
 
                              Ockam’s Razor-Postulate 1  
                                        David Maker 
 
Abstract: z=zz+C, dC=0 (eq.1) is a very powerful relation that gives both the Dirac equation*(A) 
and Mandelbrot set*(B) together resulting in the New pde and physics. 
But eq. 1 also has the small C limit of the z=zz algebraic definition of 1. 
So eq.1 implies Occam’s razor postulate 1 gives us the physics,fig.1 
 
*(A) Plug z=1+dz into eq.1 and get d(dz+dzdz)=0 (eq.2) which splits into a real component 
Minkowski metric and imaginary component Clifford algebra. These both imply the (Hermitian) 
operator observables formalism, eq.6 (thus QM), and a 2D Dirac equation for e,v.  
*(B) Plug in the left side (of eq.1) z into the right side zz repeatedly and use dC=0 and get the 
Mandelbrot set iteration formula.                                                                                                
    The eq.6 real eigenvalues (i.e., so needs Cauchy sequence from Mandelbrot iteration) makes 
(A)&(B) the ONLY possible ‘observable 1’ eq.6 derivation(fig.3) from postulate 1. That Clifford 
algebra extremum implies the Mandlebulb real Fiegenbaum pt neighborhood on the next smaller 
fractal scale. This perturbation of that Dirac eq. gives a 4D  New pde gµÖ(kµµ)¶y/¶xµ=(w/c)y  
whose composite e,v gives the SM and composite 3e the baryons, and whose nonoperator 
iteration on the next larger fractal scale is the Schwarzschild metric and GR(gravity). 
 
Fill in algebra steps of above points *(A) and *(B)  
*(A) So from eq.2 (dz-K)+dzdz=C (constant C and K) which is a quadratic eq. with in-general 
complex solution dz=dr+idt. Plug that back into eq.2 with K=dz to initialize to flat space and get 
d(dr2+i(drdt+dtdr)-dt2)=0 since dr2-12dt2=ds2 is special relativity (Minkowski metric given 
12=natural unit constant speed2ºc2) invariance. The imaginary extremum is the Clifford algebra 
dr’dt’+dt’dr’=grdrgtdt+gtdtgrdr=0 since 2drdt¹0 here for nonvacuum (see eq.5 below). Factor the 
real component and get 3 equations (eg.,e; dr+dt=ds,dr-dt=ds (eq.3),etc.,dr-dt in IV quadrant so 
ds>0 (e±=electron=only nonzero proper mass), Eq.4 dr=±dt light cone (v,�̅�) and eq.5 dr=0 is 
vacuum. (Note complex unknown K for K¹dz+dz’ (dz’)perturbation adds 2 degrees of freedom.)        
We just derived space-time (r,t) and  special relativity here! 
  Square eq.3 to get +ds2=(dr+dt)2=(dr2+dt2)+drdt+dtdr implying dr2+dt2 =ds2 circle invariance at 
45° since dr+dt and drdt+dtdr (cross term) are invariant. So circle dz=dseiq= dsei((sinqdr+cosqdt)/ds). 
Take the r partial derivative, define dr/dsºk, sinqºr, dzºy and multiply both sides by ih and 
define momentum pºhkºxv to get the operator formalism pry=-ih¶y/¶r (so observables p).(eq.6  
All three invariances imply the Dirac equation(2) for e,v. (e=electron, v=neutrino). 
 We just derived quantum mechanics (QM)!  
*(B)That Clifford algebra small drdt area extremum is at the Mandelbulb Fiegenbaum pt. CM on 
the real axis where the Mandelbrot iteration sequence has that Cauchy seq. subset giving the real 
numbers. Postulate 1 (So small C in eq.1.) then requires a new (boost g (fig.1)) frame of 
reference to give small fractal baseline dz’º CM/gºCM/xºrH=C in eq.1. Recall light cone v so it’s 
rH=0. So K¹dz+dz’ perturbation is of flat space eq.3:         (dr-dz’)+(dt+dz’)=dsº dr’+dt’ (eq.7) 



derivative rotation since ds invariant. Defining krrº(dr/dr’)2=1/(1-rH/r)+., rºdr, into that (local 
Minkowski metric) ds2=dr’2+dt’2+.. and using invariant Clifford alg. drdt=dr’dt’= ÖkrrdrÖkttdt, 
we obtain krr=1/ktt and thereby get that 4D GR quadratic form and so curved space. 
So the Fiegenbaum pt neighborhood perturbation dz’ of that Dirac equation implies that 
generally covariant new pde gµÖ(kµµ)¶y/¶xµ=(w/c)y with that fractal rH (by1040XrH scale) 
change. Also note 4D GR kµn tensor.  Hermitian operators on these new pde ys are observables  
 
2 New pde applications for z=0 so r=rH   (For small C in eq.1:  z=0 then r=rH;  z=1,r>rH.) 
2.1 Composite e,v:   ±dz’ in eq.7 implies (derivative)iteration of New pde: Bosons 
That z=0,  4 axis’ 2X45°=q (derivative operator iteration of New pde) rotations for e,v  implies 
the Z,W±,g , the 4 Bosons of the Standard electroweak Model SM so Maxwell’s and Proca’s 
equations (PartI, appendix A). Note the nonoperator iteration of the New pde on the next higher 
fractal (rHX1040) scale generates that above 4D GR quadratic form Schwarzschild metric (i.e., 
gravity) and so general covariance:  
We just derived general relativity (GR) from quantum mechanics in one line! Recall the 
New pde zitterbewegung oscillation on the next higher 1040X larger fractal selfsimilar 
cosmological scale. With us being in the expansion stage of the oscillation for r<rc this then 
explains the expansion of the universe. 
2.2 Composite 3e and r=rH stability (i.e., dt’2=(1-rH/r)dt2) and h/e flux quantization effects  
That z=0 New pde (2P3/2 at r=rH) composite 3e results in rapid e motion Fitzgerald contraction of 
E field lines giving the strong force and so (the much larger mass) baryons. See partII  
 
3) New pde gµÖ(kµµ)¶y/¶xµ=(w/c)y applications for z=1 so r>rH.  Note square root. 
For z=1 New pde, the 3rd order term in the Taylor expansion of the two square roots Ökµµ in the 
New pde gets the Lamb shift (2) and anomalous gyromagnetic ratio respectively (PartI, sect.1.2.1 
thus eliminating the need for renormalization and the resulting infinite charge, infinite mass, 
infinite vacuum density, etc.. Thus these square roots cause theoretical physics to give right 
answers again (Infinite everything is 0% right). 
 
4) Note on list-define math (from 1(È1)) to create real number algebra(fig.2)  
Given this (postulate) 1 we can use list-define (list the many instances of a relation e.g., start with 
1∪1≡ 2 , then define them all as relation a+b=c) math(appendix C PartI) to replace those famous 
set theory axioms, order axioms, mathematical induction axioms (giving N) and the field andring 
axioms(1)  to generate the numbers N and so the algebra of eq.1.So postulate1for math&physics 
 
Conclusion:  We finally understand, everything. An intuitive notion of the postulate of ONE is 
Given the 1040X fractal selfsimilarity astronomers are observing from the inside of what particle 
physicists are studying from the outside, the rH of that ONE New pde ‘object’ e we first 
postulated. So at big and small scales all we observe is that ONE thing (even baryons are 3e). 
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Figures: Equation 1 z=zz+C, dC=0 gets the new pde and physics and yet the z=zz algebraic 
definition of 1 is the small C limit of equation 1. So eq.1 hints strongly that Ockam’s razor                        
Postulate 1®Physics   is correct: 

 fig.1 
 
________________________________________________________________ 
Also math (sect.4)  from 1: 

                                                                                 fig.2 
 
Need at least some measurable “observables” (Hermitian operator formalism eq.6) and 
Cauchy sequence of rational numbers to define real# (eigenvalues) 

                                                                 fig.3 



Part I                     FOREWORD  (Referencing eq.1.2.7 and 3e composite) 
Maker’s New Pde Implies The Strong Interaction Without A Host of Assumptions 
I am writing in support of David Maker’s new generalization of the Dirac equation.(New pde) 
For example at his r=rH Maker’s new pde 2P3/2 state fills first, creating a 3 lobed shape for y*y. 
At r=rH the time component of his metric is zero, so clocks slow down, explaining the stability of 
the proton. The 3 lobed structure means the electron (solution to that new pde) spends 1/3 of its 
time in each lobe, explaining the multiples of 1/3e fractional charge. The lobes are locked into 
the center of mass, can’t leave, giving assymptotic freedom. Also there are 6 2P states explaining 
the 6 quark flavors. P wave scattering gives the jets. Plus the S matrix of this new pde gives the 
W and Z as resonances (weak interaction) and the Lamb shift but this time without requiring 
renormalization and higher order diagrams. Solve this new pde with the Frobenius solution at 
r=rH and get the hyperon masses. Note we mathematically solved the new pde in each of these 
cases, we did not add any more assumptions. In contrast there are many assumptions of QCD 
(i.e., masses SU(3), couplings, charges, etc.,) versus the one simple postulate of Maker’s idea 
and resulting pde.  
Many assumptions are in reality a mere list of properties. One assumption means you actually 
understand the phenomena. 
                                                                                                      Dr. Jack Archer 
                                                                                                      PhD Physicist 
 
Concerns the e,v composite Standard electroweak Model and 3e composite  
Physics Theories Interconnected In Maker Theory 
A cosmologist has probably asked: What is dark energy? What is the source of the dipole 
moment in CMBR? Why is gravity only attractive? A particle physicist has probably wondered: 
Why is the core of the SM a left handed Dirac doublet? What is the source of the nuclear force? 
Is gauge invariance needed? David Maker has derived a generalized Dirac equation that answers 
all of these questions. Furthermore, his theory shows that all of these questions are intimately 
connected. 
                                                                                                  Dr. Jorge O”Farril  PhD 
                                                                                                  In Particle Physics Theory 
 
Physics Implications of the Maker Theory  (Referencing eq.1.2.7) 
 
 “People work with a Hamiltonian which, used in a direct way, would give the wrong results, and 
then they supplement it with these rules of subtracting infinities. I feel that, under those 
conditions, you do not really have a correct mathematical theory at all. You have a set of 
working rules. So the quantum mechanics that most physicists are using nowadays is just a set of 
working rules, and not a complete dynamical theory at all. In spite of that, people have 
developed it in great detail. “ 
. 
This sharp criticism of modern quantum field theory is quoted from a talk by Paul Dirac that was 
published in 1987, three years after his death: see Chapter 15 of the Memorial Volume “Paul 
Adrian Maurice Dirac: Reminiscences about a Great Physicist”, edited by Behram N. 
Kursunoglu and Eugene Paul Wigner (paperback edition 1990). Richard Feynman too felt very 
uncomfortable with “these rules of subtracting infinities” (renormalization) and called it "shell 
game" and "hocus pocus" (wikipedia.org “Renormalization”, Oct 2009). Even more recently, 



