realized and so have real (stable
electron) particles instead of virtual(transitory).

A3 2D Eq.1.2.7 2Py, at r=rn, for z=0 Composites of e,v

z=0 allows a large C z rotation application from the 4 different axis' max extremum (of 1.1.15)
branch cuts gives the 4 results: Z,+-W, photon bosons of the Standard Model fig.4. So we have
derived the Standard Model of particle physics in this very elegant way. You are physically at
r=ry if you rotate through the electron quadrants (I, IV) and not at ry otherwise. So we have large
Cwm dichotomic 90° rotation to the next Reimann surface of 1.1.15, eq.A2 (dr?+dt?)z’” from some
initial extremum angle(s) 6. Eq.1.1.15 solutions imply complex 2D plane Stern Gerlach
dichotomic rotations using noise z”’ocC (1.2.1) using Pauli matrices c; algebra, which maps one-
to-one to the quaternionA algebra. From sect.1.2, eq.1.2.2 we start at some initial angle 6 and
rotate by 90° the noise rotations are: C=z"= [er,¥.]T=2"(T)+2’(}) =y(T)+y() has a eq.1.2.2
infinitesimal unitary generator z’=U=1-(i/2)en*c), n=0/¢ in ds>=U'U. But in the limit n—>o we
find, using elementary calculus, the result exp(-(i/2)6*c) =z”. We can use any axis as a branch
cut since all 4 are eq.1.1.15 large extremum so for the 2™ rotation we move the branch cut 90°
and measure the angle off the next diagonal since Pauli matrix dichotomic rotations are actually
axis rotations, leaving our e and v directions the same. In any case (dr+dt)z’’in eq.1.1.15 can
then be replaced by eq.1.1.14, eq.1.2.3 (dr*+dt?+..)z” =(dr>+dt>+..)eduatemionABosons because of
eq.A2. Then use eq. 1.2.2 to R rotate: z”:
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Figure 3. See eq.B4. The Appendix A derivation applies to the far right side figure.

Recall fromeq.1.2.1a 2Cv=45+45=90°, gets Bosons. 45-45= leptons.

v in quadrants II(eq.1.1.12) and III (eq.1.1.13). e in quadrants I (eq.1.1.11) and IV (eq.1.1.11).
Locally normalize out 1+¢ . For the composite e,y on those required large z=0 eq.3 rotations for
C—0, and for stability r=ry (eg.,for 2Py, [ 11, [II>IV,IV—>I) unless ru=0 (II>1II) are:

II—1II Dichotomic variables—Pauli matrix rotations—z’ =edUmion A _y)\faxwell y

=Noise C blob. See Appendix A for the derivation of the eq.1.1.15 2"derivatives of eauatermion A,
[-II, HI—-IV,IV—>I Ae—¢ Meisner effect Dichotomic variables—Pauli matrix

rotations—»z ’=eduatemion A_s g3 Mesons.

I—-II, HI—-IV,IV—I Ae Dichotomic variables—Pauli matrix rotations—z ’=edU2temionA " ppoca, 7, W
Composite 3e: 2P32 at r=ry =Cwm (also stable baryons, partll).

Appendix B Quad 1111 €q.0.2 (dr’+dt?+..)eduatermion A =rptated through Cvm in eq.1.1.15.
example

Cmineq.1.2.1 is a 90° CCW rotation from 45° through v and antiv

A is the 4 potential. From eq.1.2.4 we find after taking logs of both sides that A;=1/A: (A2)
Pretending we have a only two i,j quaternions but still use the quaternion rules we first do the r
derivative: From eq. 1.2.3 dr?6z =(6%/0r%)(exp(iArtjAo))=(0/0r[(10AOr+0A/0r)(exp(iAstjAo)]
=0/0r[(0/0r)iA+(0/0r)j Ao )(exp(1ArtjAo)H[10A/Or+jOA/Or|0/0r(1A+] Ao ) (exp(1Asitj Ao)+
(i0*Ar/or? +j0? Ao/or?)(exp(1ArtjAo)H1OAL Or+jOA/Or][10AL/ Or+j0/Or(Ao)] exp(iAitjAs) (A3)
Then do the time derivative second derivative 0%/0t*(exp(iArtjAo) =(8/0t[(10AO0t+0A/Ot)
(exp(iArtjAo)]=0/0t[(0/0t)iAH(0/0t)j Ao)(exp(iArtjAo)+

[10A./0r+j0A/0t]0/0r(1A+] Ao)(exp(i1ArtjAo) +H(i0* A0t +j0*Ao/0t?)(exp(iArtjAo)
+[10A/0t+j0A/Ot][10A/Ot+jO/0t(Ao) lexp(iAitj Ao) (A4)
Adding eq. A2 to eq. A4 to obtain the total D’ Alambertian A3+A4=

[10?Ar/Or*+i* A/ O]+ [j0* Ao/ Or?+j0 Ao/Ot*] Hi(OAT/Or)*+ 1j(OAL/Or)(OA/Or)
+ji(OA/Or)(OAL/Or)+jj(OAL/Or)* ++ii(OAT/Ot)*+Hij(OAL/Ot)(OAG/Ot)Hi(OAL/Ot)(OAL/Ot)+j(OALOL)? .
Since ii=-1, jj=-1, ij=-ji the middle terms cancel leaving [i0*Ar/Or*+id*Ar/0t*]+

[j?Ao/Or*+j0* Ao/ Ot ]+i1(OAT/Or)*+j(OAL/Or)? +ii(OAT/Ot)*+jj(OAL/O)?

Plugging in A2 and A4 gives us cross terms jj(0Ao/0r)*+ii(OAr/0t)* = jj(O(-An/Or)*+Hi(OAr/ot)?

=0. So jj(OA./0r)?* =- jj(OA./Ot)* or taking the square root: OA./Or + 0A/0t=0 (A5)
i[O*A/Or*+i0* A/ 02 ]=0, j[O*Ao/Or*+Hid?Ao/0t2]=0 or &*A,/or*+0*A,/ot*+..=1 (A6)
A4 and A5 are Maxwell’s equations (Lorentz gauge formulation) in free space, if p=1,2,3,4.

2A=LL oA =0 (A7)

Still ONE Postulated Object: By the way we note A, (composed of two v identified as 1 y in
this 90°rotation) also composes the z=1 Kq0,=1-rn/r virtual particle potential energy (ru/r) of the
electron. So we are still only postulating that single eq.1.2.7 object by since we must include



v&y in it. We derived the SM here because other derivations similar given their respective fig.4
sources.

Locally normalize out 1+¢ . For the composite e,y on those required large z=0 eq.3 rotations for
C—0, and for stability r=ry for 2Py, (I>1L, [II>IV,IV—I) unless ru=0 (II—III) are:

Ist—>IInd quadrant rotation is the W+ at r=ru. Do the append B math and get a Proca equation
E=1/V(koo) -1=[1/N(1-Ag/(1-€)-tr/r)]- 1=[ 1/N(Ae/(1-€))]-1. E=E+E=2/N(Ag/(1-€))=W+ mass.
E=E-E gives E&M that also interacts weakly with weak force.

IIIrd -1V quadrant rotation is the W-. Do the math and get a Proca equation.

E=1/V(Kkoo) -1=[1/N(1-Ag/(1-€)-tr/r)]-1=[1/N(Ae/(1-€))]-1. E=E+E=2/N(Ag/(1-€))=W- mass.
E=E-E gives E&M that also interacts weakly with weak force.

IVth — Ist quadrant rotation is the Z,. Do the math and get a Proca equation. Cum charge
cancelation.

E=1/V(koo) -1=[1/N(1-Ag/(1+€)-r/r)]-1=[1/N(Ae/(1+€))]-1. E=E+E=2/N(Ae/(1+€))-1=Z, mass.
E=E-E gives E&M that also interacts weakly with weak force. Seen in small left handed
polarization rotation of light.