Lewis H. Ryder in his text “Quantum Field Theory” (edition 1996, page 390) lamented “there 
ought to be a more satisfactory way of doing things”. 
[The third term in the Taylor expansion of the square root in equation 9 grÖ(krr)¶y/¶r=(w/c)y 
gives the equation 6.12.10 and so the Lamb shift and equation 8.4 gives anomalous 
gyromagnetic ratio so we do obtain the QED precision but without the higher order diagrams and 
infinite charges and masses]  
In his highly critical talk Dirac went on to say: 
“I want to emphasize that many of these modern quantum field theories are not reliable at all, 
even though many people are working on them and their work sometimes gets detailed results.” 
He stressed the fundamental requirement to find a Hamiltonian that satisfies the Heisenberg 
equation of motion for the dynamic variables of the considered system in order to obtain the 
correct quantum theory. After all, it was this kind of approach, not invoking the correspondence 
principle to classical mechanics, that led him to discover the relativistic spinor wave equation of 
the electron that carries his name! The underlying question here is, of course, how to modify the 
Hamiltonian of that original Dirac equation to incorporate a dynamical system with 
electromagnetic fields.  As wikipedia.org, under the entry “Dirac Equation”, put it (Oct 2009): 
“Dirac's theory is flawed by its neglect of the possibility of creating and destroying particles, one 
of the basic consequences of relativity. This difficulty is resolved by reformulating it as a 
quantum field theory. Adding a quantized electromagnetic field to this theory leads to the theory 
of quantum electrodynamics (QED).”  But it is just this simple additive modification of the 
Hamiltonian based on the correspondence principle that violates the Heisenberg equation of 
motion and, therefore, had been rejected by Dirac.  
 
Dirac concluded his talk with these words: 
“I did think of a different kind of Hamiltonian which is in conformity with the Heisenberg 
equations, but … it has not led to anything of practical importance up to the present. Still, I like 
to mention it as an example of the lines on which one should seek to make advance. … I shall 
continue to work on it, and other people, I hope, will follow along such lines. “ 
 
Unfortunately, nobody seemed to have listened, instead everybody continued to believe that 
renormalizing away those awkward infinities is the only available answer and blindly followed 
in the steps of QED in formulating other quantum field theories, such as those for the weak and 
the strong forces. This has led to a hodgepodge of complex mathematical acrobatics including 
the proliferation of string theories for quantum gravity and the attempts to construct a 
comprehensive matrix string theory (M-theory, supposedly a “theory of everything”), theories 
that require an unreasonable number of dimensions. Dirac would despair!  
 
But eventually, an outsider has been looking back and took Dirac seriously. Joel David Maker, 
over the past two decades, has been formulating a new theory totally based on the fundamental 
principles laid out by Dirac.  He was able to derive a new Hamiltonian for the Dirac equation to 
incorporate the electromagnetic (EM) field. In order to achieve this task, he basically had to 
create a new general relativity (GR) for the EM force by postulating that there is only one truly 
fundamental elementary particle, the electron - all other particles are derived from it. Maker 
expresses this postulate mathematically by a basic EM point source that is an observable 
quantum mechanical object. He then argues that the equivalence principle for an EM force from 
such a point source does, in fact, hold, since one has to deal with only one value of charge, 



namely, the electron charge. Hence, he is able to apply Einstein’s GR formalism to this simple 
EM point source. A new ambient metric results in which the Dirac equation needs to be 
imbedded, leading to a modification of the Hamiltonian that is by no means additive but is GR 
covariant and satisfies the requirement of the Heisenberg’s equation of motion.  
Note: [the 3rd term in the Taylor expansion of the square root (see 6.12.1(Lamb shift), eq.8.4 
(anomalous gyromagnetic ratio) in eq.2 pde gr√(krr)∂y/∂r=(w/c) (1.11)  contains the high 
precision QED results otherwise only obtainable by gauges, higher order diagrams and 
renormalization.] 
. 
An important ingredient of this new ambient metric is the existence of an EM Schwarzschild 
radius for the postulated single point source generating an electron event horizon that is directly 
related to the classical electron radius. It also leads to the revolutionary concept of fractal event 
horizons that envelope each other with deep implications for the self-similarity of the physics at 
different scales. Our observable physics is, however, limited to the region between the electron 
(more generally, Dirac particle) horizon and the next larger scale horizon, the cosmological 
horizon. Perturbations from higher-order scales can, however influence observations in our 
observable region. 
 
Maker’s fundamentally new approach, by including the concept of observability, naturally 
unifies general relativity with quantum mechanics and makes GR complete (i.e. ungauged), a 
result, Einstein had been striving for, but was unable to achieve. In addition it provides the 
precision answers of QED (such as a accurate value of the Lamb shift) and other quantum field 
theories in a direct way without higher-order Feynman diagrams and/or renormalization.  
Solutions of the new GR covariant Dirac equation for the region outside the electron event 
horizon produce the needed physics for EM forces, QED corrections, and weak forces. Solutions 
for a composite Dirac particle evaluated near its event horizon (which, in a composite system, 
needs to be a “fuzzy” horizon and, hence, some inside observation becomes possible) provide an 
understanding of leptons and hadrons (baryons and mesons) as electronic S, 2P3/2 states of the 
multi-body Dirac particle: For example, S-states are interpreted as leptons, hybrid SP2 states as 
baryons. Quarks are not separate particles but are related to the three-fold lobe structure of 2P3/2 
at r=rH states in this model, providing an explanation of the strong forces. Gravity is derived, as 
a first-higher-order effect, from the modification of the ambient EM metric by the self-similar 
radial expansion dynamics at the cosmological scale. This first-higher-order effect, also provides 
an understanding of the lepton mass differences; by including the perturbation from the next self-
similar larger-scale dynamics (those of a “super cosmos”) the finiteness of neutrino masses are 
explained as tiny contributions from such a second-higher-order effect.  Amazingly, Maker was 
able to deduce all these results from a basic simple postulate, namely, the existence of a single 
observable EM point source, which - within the formalism of Einstein’s general relativity - 
defines a new ambient metric. 
 
Thus, with his radically new thinking, Maker has proven the correctness of Dirac’s lines of 
approach to the Hamiltonian problem. Dirac believed in the power of mathematical beauty in the 
search for a correct description of our observable physical world: “God used beautiful 
mathematics in creating the world” (thinkexist.com, Oct 2009). Beautiful mathematics it is 
indeed!                                                  
                                                                                         Reinhart Engelmann, Oct 2009  



 
Maker, Quantum Physics and Fractal Space Time, volume 19, Number 1, Jan 1999,  CSF,   
 
 
Concerns the fractal cosmological implications  
  The above reference is a publication in a refereed journal of an article on the universe as a 
particle in a fractal space time. Here these (fractal) objects are the result of circle mappings onto 
Z plane Reimann surfaces, separated by nontrivial branch cuts (see preface below). The dr+dt 
extrema diagonals on this Z plane translate to pde’s for leptons in the ds extrema case and for 
bosons in the ds2 (=dr2+dt2) extrema case each with its own “wave function”y.   
  I attended the U.Texas for a while and as a teaching assistant I shared the mailbox rack with 
people like Weinberg and Archibald Wheeler. So one day on looking over at Wheeler’s a few 
mailboxes over on an impulse I plopped in a physics paper on this subject. Wheeler responded 
later in a hand written note that what I had done was a ‘fascinating idea’. 

 
He apparently took this fractal idea seriously because 8 years later he organized a seminar at 
Tufts U. (1990) on a closely related concept: “the wave function of the universe” (the universe in 
his case as a Wheeler De Witt equation boson wavefunction).  Allen Guth and Stephan Hawking 
also attended. 
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Derivation of New Pde 
Table Of Contents 
       Postulate 1 (so “define observable 1”) rewritten as                                                           
       z=zz+C (1.1.1) , dC=0,C<0 (1.1.2)  
Sect.1.1  For example rewrite eq.1.1.1; 1.1.2  in a more familiar form (by defining z=1+ dz) 
           Get d(dz+ dz dz)=0   
Sect. 1.2.  eq.1.1.1, 1.1.2 imply 1 is a real # (by plugging left z back in right side zz) 
           Get Mandelbrot set. 
  
Introduction: Rewrite eq.1.1.1;1.1.2 as the more familiar operator formalism 
So start by          Define observable 1   
with a list-define math (from 1, sect.4) to create algebra 
But   z=zz algebraic definition of 1 is the small C limit of 
  z=zz+C, dC=0,C<0  needed to define observable 1 (so real eigenvalues) 
rewritten as: z-zz=C (1.1.1),  dC=0, C<0  (1.1.2)   
 
Section 1.1 Solve eq. 1.1.1 and 1.1.2 directly (substitute z=1+dz) 
Plug z=1+dz into eq.1.1.1 get (1+dz)-(1+dz)(1+d)=C (1.1.3)      and so     dzdz+dz+C=0    (1.1.4) 
Solving quadratic eq. 1.1.4 we get: dz=[-1±Ö(1-4C)]/2. For noise C>¼     dz=dr+idt           (1.1.5)   
(So we derived space-time.). Plug 1.1.4 into eq. 1.1.2      dC=d((dz-K)+d(dzdz))=0     (1.1.6)  
 1.1.2                                                                  dz=K ®flat 
We can then always add a (given constant C) in general complex K in d(dz-K+dzdz) =0 to use 
K=dz to initialize to local flat (making the K≠𝛿z+dz’ cases perturbations in this formulation) 
since 0+d(dzdz)= d[(dr+idt)(dr+idt)]=d(dr2+i(drdt+dtdr)-dt2)=0 is Minkowski (C becomes CM 
is real)  Also since K is complex for unknown K¹dz+dz‘ perturbation (K) merely adds 2 degrees 
of freedom as in 2Å2 (Note then 4D keeps C=ds2 invariant even if K¹dz). 
Given d(dz-K)=0  and eq.1.1.5 d(dzdz)=d[(dr+idt)(dr+idt)]=d(dr2+i(drdt+dtdr)-dt2)=0  (1.1.7) 
Next factor the real component of 1.1.7.                                                                                                                                  
d(dr2-dt2)=d[(dr+dt)(dr-dt)]=d(ds2)=[[d(dr+dt)](dr - dt))] +[(dr +dt)[d(dr – dt)]]=0 (1.1.10) 
Solve eq. 1.1.10 and get   
 (®±e)               dr+dt=Ö2ds, dr-dt=Ö2ds  ºds1 (1.1.11)  I, IV +ds >0  
 (®light cone v) dr+dt=Ö2ds, dr=-dt,                (1.1.12)   II quadrant     
       “        “         dr-dt=Ö2ds,  dr=dt,                  (1.1.13)   III quadrant   
 (®vacuum)       dr=dt,           dr=-dt                  (1.1.14)      dt=0=dr                      
Equation 1.1.10 gives Special Relativity(SR) ds2=dr2-(1)2dt2 (note natural unit constant 12 (ºc2) 
in front of the dt2). Thus K=dz initializes to locally flat space if also C is real.  Note  our 
quadrants were chosen so that ds>0 giving us observability since the later operator formalism at 
45° which also implies that if either dr or dt is zero then everything is zero and we have our 
“vacuum” solution 1.1.14 and so not observable. 
Note also Imaginary component= ds3 º                      drdt+dtdr                                      (1.1.8)  
Note our previous quadrant choice of dr,dt makes drdt+dtdr  and so ds3 positive or zero with zero 
being the extremum given eq.1.1.8 are finite extremums since 𝛿¥ is undefined. But since dr, dt 
(in scalar 2drdt) is not 0 if not eq.1.1.14 vacuum then:              
                                                                     drdt+dtdr=0                                           (1.1.9)  