IInd—IIIrd quadrant rotation through those 2 neutrinos gives 2 objects. ru=0

E=1/Vkoo -1=[1/N(1-A&/(1+€)]-1=Ae/(1+€). Because of the +- square root E=E+-E so E rest mass
is 0 or Ae=(2A¢)/2 reduced mass.

Et=E+E=2E=2A¢ is the pairing interaction of SC. The E=E-E=0 is the 0 rest mass photon
Boson. Do the math (eq.A7) and get Maxwell's equations. Mass canceled and there was no
charge Cwm on the two v s.

Note we get the Standard electroweak Model particles out of composite e,v using required
eq.1.2.1 rotations for z=0.

For z=0 composite 3e (For new pde 2P3/2, rapidly moving two positrons, 1 slow electron.) is
ortho s,c,b and para t particle physics.

For z=1 the new pde applies to QED with large r.

B2 Derivation of the Standard Model But With No Free Parameters

Since we have now derived Mw, Mz, and their associated Proca equations, and m,,m-,me, etc.,
Dirac equation, Gr, ke?, Bu, Maxwell’s equations, etc. we can now write down the usual
Lagrangian density that implies these results. In this formulation M,=Mw/cosBw, so you find the
Weinberg angle 0w, gsinBw=e, g’cosBw=e; solve for g and g’, etc., We will have thereby derived
the standard model from first principles (i.e.,postulate]) and so it no longer contains free
parameters!

summary
z=1 gives the r—oo formulation ryi=CM/m. z=0 gives the r=ru rotational reduced mass
formulation rp=Cwm/me.Cv/me+Cwv/m to be consistent with C—oo with m=mt+mu+me in the new
pde. For z=0 you calculate the r=rg rotational reduced mass mpy=m/2 (using flux quantization)
which for z=1 is then Cy/m=ry in koo=1-rH/r. So Ee=m/V(koo)-me=V. Take the third order
Taylor expansion term to get AV

B3 z=0 eq. 6.6.17
z=0 Metric xuv: For only a single electron Ae at r=ry in eq.1.1.14 2Py, state (N neutron) we
must then normalize out the 1+¢ so koo=1+Ag/(1+2¢)-ru/r. But more distant object C (Our large 3



object cosmological object is a proton) for a weakly bound state (eg., 2Py at r=rn) implies
another smaller r= Cwm/&2= i s0 Koo=Ag/(1+2¢€) = Ag(1-2¢) or in general: Equipartition of
Meisner effect € energy between the 2P1/2 and central 2P3; electrons (since they are “identical
particles”) so /2 is with the 2Py, electron at r=ry, thus the W. Thus for 2P;» Meisner+mass=
E=¢/2+1/Nkoo= LN(Ae(142€))+e/2 =1/[(14e))V(Ae)]+e/2 =Ew (A7)
Eq. A7 gives the W,Z rest masses E. In fact eq.A7 is the basis for 3 of the 4 rotations of the
SM. So W (right fig.4) is a single electron Ae+v perturbation at r=ry=A (Since two body me.): So
H=H,+mcc? inside V. Ew=2hf=2hc/A, (41/3)A*=Vy. For the two leptons V11 =P =

1 : w 1 1
Y3737 = Py = Ya. Fermi dpt= 2G [ Yahopsths dV = 26 [ " ¥1¥, iV =

v v

2 ﬂforw P16 = ﬂfo Y1, (2mec?)dy, = ﬂfo VP (2mec?)p,dVy,. (B2)
What is Fermi G? 2mec?(Vw) =.9X10“*Mev-F> =Gr the strength of the weak interaction.

Note z=0 is also a solution to z=zz

So for added z~0, zV2= (z+A)N2 which we incorporate into =& =E+E, where &, =m. is small. If
E=Eo then Cw/§ is big and so those big rotations in sect 1.2.

In the more fundamental set theory formulation {J}c{all sets}<>{0}c{1} =£C =z . So &, acts
as 0 in eq.1.1.1 since D=FUD<=0+0=0, {{1}U T}={1}<>1+0=1. Thus z;=&;=mr contains z,~0
in §1=E+E, is the same algebra as the core idea of set theory and so of both mathematics and
physics (as we saw above).

Appendix C Quantum Mechanics

In z=1-8z &z is (defined as) the probability of z being 0. Recall z=0 is the &=me. solution to the
new pde so 8z is the probability we have just an electron. 1 then is the probability we have the
entire §;=KMQ complex (sect.1.2.1), that includes the electron (Observed EM&QM, sect.6.12).
Note z=zz also thereby conveniently provides us with an automatic normalization of 6z. Note
also that (8z*dz)/dr is also then a one dimensional probability ‘density’. So Bohr’s probability
density postulate for y*y (=(0z*6z)) is derived here. It is not a postulate anymore. Note the
electron observer Eq.1.1.11 (eq.1.2.7) has two parts that solve eq.1.1.11 together we could label
observer and object with associated 1.1.11 wavefunctions dz. So if there is no observer eq.1.1.11
then eq.1.1.10 doesn’t hold and so there is no object wavefunction. Thus the wave function
“collapses” to the wavefunction ‘observed’ (or eq.1.1.11 does not hold). Hence we derived the
Copenhagen interpretation of Quantum Mechanics(QM).

On the diagonals (45°) we have eq.1.11 holding: particles. Eq.1.1.15 as an operator equation
(use 1.1.16) gives waves. A wide slit has high uncertainty, large C so we are at 45°(eg., particles,
photoelectric effect). For a small slit we have smaller C so we are not large enough for 45° so
only the wave equation 1.2.8 holds (small slit diffraction). Thus we proved wave particle duality.
dt/k’ds=m in sect.1.2 implies in eq.1.1.16 that E=p; =ho for all energy components, universally.
mv/k=h defines k in terms of mass units (1.1.15b). But equation 1.2.7 is still the core idea since it
creates the eigenfunction oz, directly. So along with 1.2.7 and appendix C and eq. 1.1.15, 1.1.21a
we have derived Quantum Mechanics.



Appendix B
Cauchy sequence proof of real numbers
Recall we got from eq.1 6z+8z5z=C with quadratic equation result:

—1++V1—-4C
02

The general solution is complex dz=dr+idt. C>4 implies the imaginary component is time. On
the next smaller fractal scale 8z+8z5z=C with 6z6z<<dz~C there. But inside the Mandelbrot set
large limacon cusp the 6z<Ya. That cusp is required as a Fiegenbaum point perturbation
because without time there is no “observable” H (Hamiltonian) so z,=-%4 (only allowed
perturbation of the Fiegenbum point so £=1/0z in 1/6z=1/(8z8z) giving mass as in the z=0
section below eg., 1/(Y4%4) =1/(1/16)=): Deuteron(1), Kaon(1/4), pion(1/16)) in the Cauchy
sequence initialization C=0. So the Cauchy sequence proves that 0 is a real# since there is a
Cauchy sequence of rational numbers here (eg.,starts with %) converging to it. (i.e.,0). oz is
Fitzgerald contracted (after the derivation of the new pde so C is boosted at the end so the
postulate of 1 (z=zz) still holds. So this small C region can thereby be used to get the Cauchy
sequence proof of real #. So you could use the Mandelbrot set sequence; -1/4,-3/16,-55/256,...