implies the imaginary extremum is a Clifford algebra (since we assume we are not in the 
eq.1.1.14 vacuum where drdt=0  is not the eq.1.1.14 vacuum as in )dr’dt’+dt’dr’º𝛾1dr𝛾2dt+ 
𝛾2dt𝛾1dr=  2drdt(𝛾1𝛾2+ 𝛾2𝛾1)=0 so 𝛾i𝛾j+𝛾j𝛾i =0, (gk)2=1 ((gk)2=1 from real component of eq.1.1.7). 
 
Third Invariant  
In their respective quadrants all are +ds. Also recall the previous two invariants of ds1,ds3. We 
square ds12=(dr+dt)(dr+dt) =dr2+drdt+dt2+dtdr =[dr2+dt2] +(drdt+dtdr) ºds2+ds3=ds12. Since ds3 
(from 1.1.9, is max or min) and ds2 (from 1.1.10) are invariant then so is ds2=dr2+dt2 =ds12-ds3 as 
in figure 1 for all angles from the axis extremum. ds2 is our 3rd invariant. (Note all three of these 
invariants ¶ds/¶z=0 are satisfied at the Fiegenbaum point, v also at the limacon end, sect.1.2).  
Note in fig.1 min ds is at 45°. So ds is diagonal. 
 
 
          
                    
 
 
 Fig.1                                                    Nth fractal scale  
Minimum ds2=dr2+dt2 so at 45°: dz=dseiq=dsei(Dq+qo),  qo=45°                                     (1.1.14)  
Note in fig.1  45° is always measured from  extremum axis’(also in fig.4). So for variation Dq 
dz=dseiq=dsei(Dq+qo)= dsei((cosqdr+sinqdt)/(ds)+qo),  qo=45°.                                                  (1.1.15)                               
So q=f(t). dz=dsei(45°+Dq). In eq.1.15 we define kºdr/ds,  wºdt/ds, sinqºr, cosqºt. dsei45°=ds’=ds. 
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  Multiply both sides by h. hkºmv=p since k=dr/ds=v/c=2p/l (1.1.15b) 
from eq.1.15 for our unit mass xsºme. dzºy,(eq.6.6.1) Note we also derived the DeBroglie 
wavelengthl=h/mv. (<F>*= ò(Fy)*ydt=òy*Fydt =<F> Hermitian).             
𝑝/𝜓 = −𝑖ℎ )4

)/
     which is the observables pr condition gotten from that eq.1.1.15 circle. (1.1.16) 

operator formalism thereby converting eq.1.1.11, 1.1.12, 1.1.13 into Dirac eq. pdes. 
Note these pr operators are Hermitian and so we have ‘observables’ with the associated      
eq.1.11-1.13 Hilbert space eigenfunctions dz (=y). dz (in z=1-dz) is the probability z is o (see 
appendix D). 
We derived QM here. 
Note rotation to 45° for min ds3 in figure 1 on the eq.1.1.14 circle. 
1.1.3 Origin Of Math from Eigenvalue of dz: Since dsµdr+dt can make (dr+dt)/ds a integer: 
2dzº (1È1)dzº(1.11+1.11)dzº((dr+dt)+(dr-dt))/(k’ds)))dzº-i2(ds/ds)¶(dz)/¶rº-i2¶(dz)/¶r 
(1.1.16a)                                
=(integer)k)dz.  
So from eq.1.16a we obtain the eigenvalues of: dz=0,-1 making our z=1+dz eq.1 real numbers 
1,0 =z (binary qubits) also observables. So we have come full circle and so use this result to 
develop the list-define algebra required to use eq.1-1.2. eg.,”list” as in 1+1=2, 2+1=3;  ”define” 
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a+b=c replacing the usual field axioms, order axioms and mathematical induction axiom (that 
merely gives N). See appendix C, Part I. Note this third invariant ds also gives us the quantum 
mechanics operator formalism (eq.1.1.16). See appendix D. 
So we have derived the observables in the postulate of 1. 
 
1.2 Mandelbrot Set.  Iterate  z-zz=C (1.1.1),  dC=0, C<0  (1.1.2)  to get Cauchy 
sequence and  so real 
Just plug the left side z in z=zz+C back into each z on the right side of eq.1.1.1 and get 
z’=z’z’+C since z’º(zz+C)=z. z1=1 instead of 0 with the two CMs chosen to give the upper and 
lower components of the Cauchy sequence.   It is the Mandelbrot set displaced by -1. So you can 
repeat this step with this new z’=z’z’+C. We get the iteration zN+1=zNzN+CM with dC=d(zN+1-
zNzN ) =0 then implying this choice of CM defines the Mandelbrot set since d(¥-¥) cannot be 
zero. Our z=zz postulate in eq.1.1.1 has solutions 1,0 and first term in the iteration is z=z1. But 
z=z1=0 will be used here (z=1 as x1 is discussed below). One such sequence zN generated from 
this Mandelbrot set definition also provides a Cauchy sequence zN of rational numbers (eg., with 
initialization CM=±smallrational#<¼) that shows that 1 is a real number(2).   
So we have derived the real part of observability. See appendix B also. 
Clifford Algebra +Mandelbulbs Implies Fiegenbaum point Making K¹dz 
Scalar component of eq. 1.1.8  d(2drdt)=0 implies smallest area real C extremum Mandelbulb 
which is the Fiegenbaum point C= CM subset of the Mandelbrot setkA Moving Observer 
 
 1.2.1 Frame of Reference Is Also Implied by Postulate 1 
But CM is big (|CM|=1.4011..) so we need a new reference frame to get small C»0 of postulate 1 
(eq.1.1.1). Define r’H=dz=CM/1 so we (as a Fitzgerald contraction 1/g) boost r’H=boost (as in the  
p=xv=(1/g)(dr/ds) definition 1.1.15b) CM/1ºCM/gºCM/x1ºC to get small C»0 (if x1 is big) and so 
get the postulate of 1 in eq.1.1.1 (This is just the tangential instantaneous rotating frame of 
reference of the spin½ eq.1.2.7 new pde.). Also for the next smaller fractal baseline dz>>dzdz in 
eq.1.1.4 so dz»C  
z»1  CM=xdz’, dz’ in z=1+dz’ is small so x1 is big. 
z»0  CM=xdz’, dz’ in z=1+dz’ is big so xo is small. 
z»0 dCM= d(xC)=d(xdz)=dxodz+xoddz so dxo is small so small xo is stable ground state of the 
new pde.  
z»1 dCM= d(xC)=d(xdz)=dxdz+xddz so xddz is small and dx1 can be big so x1 can be unstable 
So C=CM/1 making the stable 1 the stable xo. dx is then big so x1 unstable and also x=x1 is large  
and its DE=1/Ökoo is also our ambient metric koo (=1-(a/r)2-rH/r) term and so must split due to the 
rotational and vibrational metric quantization of object B in the Kerr metric (a/r)2 term in the 
ambient metric. So we have three S=½ new pde objects (each with its own sect.1.1 neutrino and 
its own Reimann surface.) constituting  x1=xt+xu+me in the new pde for r large with xt,  xu 
excited states of boosted me.   
The (x1)/2=mp reduced mass is the L=1 rotational 2P3/2, r=rH state (r small) is state with the m= 
½+½ of the two positrons canceling the L=1 angular momentum. 
So x1=x3+x2+xoºt+µ+me º1+e+De and so we also have 3CM for x1. So for z=1                 
                                                    rH=SCM/(x3+x2+xo)º SCM/x1                                           (1.2.0) 



 Thus we have added perturbation dz’»SCM/xºr’H on eq.1.1.13 constrained by the eq.1.1.6 circle 
has to be written at 45° as dr-dz’+dt+dz’=ds=dr’+dt’ since ds is invariant and which is a rotation 
q on the z=1 baseline next smaller fractal scale. 
In a boost dt also changes so arctan(dr/dt)ºq changes so q gets larger and larger in eiq (sect.1.1.3) 
and passes by successive branch cuts and so x2 and x3 and their respective neutrinos (eq. 1.1.10-
1.1.13) (in their assigned quadrants) each having it’s own Reimann surface. These are the 
families of the 3 leptons with their associated Reimann surface neutrino. xo=De=me is the stable 
ground state for all three states for large r and so independent Hamiltonian (and momentum) 
operators Hy=Ey.  
 For small r=rH (and same x1) the rotational reduced mass x1/2 =mp is derived in part II from the 
B flux quantization and Meisner effect. 
 