Z =

r lar g€ in YR Ky )JOWY/OX, =( /)y

Koo and K,

Recall C,,=£52’
z=1 C=E£087’, 62" in z=1+32" is small so &, is big.
2=0 C,=£07’, 82" in z=1+82" is big so &, is small.
z=1 8Cyy= O(EC)=0(ED2)=0E02+E007 so £doz is small and &E, can be big so &; can be unstable
2=0 8Cyy= B(EC)=0(E02)=0E,02+E,002 so OE, is small so small £, is stable ground state of the new
pde. C=C,,/1 making the stable 1 the stable &,. So ,=E+&,. is our boosted &, by 7.
But £, and &, are both spin’: so our boost (and object B-A motion allowed metric quantization
states (sect.6.3)) involves two added & spin %s masses whose spins must cancel in %=(%-%)+%
so that &,=C;+5,+E =t+u+m, =1+e+Ae and so we also have 3C,, for &,. So for z=1
ri=ZCu/(Es+8,+E)= ZCu/&,

Thus we have added perturbation 8z'~XC,,/E=r’,, constrained by the circle operator

formalism so keeping the dr+dt=ds invariance solution of §(8z+628z)=0
that has to be written at 45° as dr-8z’+dt+0z’'=ds=dr’+dt’ since ds is invariant and which is a
rotation 6 on the z=1 baseline fractal scale.




r large

Koo and x,,
So  (dr-8z)+(dt+82)=(dr-(Cyy/&)))H(dt+H(Cpy/E))) =V2ds= dr’+dt’
Define k,=(dr/dr’)>=(dr/(dr-(Cy/&,))))? =1/(1-1y/r)? =A,/(1-15/t) +A/(1-135/1)?
The A; term can be split off from RN as in classic GR and so

k= /[ 1-2Cy/(§1)]
From partial fractions where N+1th scale A,/(1-r;5/r) and Nth=A,/(1-r;/r)* with
A, small here. So we have a new frame of reference dr’,dt’. So real eq.1.1.10
becomes: ds?= k. dr’? +x dt’2 +..
So a new frame of reference dr’,dt’. Note from 1.1.8 dr’dt’=Vk, drVk,,dt=drdt
SO K, =1/K,
So: Koo 1 -ZCy/(rE))
ds=(y1 iy Xy #7272 Vi3 g+ Vi 44X ) 52—
V(K )0 /0x =(w/c)y

w=m,c?/h. This is our new 4D pde

r large
Ky, and x,,
Ambient Metric Effects On &, ignoring fractal ry operator formulation
This is a fractal theory so the pde gives rotations on all fractal scales. So from
Kerr (rotation) metric on the next higher fractal scale (ignoring ry; as a space
like horizon) and the equations for that ambient metric (sect. 6.3) with
normalized out large quantities k,, goes to:

K,=1/(1+Ae/(1+¢)) and £=0 for electron



r small I'=rg in y“\/ (K, )OW/0X =(w/C)y
K, and k.
With same (required) &, and simple deflation to ry (r=ry)and rotation to B flux quantized ®=h/e we describe
baryons, the r=ry solution to the new pde. Given the Meisner effect first two terms in Cy/€,-Cy/E,+C\/E, are
equal The Meisner effect arises because of periodic virtual annihilation (PartlI) inside 2P;), at r=r; and so change in
current in Faraday’s law. So the new pde describes both free leptons and baryons. That Meisner effect cloud is the

piOIlS (partH) Recall frOIn SeCtiOIl 12 that:
(Cl) ( Zl)
2 6 2

Starting with t+u+m =&, we (more generally) rotate to the B flux quantization ®=h/e (speed) plus deflation of

(g?) to ry; all the while conserving required &; mass energy
2

_[$11 512](521> -2 0 (521>_ (621)
Rotatedz+deflatedz= £ 00l \62, + 0 —/1] 52,) = & 52y

T R T T,
I
Partial fractions with 2 body € Meisner effect implies the first two fractions have the same magnitude and so fix the
value of rotation &;, deflation A and so (determinant) M:
Cy+Cp+Cym — Cym =C_M_C_M+C_M
31 x2+x(tr)+C $o o 31
Note 2Cy/&,=C makes C small in eq.1.1.1 preserving the postulate of 1 also.

in k,, and so the energy 1/Vk,,. So we have that baryon 3e composite.