      Fiegenbaum Point 
Go to http://www.youtube.com/watch?v=0jGaio87u3A  to explore the Mandelbrot set near the 
Fiegenbaum point. The splits are in 3 directions from the orbs. There appear to be about 2.5 
splits going by each second (given my PC baud rate) and the next Mandelbrot set comes up in 
about 62 seconds. So 
32.7X62 =10N so 172log3=N=82. So there are 1082 splits. 
So there are about 1082splits per initial split. But each of these Mandelbrot set Fiegenbaum points 
is a CM/xºH in electron rq.9 (eq.1.2.7 below). So for each larger electron there 
are 1082 constituent electrons (that result from the amazing equation). Also the scale difference 
between Mandelbrot sets as seen in the zoom is about 1040, the scale change between the 
classical electron radius and 1011ly giving us our fractal universe.  
Given the solution 1.1.5  dz	= 56±√659:

;
.  is real for noise C<¼                                                               

creating our noise on the N+1 th fractal scale. So ¼=(3/2)kT/(mpc2).  So T is 20MK.  So here we 
have derived the average temperature of the universe (stellar average).  N=rD . So the fractal 
dimension= D=logN/logr=log(splits)/log(#rH in scale jump) =log1080/log1040 

=log(1040)2)/log(1040)= 2 . 
which is the same as the 2D of eq.1.1.5 just below and the Mandelbrot set. The next smaller 
(subatomic) fractal scale r1=rH=2e2/mec2, N-1th, r2=rH=2GM/c2 is defined as the 
 Nth where M=1082me with r2=1040Xr1 
                           z=0,z=1,          dK¹dz generally   
1.2.2   K¹dz     
Recall (dt+dr)2=dr2+dt2+drdt+dtdr =ds2 = dr2+dt2+0. Recall small dz, so small K, C» dz-K in 
eq.1.1.4 Kºx+iy in eq.1.1.4 also adds 2 more degrees of freedom since K can be complex and 
nonlocally is a free parameter. Recall that d[(dr+idt-Kr-Ki)+dr2-dt2+id(drdt+dtdr)]=0.  In section 
1.1 dr+idt-Kr-Ki=0 for flat space initialization.  
4degrees of freedom in 2 spatial dimensions in rectangular coordinates 
Here dz¹K so given complex unknown K we have 2 additional degrees of freedom |K-
dz’|ºdx’+dy’ added to dz to have dx’,dy’,dz’ behave the same for orthogonal dr2=dx2+dy2+dz2 
so (dr’+dt’)2=((dx’+dy’+dz’)+dt’)2=dr2+dt2+0=ds2 since dr’dt’+dt’dr’=0. 
We convert to dx,dy,dz, dt by (dx’+dy’+dz’+dt’)2 = (gxdx+gydy+gzdz+gtdt)2 =dr2+dt2=ds2 (1.2.0) 
(new pde) to keep ds2=C constant implying the Clifford algebra gµgn+gngµ=0, gµgµ=1. 
4degrees of freedom in 2 spatial dimensions in polar coordinates 



Or we just add those 2 new parameters in a  
2D rotation at 45°                       (dr-dz’)+(dt+dz’)ºds (eg.,Dq,Dr)                             (1.2.1) 
(since ds is invariant). 
In that regard in a moving frame of reference boost dt (recall 3xo gets heavier right up to x1) also 
changes so arctan(dr/dt)ºq changes so q gets larger and larger in eiq (sect.1.1.3) and passes 
by(successive branch cuts and so x2 and x3 and their respective neutrinos (eq. 1.1.10-1.1.13) (in 
their assigned quadrants) each having it’s own Reimann surface. These are the families of the 3 
leptons with their associated Reimann surface neutrino. xo=De=me is the stable ground state for 
all three states for large r and so independent Hamiltonian (and momentum) operators Hy=Ey.  
From eq.1.1.19 SCM/x1º r’H  in koo=1-r’H/r for z=1,  CM/xoºrH. for z=0. So small dz implies a Dq 
in C1 Eq.1.1.14  dz=dsei(45°+Dq) rotation occurs here implying that the eq.1.1.4 associated 
infinitesimal uncertainty ±CM/x1=dz cancel to rotate at q»45°:                                                                                                             
(dr-dz)+(dt+dz)=(dr-(CM/x1))+(dt+(CM/x1)) =Ö2ds= dr’+dt’               (1.2.1)      
= 2 rotations from ±45° to next extremum (appendix AI below).          (1.2.1a) 
This also keeps ds1 invariant so keeping the eq.1.1.10 ds invariance. Note that by keeping dt not 
zero we have already put in background white noise (since then C>¼ in eq.6 & eq.1.1.4) into 
eq.1.1.11-1.1.13 
 Recall zº1+dz so if z=0 then 0=1+dz so |dz| is big in CM=x(dz-K) so x is small 
So for z=0 rotations x is small so big CM/xo (also dx=0 so stable, electron, sect1.2.4) from A1  
q=CM/dsxo=45°+45°=90°. In contrast for z=1 x1 big so q=45°-45°»0 since small dz=CM/x1. 
Define             krrº(dr/dr’)2=(dr/(dr-(CM/x1)))2 =1/(1-rH/r)2 =A1/(1-rH/r) +A2/(1-rH/r)2   (1.2.1b) 
The AI term can be split off from RN as in classic GR and so       krr»1/[1-((CM/x1)r))]       (1.2.2)   
From partial fractions where N+1th scale A1/(1-rH/r) and Nth=A2/(1-rH/r)2 with A2 small here.  
So we have a new frame of reference dr’,dt’. So real eq.1.1.10 becomes 2DÄ2D:                                                    
                                                      ds2= krrdr’2 +koodt’2 +..                                                              (1.2.3) 
So a new frame of reference dr’,dt’. Note from 1.1.8 dr’dt’=ÖkrrdrÖkoodt=drdt so krr=1/koo(1.2.4)      
We do a rotational dyadic coordinate transformation of kµn to get the Kerr metric which is all we 
need for our GR applications. Note on the N+1th fractal scale kµn is the ambient metric. 
So we derived General Relativity (eqs.1.2.1,1.2.2,1.2.3) by the CM rotation of special relativity  
(eq. 1.1.10) which shows why we said K¹dz implies 4D curved space.  
 
Relation Between The Nth And N+1th Fractal Scale (Reduced Mass) Metrics kµn 
Recall (sect.6.30 he well known additional (a/r)2 Kerr metric term as in koo=1-(a/r)2-2GM/(c2r) in 
the N+1 fractal scale. Also in the Nth scale reduced mass system x1/2=mp. Given the spin½ 
selfsimilarity the Kerr metric exists but is a mere observed perturbation due to inertial frame 
dragging observable only due to a nearby object B. Locally normalizing out the 1±e is equivalent 
to that x1  boost.  So we have two equal masses on the N+1th fractal scale, hence we can use the 
reduced mass just as we do with the mp. We can then do our scale transformation from one 
reduced mass system to another avoiding many complications. So multiply koo»[1-(CM/(xir))] by 
1-e to then get [1-e-De-CM/(xor)] and then we are required to normalize (section 1.2) by 1-e for 
2D homogenous isotropic space-time which is then in the reduced mass mp system (partII). 
Given reduced mass systems for both the larger and smaller fractal scales to jump to the next 
fractal scale electron we then merely multiply CM/xo by 1040. So koo=1-De/(1-e)-(1040CM/xo)/r 
so that -De®(a/r)2, M=1080me, 10402e2/mec2 =1040CM/xo® 2GM/c2. So rH®rH1040, koo= 1-



CM/xo)/r ®1-(a/r)2-rH/r= 1-x1-(CM/xo)/r, N+1th fractal scale, and 1/m®m (since rH=2e2/mec2 
®2GM/c2) defining G. 
                                 1.2.3   4D and eq.1.2.2 in eq.1.1.11   
Note from the distributive law square 1.11: (dr+dt+..)2=dr2+dt2+drdt+dtdr+.But Dirac’s sum of 
squares=square of sum is missing the cross term drdt+dtdr requiring the gµ Clifford algebra. So 
this is the same as if those cross terms drdt+dtdr=0 as in eq.1.1.9. So equation 1.1.9 with 4D 
1.1.11, automatically implies a Clifford algebra gµgn+gngµ =0, (gµ)2=1. From eq.1.2.7 there is also 
the covariant coefficient kµµ(gµ)2=kµµ. So after multiplying both sides by dzºy causes the 4D 
operator equation 1.1.16 to cause eq.1.1.11® 
ds=(g1Ök11dx1+g2Ök22dx2+g3Ök33dx3+g4Ök44dx4)dz®   
                                                  gµÖ(kµµ)¶y/¶xµ=(w/c)y                                                  (1.2.7)    
wºmLc2/h. Eq.1.2.7 is our new 4D pde which implies eigenfunctions dz (=y) and with CM>0 gets 
leptons for z=1,0 and also 1.1.12 (n pinned to the light cone so CM=e/rH=0). For z=0 3e see PartII  
(in sect.1.2 we show that the Standard electroweak Model comes from the composite of e,v at 
r=rH and in partII we show that the 2P3/2 particle physics at r=rH. 
So we have derived the y for which the observability operator formalism applies. 
                           All we did here was to define observable 1  
 
Given 1 is “meaningful” (an observable is not just a squiggle on a piece of paper) we can finally 
just, as in Occam’s razor,             “postulate 1”    (to get math and physics, davidmaker.com 
 
 
Applications 
1.2.3    Add ground state energy De to rH/r for r=large  
Inverse Separability implying Nth scale operator formalism and frame of reference forces 
So there exists a eq.1.2.7 (gµÖ(kµµ)¶y/¶xµ=(w/c)y)N on every Nth fractal scale (1040X larger than 
a given previous fractal zitterbewegung scale rH) with an individual separate horizon rHN barrier 
to observability (sect.2.5) between every two such space-like scale intervals given. koo=1-rHN/r. 
Given these independent 1.2.7 equations, as in the usual differential equation separability, we 
can invoke a “inverse separability” ypoint=yN*yN+1*…*y¥. given the usual zitterbewegung 
y=ei(mc^2/h)t º eixtº ei(e+De) (sect.1.2) De=xo with ei(e+De)N the asymptotic y value (i.e.,r®¥). Also 
note the Ökoo multiplier in equation 1.2.7:  Thereafter after normalizing each y*y to 1 as usual 
we have: ÕN(koo(y*y)N=ÕN(koo(y*y)N)=ÕN(kooN)=ei(e+De)N*ei(e+De)N+1**.(1.2.31).                                            
The frame of reference provided by each y gives our forces (eg., sect.7.3) 
This inverse separability makes the rectangular method apply to all fractal at once.  
Object B And Kerr Contribution 6.4.16  koo=1-rH/r ®1-(a/r)2-rH/r=1/krr from eq.1.2.4 
Note from Kerr metric contribution eq. 6.4.16 given space-like rH barrier separations the 
operators (sect.2.5) are on quantities only within a given fractal scale. Here De is N+1 th and rH 
Nth so as an operator equation: De(rHyN)=0,  rH(DeyN+1)=0, etc. (partIII application ) in: 
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(1.2.32) 
And since D (=r2-2mr+a2) is also in the denominator of the Kerr metric krr we still have eq.1.2.4  
koo»1/krr 



Add zero point energy state e to rH/r for    r=rH                               1.2.33    
We earlier derived for the new pde (above) SCM/Sxi=rH for free space fundamental 
t+µ+me=x1 3 free leptons for r=large, With same (required) x1 and simple deflation to rH (r=rH) 
and rotation to B flux quantized F=h/e we describe baryons, the r=rH solution to the new pde. 
Given the Meisner effect two terms in CM/xo-CM/xo+CM/x1 are equal. The Meisner effect arises 
because of periodic virtual annihilation (PartII) inside 2P3/2 at r=rH and so a change in current in 
Faraday’s law.  So the new pde describes both free leptons (r®¥) and baryons (r»rH). That 
Meisner effect cloud is the pions (partII). So add zero point energy state e to rH/r for r=rH. 
For 2P3/2 state. (for 2P1/2 the Es are separate and so Taylor expansion term e/2 gets added). 
Recall from section 1.2, (eq.1.2.0) that: 

<𝐶6𝐶;
> = 𝜉6 <

𝛿𝑧6
𝛿𝑧;

> 

Starting with t+µ+me=x1 we (more generally) rotate to the B flux quantization F=h/e  plus 

deflation of <𝛿𝑧6𝛿𝑧;
> to rH all the while conserving required x1 mass energy 

Rotatedz+deflatedz= @𝜉66 𝜉6;
𝜉;6 𝜉;;

A <𝛿𝑧6𝛿𝑧;
> + B−𝜆 0

0 −𝜆D <
𝛿𝑧6
𝛿𝑧;

> = 𝜉6 <
𝛿𝑧6
𝛿𝑧;

> 

@𝜉66 + 𝜆 𝜉6;
𝜉;6 𝜉;; + 𝜆

A = 𝜉; − 𝜉𝑇𝑟(𝑀) + det(𝑀) = 𝜉6  

Partial fractions with 2 body e Meisner effect implies the first two fractions have the same 
magnitude and so fix the value of rotation xij, deflation l and so (determinant) M: Recall that the 
Clifford algebra drdt extremum gave us the Fiegenbaum point and inside the next smaller fractal 
scale Mandelbrot set the particle masses.along the 45°angle. 
(eg.,the limacon is the 1/xo electron. Note the intersections with the diagonal. .. rH= 
:5':5':5

A2
= :5

B6'B(C/)':
= :5

A(
− :5

A(
+ :5

A2
  in koo and so the energy 1/Ökoo.     (1.2.30) 

 
 So we have that baryon 3e composite. Note SCM/x1ºC makes C small in eq.1.1.1 preserving the 
postulate of 1 also. 
Back to r®¥ Electron Hamiltonian From 6.6.15 Add De/(1+e) 
We can rewrite eq.1.2.8 and 1.2.32 for the electron assuming ambient (Kerr) metric (so 
koo=1/krr) as: 

𝐸- =
𝑡𝑎𝑢𝑜𝑛 +𝑚𝑢𝑜𝑛

S1 − ∆𝜀
1 + 𝜀 −

𝑟DE
𝑟

− (𝑡𝑎𝑢𝑜𝑛 +𝑚𝑢𝑜𝑛 + 𝑃𝐸𝜏 + 𝑃𝐸µ. )														𝜅FF = 1 −
∆𝜀
1 + 𝜀 −

𝑟DE
𝑟  

Note for electron motion around hydrogen proton mv2/r=ke2/r2 so KE=½mv2= (½)ke2/r =PE 
potential energy in PE+KE=E.  So for the electron (but not the tauon or muon who are not in this 
orbit) PEe=½e2/r. Note also all we did in 1.2.8 is to write the hydrogen energy and pull out the 
electron contribution. So from 1.2.9: rH’=(1+1+.5)2e2/(mt+mµ+me)/2=2.5e2/(mpc2). 
 
1.2.4 Variation d(Ey*y)=0 At r=n2ao  
Next note the y2,0,0 eigenfunction variation in energy is equal to zero at maximum y*y 
probability density where for the hydrogen atom is at r=n2ao=4ao.  Also mLc2 
=(mt+mµ+me)=2mpc2 normalizes ½ke2: 
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So: DEe=2 ?@ 9
;.M

/J8K6
:
;
𝑚I𝑐; = 

∆𝐸 = 2 		?
@
[ ;.M0@.@OP6Q9106.RQ;P6Q3291

6

(9(.M?P6Q32:));((6.RSP6Q36;)(?P6Q<)6
];(2(1.67𝑋105;S)(3𝑋10@);  

=hf=6.626X10-34 27,360,000 so that f=27MHz Lamb shift. 
The other 1050Mhz comes from the zitterbewegung cloud. 
 
Using Separability of eq.1.2.7 to get Gyromagnetic Ratio  

After separation of variables the “r” component of equation 1.2.7 can be rewritten as:             

                                         (1.2.10)                                                                                                                 

                                            (1.2.11)           

Comparing the flat space-time Dirac equation to equations 1.2.10 and 1.2.11      
                                                     (dt/ds)Ökoo=(1/k00)Ökoo=(1/Ökoo)=Energy=E        (1.2.12) 
Using the above Dirac equation it is easiest to find the gyromagnetic ratios gy for the spin polarized 
F=0 case. Recall the usual calculation of rate of the change of spin S gives dS/dtµmµgyJ from the 

Heisenberg equations of motion. We note that 1/Ögrr rescales dr in   in 

equation 1.2.10. Thus to have the same rescaling of r in the second term we must multiply the 
second term denominator (i.e.,r) and numerator  (i.e., J+3/2) each by 1/Ögrr and set the  numerator 
equal to 3/2+J(gy), where gy is now the gyromagnetic ratio. This makes our equation 1.2.10 
compatible with the standard Dirac equation allowing us to substitute the gy into the standard 
dS/dtµmµgyJ to find the correction to dS/dt. Thus again: 
                            [1/Ögrr]( 3/2 +J)=3/2+Jgy, Therefore for J= ½ we have:  
                            [1/Ögrr]( 3/2+½)=3/2+½gy= 3/2+½(1+Dgy)                                   (1.2.13)                                                                          
Then we solve  for gy and substitute it into the above dS/dt equation.  
 
S States: Noting in equation 1.2.13 we get the gyromagnetic ratio of the electron with 
grr=1/(1+De/(1+e)) and e=0 for electron. Thus solve equation 1.2.13 for Ögrr=Ö (1+De/(1+e))=   
Ö(1+De/(1+0))=  Ö (1+.0005799/1). Thus from equation 1.2.13 
 [1/Ö (1+.0005799)](3/2 + ½)= 3/2 + ½(1+Dgy). Solving for Dgy gives anomalous gyromagnetic 
ratio correction of the electron  Dgy=.00116. 
If we set e¹0 (so De/(1+e)) instead of De) in the same koo (in equation 1.2.8a) in eq.1.2.7 we get 
the anomalous gyromagnetic ratio correction of the muon in the same way  
SUMMARY 
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  Given the fractalness astronomers are observing from the inside of what particle physicists are 
studying from the outside, that ONE new pde electron rH of eq.1.2.7. one thing.                                                
The universe really is infinitely simple. 
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(1) Penrose in a utube video implied that the Mandelbrot set might contain physics. Here we 
merely showed how to find it. The fractal neighborhood of the Fiegenbaum point is a subset. In 
fact all we done here is to show how to obtain physics from the Mandelbrot set. 
  
(2) Cantor: Ueber die Ausdehnung eines Satzes aus der Theorie der trigonometrischen Reihen, 
“Ueber eine elementare Frage der Mannigfaltigkeitslehre” Jahresbericht der Deutschen 
Mathematiker-Vereinigung.Mandelbrot set sequence zn same as Cauchy seq.zn so real1. 
 
                            MORE Applications Of section 1 
Appendix A 
 A1 z=1 Charge Associated With These Two Eigenfunctions   (since charge=eºCM not 0) 
One result is that from eq.1.18 we have nonzero e in (dr-e)ºdr’ 
So from 1.2.3:                                      ds2=dr’2+dt’2=dr2+dt2+dre/2-dte/2-e12/4               (A1) 
From eq.1.1.12  the neutrino is defined as the particle for which  -dr’=dt (so can now be in 2nd 
quadrant dr’, dt’ fig.2 can be negative) so dre/2-dte/2 has to be zero and so e has to be zero 
therefore e2/4 is 0 and so is pinned as in eq.1.1.12 (neutrino). dzºy. So on the light cone 
CM=e=mdr =0 and so the neutrino is uncharged and also massless in this flat space. Also see 
Ch.2 for nonflat results. 



1.1.11: 2D Recall eq.1.11 electron is defined as the particle for which dr»dt so dre/2-dte/2 
cancels so e1 (=CM) in eq.1.16 can be small but nonzero so that the d(dr+dt)=0. Thus dr,dt in eq. 
1.1.11  are  automatically both positive  and so can be in the first quadrant.  1.11 is not pinned to 
the diagonal so e2/4 (and so CM) in eq.1.2.2 is not necessarily 0. So the electron is charged since 
CM is not 0. This then explains the positioning of the +e,-e, v vectors in figure 2. 

fig.2 
Note for finite C in 1.2.7 we also break the two 2D degeneracies (in eq.1.1.11) giving us our 
4D.   
A2 z=0 Implies Large Dq=CM/xo extremum to extremum Rotation In The Plane:   
 Recall all observable z satisfy eq.1.1.15 so that zµeiq. So Fiegenbaum point (2nd) source rH to be 
observed and so there is a second rotation. Eq.1.1.14 a 45° rotation  dzpdz= eiqpeiq=dz’=ei(qp+q)=-
i∂z/∂r.  So a 45°+45° rotation gives: dzpdz’= eiqpeiq’=dz”=ei(qp+q)=-i∂2z/∂r2. z=0 implies a 
rotation CM/xo that we must rotate by q=CM that adds a spin½ (since it goes through a 45° lepton) 
and then -CM subtracts it using eq.1.1.4. For example start at 0° and rotate through +45°=CM 
through the 1st quadrant (electron) dr+dt=Ö2ds in fig.1, fig.3 and get: 
+45°, [(dr+dt)/(dsÖ2)]z=z1,r+z1,t.. Do z1,r and z1,t separately. dzpdz= eiqpeiq=dz’=ei(qp+q)=-i∂z/∂r , 
dzpdz’= eiqpeiq’=dz”=ei(qp+q)=-i∂2z/∂r2  So just for z1,r:  z1,r=-idz/dr (partial derivatives). Then do 
the -CM rotation: 
-45°,  (dr/ds)z1,r=z2,r.  So -idz1,r/dr=z2,r=-i[(d/dr)(-id/dr)z= (d2/dr2)z. Do both and get for  
 45°+45° rotation  dr2z+dt2z®                              (d2/dr2)z+(d2/dt2)z                                    (A2) 
So S=½+½=1 making z=0 real Bosons, not virtual. Note we also get the Laplacians characteristic 
of Bosons by those 45°+45° rotations so eq.1.1.4 implies Bosons accompany our leptons, so they 
exhibit “force”. Note 2 small C rotations for z=1 can’t reach 90° 2 particles. So it stays leptonic. 
With eq.1.1.16 and eq.1.2.7 we then have eigenfunctions z. This time however all variations 
dC=0 (even the 45° rotation to branch cut extremum) are realized and so have real (stable 
electron) particles instead of virtual(transitory). 
A3 2D Eq.1.2.7 2P½ at r=rH, for z=0   Composites of e,v                                                                                               
z=0 allows a large C z rotation application from the 4 different axis' max extremum (of 1.1.15) 
branch cuts gives the 4 results:  Z,+-W, photon bosons of the Standard Model fig.4. So we have 
derived the Standard Model of particle physics in this very elegant way. You are physically at 
r=rH if you rotate through the electron quadrants (I, IV) and not at rH otherwise. So we have large 
CM dichotomic 90° rotation to the next Reimann surface of 1.1.15, eq.A2 (dr2+dt2)z’’ from some 
initial extremum angle(s) q.  Eq.1.1.15 solutions imply complex 2D plane Stern Gerlach 
dichotomic rotations using noise z”µC (1.2.1) using Pauli matrices si algebra, which maps one-
to-one to the quaternionA algebra. From sect.1.2, eq.1.2.2  we start at some initial angle q and 
rotate by 90° the noise rotations are: C=z”= [eL,vL]T ºz’()+z’(¯) ºy()+y(¯) has a eq.1.2.2  
infinitesimal unitary generator z”ºU=1-(i/2)en*s), nºq/e in ds2=UtU. But in the limit n®¥ we 
find, using elementary calculus, the result exp(-(i/2)q*s) =z”. We can use any axis as a branch 
cut since all 4 are eq.1.1.15 large extremum so for the 2nd rotation we move the branch cut 90° 



and measure the angle off the next diagonal since Pauli matrix dichotomic rotations are actually 
axis rotations, leaving our e and v directions the same.  In any case (dr+dt)z’’in eq.1.1.15 can 
then be replaced by eq.1.1.14, eq.1.2.3  (dr2+dt2 +..)z” =(dr2+dt2+..)equaternionABosons because of 
eq.A2.  Then use eq. 1.2.2 to R rotate: z”: 

 
Figure 3. See eq.B4.   The Appendix A derivation applies to the far right side figure. 
Recall  from eq.1.2.1a  2CM=45+45=90°, gets Bosons.  45-45= leptons. 
v in quadrants II(eq.1.1.12) and III (eq.1.1.13). e in quadrants I (eq.1.1.11) and IV (eq.1.1.11).  
Locally normalize out 1±e . For the composite e,v on those required large z=0 eq.3 rotations for 
C®0,  and for stability r=rH (eg.,for 2P½, I®II, III®IV,IV®I) unless rH=0 (II®III) are: 
II®III Dichotomic variables®Pauli matrix rotations®z’=equaternion A ®Maxwell g  
=Noise C blob. See Appendix A for the derivation of the eq.1.1.15  2ndderivatives of equaternion A.      
 I®II, III®IV,IV®I De®e Meisner effect Dichotomic variables®Pauli matrix 
rotations®z”=equaternion A®KG Mesons. 
I®II, III®IV,IV®I De Dichotomic variables®Pauli matrix rotations®z”=equaternionA, Proca Z,W 
Composite 3e: 2P3/2  at r=rH ºCM (also stable baryons, partII). 
 
 
A4  Quad II®III eq.0.2  (dr2+dt2+..)equaternion A =rotated through CM in eq.1.1.15. example 
CM in eq.1.2.1 is a 90° CCW rotation from 45° through v and antiv  
A is the 4 potential. From eq.1.2.4 we find after taking logs of both sides that Ao=1/Ar    (A2)                                                                                         
Pretending we have a only two i,j quaternions but still use the quaternion rules we first do the r 
derivative:  From eq. 1.2.3 dr2dz =(¶2/¶r2)(exp(iAr+jAo))=(¶/¶r[(i¶Ar¶r+¶Ao/¶r)(exp(iAr+jAo)] 
=¶/¶r[(¶/¶r)iAr+(¶/¶r)jAo)(exp(iAr+jAo)+[i¶Ar/¶r+j¶Ao/¶r]¶/¶r(iAr+jAo)(exp(iAr+jAo)+ 
(i¶2Ar/¶r2 +j¶2Ao/¶r2)(exp(iAr+jAo)+[i¶Ar/¶r+j¶Ao/¶r][i¶Ar/¶r+j¶/¶r(Ao)] exp(iAr+jAo)   (A3) 
Then do the time derivative second derivative ¶2/¶t2(exp(iAr+jAo) =(¶/¶t[(i¶Ar¶t+¶Ao/¶t) 
(exp(iAr+jAo)]=¶/¶t[(¶/¶t)iAr+(¶/¶t)jAo)(exp(iAr+jAo)+ 
[i¶Ar/¶r+j¶Ao/¶t]¶/¶r(iAr+jAo)(exp(iAr+jAo) +(i¶2Ar/¶t2 +j¶2Ao/¶t2)(exp(iAr+jAo) 
+[i¶Ar/¶t+j¶Ao/¶t][i¶Ar/¶t+j¶/¶t(Ao)]exp(iAr+jAo)                                                            (A4) 
Adding eq. A2 to eq. A4 to obtain the total D’Alambertian    A3+A4= 
 [i¶2Ar/¶r2+i¶2Ar/¶t2]+ [j¶2Ao/¶r2+j¶2Ao/¶t2]+ii(¶Ar/¶r)2+ ij(¶Ar/¶r)(¶Ao/¶r) 
+ji(¶Ao/¶r)(¶Ar/¶r)+jj(¶Ao/¶r)2 ++ii(¶Ar/¶t)2+ij(¶Ar/¶t)(¶Ao/¶t)+ji(¶Ao/¶t)(¶Ar/¶t)+jj(¶Ao/¶t)2  .   
Since ii=-1, jj=-1,  ij=-ji the middle terms cancel leaving [i¶2Ar/¶r2+i¶2Ar/¶t2]+  
[j¶2Ao/¶r2+j¶2Ao/¶t2]+ii(¶Ar/¶r)2+jj(¶Ao/¶r)2 +ii(¶Ar/¶t)2+jj(¶Ao/¶t)2   
Plugging in A2 and A4 gives us cross terms  jj(¶Ao/¶r)2+ii(¶Ar/¶t)2 = jj(¶(-Ar)/¶r)2+ii(¶Ar/¶t)2  

=0. So  jj(¶Ar/¶r)2  =- jj(¶Ao/¶t)2  or taking the square root:   ¶Ar/¶r + ¶Ao/¶t=0              (A5 ) 
i[¶2Ar/¶r2+i¶2Ar/¶t2]=0,   j[¶2Ao/¶r2+i¶2Ao/¶t2]=0  or ¶2Aµ/¶r2+¶2Aµ/¶t2+..=1                 (A6)  
A4 and A5 are Maxwell’s equations (Lorentz gauge formulation) in free space, if µ=1,2,3,4.                      
                                                     �2Aµ=1, �•Aµ=0                                                           (A7)  



 Still ONE Postulated Object: By the way we note Aµ (composed of two n identified as 1 g in 
this 90°rotation) also composes the z=1  koo=1-rH/r virtual particle potential energy (rH/r) of the 
electron.  So we are still only postulating that single eq.1.2.7 object by since we must include 
n&g in it. We derived the SM here because other derivations similar given their respective fig.4 
sources.  
Locally normalize out 1±e . For the composite e,v on those required large z=0 eq.3 rotations for 
C®0,  and for stability r=rH for 2P½ (I®II, III®IV,IV®I) unless rH=0 (II®III) are: 
Ist®IInd quadrant rotation is the W+ at r=rH. Do the append B math and get a Proca equation 
E=1/Ö(koo) -1=[1/Ö(1-De/(1-e)-rH/r)]-1=[1/Ö(De/(1-e))]-1. Et=E+E=2/Ö(De/(1-e))=W+ mass. 
Et=E-E gives E&M that also interacts weakly with weak force. 
IIIrd ®IV quadrant rotation   is the W-.  Do the math and get a Proca equation. 
E=1/Ö(koo) -1=[1/Ö(1-De/(1-e)-rH/r)]-1=[1/Ö(De/(1-e))]-1. Et=E+E=2/Ö(De/(1-e))=W- mass. 
Et=E-E gives E&M that also interacts weakly with weak force. 
IVth ® Ist quadrant rotation is the Zo.   Do the math and get a Proca equation. CM charge 
cancelation.  
E=1/Ö(koo) -1=[1/Ö(1-De/(1+e)-rH/r)]-1=[1/Ö(De/(1+e))]-1.  Et=E+E=2/Ö(De/(1+e))-1=Zo mass. 
Et=E-E gives E&M that also interacts weakly with weak force. Seen in small left handed 
polarization rotation of light. 
 IInd®IIIrd quadrant rotation   through those 2 neutrinos gives 2 objects. rH=0 
E=1/Ökoo -1=[1/Ö(1-De/(1+e)]-1=De/(1+e). Because of the +- square root E=E+-E so E rest mass 
is 0 or De=(2De)/2 reduced mass. 
Et=E+E=2E=2De is the pairing interaction of SC. The Et=E-E=0 is the 0 rest mass photon 
Boson.  Do the math (eq.A7) and get Maxwell's equations. Mass canceled and there was no 
charge CM on the two v s. 
Note we get the Standard electroweak Model particles out of composite e,v using required 
eq.1.2.1 rotations for z=0. 
For z=0 composite 3e (For new pde 2P3/2,  rapidly moving two positrons, 1 slow electron.) is 
ortho s,c,b and para t particle physics. 
For z=1 the new pde applies to QED with large r. 
 
A5 Derivation of the Standard Model But With No Free Parameters 
Since we have now derived MW, MZ, and their associated Proca equations, and mµ,mt,me, etc., 
Dirac equation, GF, ke2, Bu, Maxwell’s equations, etc. we can now write down the usual 
Lagrangian density that implies these results. In this formulation Mz=MW/cosqW, so you find the 
Weinberg angle qW, gsinqW=e, g’cosqW=e; solve for g and g’, etc., We will have thereby derived 
the standard model from first principles (i.e.,postulate1) and so it no longer contains free 
parameters!  
 
summary 
z=1 gives the  r®∞ formulation rH=CM/m. z=0 gives the r=rH  rotational reduced mass 
formulation rH=CM/me-CM/me+CM/m to be consistent with C®∞ with m=mt+mu+me in the new 
pde.  For z=0 you calculate  the r=rH  rotational reduced mass mp=m/2 (using flux quantization) 
which for  z=1 is then CM/m=rH in koo=1-rH/r. So Ee=m/Ö(koo)-me=V. Take the third order 
Taylor expansion term to get DV 
 



B3 z=0 eq. 6.6.17 
z=0 Metric kµn:   For only a single electron De at r=rH in eq.1.1.14   2P½ state (N neutron) we 
must then normalize out the 1+e so k00=1+De/(1+2e)-rH/r.  But more distant object C (Our large 3 
object cosmological object is a proton) for a weakly bound state (eg., 2P½ at r»rH) implies 
another smaller r= CM/x2= rH’ so k00=De/(1+2e) » De(1-2e) or in general: Equipartition of 
Meisner effect e energy between the 2P1/2 and central 2P3/2 electrons (since they are “identical 
particles”) so e/2 is with the 2P1/2 electron at r=rH, thus the W. Thus for 2P1/2 Meisner+mass= 
E=e/2+1/Ök00= 1/Ö(De(1±2e))+e/2  =1/[(1±e))Ö(De)]+e/2 =xW                             (A7) 
Eq. A7 gives the W,Z rest masses E.  In fact eq.A7 is the basis for 3 of the 4 rotations of the 
SM. So W (right fig.4) is a single electron De+n perturbation at r=rH=l (Since two body me.): So 
H=Ho+mec2 inside Vw. Ew=2hf=2hc/l,  (4p/3)l3=Vw. For the two leptons  6
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What is Fermi G? 2mec2(VW) =.9X10-4Mev-F3 =GF the strength of the weak interaction. 
 
A6 Eq.1.21b derivation of DeSitter, SM f4 and Part III:   eg., from eq.1.2,5 and eq.1.1.16 and  
Kerr  k00=1-(a/r)2-rH/rH=1-((dr/ds)r/r)2-1=((dse(iwt+kr)/ds)2=ei2(wt+kr).  So E=1/Ök00=1/Ö(ei2(wt+kr))=e-

i(wt+kr). So the time component is                 E=eiwt=ei(H/h)t                                               (A9) 
in SM f4 sombrero section 6.9. koo=ei2(wt+kr)=e-i2(t/Ökoo-kr)= ei2((1+e/2+De/2)-rH/rH)-kr). (A10a)                       
So given above operator eq.1.16 input 1+e+De are pure state operators. Again r=rH so  k00=e-

2i(1+e/2+De/2-rH/rH) =    e-i(e+De) for the local ambient metric. For normalized out e the cosine expansion 
gives                        koo=ReleiDe/(1-e)»1-(De/(1-e)))2/2+..                                       (A11)                                                                               
The Taylor expansion cross term operator eDe is the starting point of PartIII. At r=rH in          
k00=1-rH/r in B6a the motion along the torus implies rH numerator is ct=r and so r=rH for the 
denominator. The cosine expansion then gives         k00=1-(r/rH)2/2                       (A12) 
 the starting point of the comoving DeSitter global metric derivation of section 6.14.  
 
A7 QM 
On the diagonals (45°) we have eq.1.11.1 holding:  particles. Eq.1.1.15 as an operator equation 
(use 1.1.16) gives waves. A wide slit has high uncertainty, large C so we are at 45°(eg., particles,  
photoelectric effect).  For a small slit we have smaller C so we are not large enough for 45° so 
only the wave equation 2.1.1 holds (small slit diffraction). Thus we proved wave particle duality.  
dz*dz is probability density since dz can always be normalized as in 1=òdz*dzdV=òy*ydV. Also 
Eq.1.1.11 has two parts that solve eq.1.11 together we could label observer and object with 
associated 1.11 wavefunctions. So if there is no observer eq.1.1.11 doesn’t hold and so there is 
no object wavefunction. Thus the wave function “collapses” to the wavefunction ‘observed’ (or 
eq.1.1.11 does not hold). Hence we derived the Copenhagen interpretation of Quantum 
Mechanics(QM). dt/k’dsºw in sect.1.2 implies in eq.1.1.16 that E=pt =hw for all energy 
components, universally. But equation 1.2.7 is still the core idea since it creates the 
eigenfunction dz, directly. So along with eq. 1.1.15, 1.1.21a we have derived Quantum 
Mechanics. Appendix D also. 
 
 
 



 
 
 
Appendix B List- Define Mathematics 
 Because of our postulate of 1 we can then list all cases such as 1È1º1+1º2 and define a+b=c. 
Note  along the way we have defined union and so define set theory as well.  
 

Fig.7  
Recall section 1.1.3. We use 3 number math to progressively develop the 4 number math etc., 
eg.,2+2º4., so yet another list. Go on to define division from A*BºC then AºB/C. So the 
method is List-define, list-define, list-define, etc., as we proceed into larger and larger 
microcosms. There are no new postulates (axioms) in doing that. It follows from our generation 
of those 6 Clifford algebra cross terms one after the other and that sequence of 4D electrons, the 
objects we are counting.  We require integers and so no new axoms. Note C implies finite 
precision and we can always multiply a finite precision number by a large enough integer to 
make a finite precision number an integer in any case. So we also have our required integers 
here. So we don’t need any more axioms such as Peano’s mathematical induction or ring and 
field axioms. We generate each microcosm number and algebra with this list define method until 
we reach 1082 (sect.2).  
Subtraction a-b=c: 
List 
1-1=0  (is defined as the null (0)set here). 
1+1=2 from earlier.                
2-1=1 etc., etc                          Define a-b=c                        
So you can define subtraction with a list-define procedure as well. 
 
 
Appendix B Mathematics Resulting From Postulate of 1  
Note z=0 is also a solution to z=zz  
 So for added z»0, zÖ2= (z+D)Ö2 which we incorporate into xºx1ºx+xo where xo ºme is small. If 
x=xo then CM/x is big and so those big rotations in sect 1.2. 



In the more fundamental set theory formulation {Æ}Ì{all sets}Û{0}Ì{1} =xC =z1 . So xo acts 
as 0 in eq.1.1.1 since Æ=ÆÈÆÛ0+0=0, {{1}È Æ}={1}Û1+0=1. Thus z1=x1=mL contains zo»0 
in x1=x+xo is the same algebra as the core idea of set theory and so of both mathematics and 
physics (as we saw above). 
B1 Appendix C Definitions Of Cantor’s Cauchy Sequence And The 
Mandelbrot Set   
 Set Theory Review 
We postulate a single real set 1 so that the null set Æ is also a subset (appendix C). Note we have 
also defined set theory and also arithmetic in operator equation 1.1.16 with simultaneous 
eq.(1.1.11+1.1.11) and its 1È1º1+1º2 eigenvalues. 
 
Null Set Æ Review 
In the context of set theory the null set Æ is the subset of every set.  
So here you postulate {One real set} which automatically has the null set as a subset.  
Note we earlier developed the whole numbers from 1È1º1+1, in the context of set theory.  But 
ÆÈÆ=Æ is the only property of the null set Æ we use and of course it is isomorphic 
to 0È0º0+0=0 the only property of 0 we need in the development of the whole numbers. 
Note also the null set is the lack of anything and so is 0. 
Note the z1=z¥ at C®0 gives z=zz+C which does correspond with the 1 set (1=1X1) and null set 
dichotomy of set theory given also that 0=0X0.  Also the Mandelbrot set sequence gives the 
Cauchy sequence of the real set.  
 So this {one real set} starting point maps (uniquely) directly to the Mandelbrot set. 
 
B2 Why min(z-zz)>0? Completeness and Choice  (since that implies z is a real 
number) 
Yes, ONE indeed is the simplest idea imaginable. But unfortunately we have to complicate 
matters by algebraically defining it as universal min(z-zz)>0 and so as the two most profound 
axioms in real# mathematics: "completeness" ($minsup) and "choice" (Here the choice function 
is f(z)=z-zz). But here they are mere definitions (of “min” and “z-zz”) since z=zz, so no 1z=z 
field axiom for multiple z, implies our one z (See z»1 result below.). We did this also because 
that list-define math (appendix C PartI) replaces the rest (i.e., the order axioms, mathematical 
induction axiom (giving N) and the rest of the field axioms); Thus we have algebraically defined 
the real numbers thereby implying the usual Cauchy sequence of rational numbers definition of 
the real# z. 
   
By the way that ‘incompleteness theorem’ of Godel is thereby negated by our single pick of 
(axiom of choice) choice function f(z)=zz-z (in association with our list-define mathematics 
definition defining the rest.) and incompleteness of the real numbers is negated by the  
“completeness” (minsup) of real number mathematics above which here are not axioms but a 
restatement of what we mean by min(zz-z)>0 which itself is taken to be a restatement of the 
postulate of real 1.  So in conclusion the postulate of real 1 negates Godel’s incompleteness 
theorem, makes it wrong. 
Also given our z=zz and the list define math defiitions we no longer need the rest of the field 
axioms, order axioms and mathematical induction axiom (giving N) 



But 1,0 can define the binary system and so the rest of the real numbers through the union of 
eq.1.11. (See appendix D). eq.1.16a defines the finite +integer list(i.e.,1È1º1+1º2)--
define(i.e.,A+B=C) math required for the algebraic rules underpinning eq.1 without any added 
postulates (axioms). Also 
list 2*1=2, 1*1=1 defines A*B=C. Division and rational numbers defined from B=C/A. 
We repeat with the list 3*1=3, etc., with the Clifford algebra terms satisfaction keeping this 
going all the way up to 1082 and start over given the above fractal result given the rH horizons of 
eq.1.18. This list-define method replacing the usual ring and field algebraic formalism 
Note the noise C guarantees limited precision so we can multiply any number in our list with the 
above  trifurcation number integer 1082 to obtain the integers in which iteration of the new pde 
into the Klein Gordon equation  gives us quantization of the Boson fields. 
Cantor also used that binary number diagonal to prove the uncountability of the real numbers 
(with the rH horizon from the the fractalness the observability counting limit is 1082). further 
illustrating the importance of the binary numbers in the development of the real numbers. 
   Derivation of the real numbers from our postulate of one. 
Recall in section 1 we rewrote the postulate of 1 over and over (defining a sequence) by 
including the previous z so we could then back out the original postulate of 1 z=zz+C/x. Only the 
Fiegenbaum point then satisfied by the Clifford algebra min drdt min on the real axis our 
variation dC=0 in the postulate of 1. But this sequence can also be the Cauchy sequence of 
rational numbers whose limit defines the real numbers. So we have derived the real numbers 
instead of postulating them.  
  Real numbers are the core of mathematics (Try balancing your checkbook or measuring a 
length without them!) and physics. 1 is a real number. The key thing is that we are 
postulating 1real set, not 1 and a bunch of other stuff. 
There are several equivalent ways of defining the real numbers.   "Red's set" where z1=1 
instead of 0 with the two CMs chosen to give the upper and lower components of the Cauchy 
sequence.   It is the Mandelbrot set displaced by -1 
One way is through Dedekind cuts. Another method is to define a number as a "real" number by 
defining a Cauchy sequence of rational numbers (Cantor's method) for which it is a limit. 
For example it is easy to define p as a real number.  You can use the Cauchy sequence              
4(-1)N/(2N+1) resulting in  4-4/3+4/5-..=p . This is a sequence of rational numbers with limit p 
which is an irrational number. The union of the set of irrational and rational numbers is the "real 
" numbers by the way. Note this real number definition required that Cauchy sequence of 
rational numbers.  
In contrast the rational number sequence defined by the iteration zN+1=zNzN+C  (eq.1a);  for some 
C then dC=0 (eq.1b);  N®¥, noise C®0  defines 1 (and not p) as a real number for ZN=1-zN for 
z1=.9 or in general 1>z1>-1 Solve for C in eq.1.1 and plug that into eq.1b and get dC=d(zN+1-
zNzN)=0. Note the variation of ¥-¥ cannot be zero so zN+1 has to be a finite number making 
eq.1a, 1b the definition of the Mandelbrot set. So the resulting series has to be summable. Thus 
given C®0 and N®¥ we cannot start the sequence with a number that ends up with a divergent 
sequence. 
So we start with a C in C®0 with zo between -1 and 1 and with C extremely small the dzN+1 is 
always a whole number and so rational. So the first number in the sequence is very slightly 
smaller dzN+1»1 but is still finite decimal (up to 1082. See above.) and so rational 
(eg.,1234/1000=1.234).  Plug dzN+1 back in for dzN (dzN+1=dzNdzN+C) and repeat until finally 
dz¥ =0. During each such iteration define zN=|1-dzN| which is the zN th term in our Cauchy 



sequence of rational numbers whose limit is 1. Note also that the Mandelbrot set iteration 
therefore indexes the associated Cauchy sequence. We have thereby found that the eq.1a, eq.1b 
Mandelbrot set can be used to define the real number 1!).   
  In the limit C®0 (and Mandelbrot set zN) also define z¥ºz=zz+C eq.1. (Since 1=1X1+0, 
0=0X0+0). 
You may object that my definition of 1 is missing the identity map. 1X=X. But if 1 is the only 
number then z=zz IS the only identity map needed 
As you can see from the summary 1 is the only number. 
Or you may object that other definitions of  1 exist such as z4+C=z for example. But d(z^x-z) =0 
defines extremum x also and  4 is not the extremum that defines 1. x=2 is that (smallest) 
extremum.   
 C5  Uniqueness Of These Operator Solutions: Note the invariant operator Ö2=ds here. So the 
eq.1.1.15 operator invariant ds2 and eq. 1.1.11, 1.1.12 Ö2dsºdzM =dr±dt is the operator (eq.1.16) 
solution dzM (so not others such as ds3 ,ds4, etc.,which would then imply higher derivatives, 
hence a functionally different operator.    
 
 Appendix D Origin O Mathematics List-define, List-Define® 1082 Derivation Of 
Mathematics Without Extra Postulates 

 
Fig.6 These added cross term eq.1.24 objects (1.11) extend eigenvalue equation 1.15 from 
merely saying 1+1=2 all the way to the number1082.   
From section 1 we generate 6 cross terms directly from one application of eq,1a that may or may 
not be the ones required for our 4D Clifford algebra. To get precisely the 6 cross terms of a 4D 
Clifford algebra we had to repeatedly plug into eq.2a the associated dr,dt of the required cross 
term drdt+dtdr. Note by doing this we include the two n fields in the definition of the 
electron! electrons and so a sequence of electrons. We thereby generate the universe! Thus we 
have derived the below progressive generation of list- define microcosms in eq.1.16a. We then 
plug that into eq.1.24 as sequence of electrons. This allows us to use eq.1.24 to go beyond 1U1, 
beyond 2 to 3 let’s say. So we can then define 1È1 from equation eq.1.24 dzM just like postulate 
1 was defined from eq.1.3 and eq.1.6. So consistent with eq.1,24 and eq.1.2 we can then develop 
+integer mathematics from 1U1 beyond 2 because of these repeated substitutions into eq.1.2 
using a list-define method so as not to require other postulates. So by deriving the 6 crossterms 



of one 4D electron we get all 1082 of them! So just multiply any number (given our limited 
precision) by 1082 and it becomes an integer implying all integers here. Given the ys of equation 
9 for r<rc (So a allowed zitterbewegung oscillation thus SHM analogy) we can then redefine this 
integer N-1 also as an eigenvalue of a coherent state Fock space |a> for which a|a>=(N-1)|a>. 
Also recall eigenvalue 1È1 is defined from equation 1.16a. Note 1082 limit from section 6.1. Any 
larger and it’s back to one again. But in this process we thereby create other 1.11 terms for other 
electrons and so build other 4D . Fig.7 
Recall section 1.3. We use 3 number math to progressively develop the 4 number math etc., 
eg.,2+2º4., so yet another list. Go on to define division from A*BºC then AºB/C. So the 
method is List-define, list-define, list-define, etc., as we proceed into larger and larger 
microcosms. There are no new postulates (axioms) in doing that. It follows from our generation 
of those 6 Clifford algebra cross terms one after the other and that sequence of 4D electrons, the 
objects we are counting. We require integers and so no new axoms. Note C implies finite 
precision and we can always multiply a finite precision number by a large enough integer to 
make a finite precision number an integer in any case. So we also have our required integers 
here. So we don’t need any more axioms such as Peano’s mathematical induction or ring and 
field axioms. We generate each microcosm number and algebra with this list define method until 
we reach 1082 (sect.2). 
 
Our Limit Definition (eg., in the Cauchy Sequence) 
  In section 1.2 you notice (attachment) our numbers are also eigenvalues (observables) in 
eq.1.1.16 and also are the # of electrons. But there is no observation possible through the fractal 
rH horizons in eq.2 (sect.2.5) and 1082 is the maximum such number inside rH (CM). Also all 
small limits are then only to the next smaller fractal baseline (CM-1) horizon and no farther. This 
is stated several places in the paper (eg., definition paragraph first page).  
So since our numbers here are observables and so all limits, big and small, are limited by these 
fractal scales (eg., instead of limit x®0 we have limit x®D where D is the next smaller fractal 
scale.). This makes it so there is only one thing we are postulating, 1, the electron given by eq.2 
(see the inside-outside comment in the summary below).   
So these limits (eg., for the Cauchy sequences) are all required by the postulate of 1. 
You could call them "fractal based limits" if you like. 
 
Appendix D More Quantum Mechanics Results 
In z=1-dz  dz is (defined as) the probability of z being 0. Recall z=0 is the xo=me solution to the 
new pde so dz is the probability we have just an electron. 1 then is the probability we have the 
entire x1=KMQ complex (sect.1.2.1), that includes the electron (Observed EM&QM, sect.6.12).  
Note z=zz also thereby conveniently provides us with an automatic normalization of dz. Note 
also that (dz*dz)/dr is also then a one dimensional probability ‘density’. So Bohr’s probability 
density postulate for y*y (º(dz*dz)) is derived here. It is not a postulate anymore.  Note the 
electron observer Eq.1.1.11 (eq.1.2.7) has two parts that solve eq.1.1.11 together we could label 
observer and object with associated 1.1.11 wavefunctions dz. So if there is no observer eq.1.1.11 
then eq.1.1.10 doesn’t hold and so there is no object wavefunction. Thus the wave function 
“collapses” to the wavefunction ‘observed’ (or eq.1.1.11 does not hold). Hence we derived the 
Copenhagen interpretation of Quantum Mechanics(QM).  
On the diagonals (45°) we have eq.1.11 holding:  particles. Eq.1.1.15 as an operator equation 
(use 1.1.16) gives waves. A wide slit has high uncertainty, large C so we are at 45°(eg., particles,  



photoelectric effect).  For a small slit we have smaller C so we are not large enough for 45° so 
only the wave equation 1.2.8 holds (small slit diffraction). Thus we proved wave particle duality.  
dt/k’dsºw in sect.1.2 implies in eq.1.1.16 that E=pt =hw for all energy components, universally. 
mv/k=h defines h in terms of mass units (1.1.15b). But equation 1.2.7 is still the core idea since it 
creates the eigenfunction dz, directly. So along with 1.2.7 and appendix E and eq. 1.1.15, 1.1.21a 
we have derived Quantum Mechanics.  
Thermodynamics 
Note that a "single state dz per particle" comes out of 1 particle per dz state per solution in 1.1.16 
and eq.1.2.7. So the number of ways W of filling gi single states with ni particles is gi!/(nk!(gi-ni)!  
thereby giving us klnWºS and so thermodynamics. 
AppendixE The Most General (noise) Uncertainty C In Eq.1 Is Composed Of  Markov 
Chains                                      This final variation wiggling around inside dr= error region near 
the Fiegenbaum point  also implies a dz that is the sum of the total number of all possible 
individual dz as in a Markov chain  (In that regard recall that the Schrodinger equation free 
particle Green’s function propagator mathematically resembles Brownian motion, Bjorken and 
Drell) where we in general let dt and dr  be either positive or negative allowing several dz to 
even coexist at the same time (as in Everett’s theory and all possible paths integration path 
integral theories below). Recall dt can get both a  Ö(1-v2/c2) Lorentz boost (with the 
nonrelativistic limit being 1-v2/2c2 +…) and a 1-rH/r=koo contraction time dilation effects here. In 
section 2.2.6 we note that for a flat space Dirac equation Hamiltonian the potentials are infinite 
implying below an unconstrained Markov chain and so unconstrained phase in the action So 
dt®dtÖ(1-v2/c2)Ökoo.  rH=2e2/(mec2). We also note the alternative (doing all the physics at the 
point ds at 45°) of allowing C>C1 to wiggle around instead between ds limits mentioned above 
results in a Markov chain. dZ=yºòdz=òeidqdc=òeidt/sodc= òeidt/Ö(1-v^2/c^2)Ökoo/sods’ds.. In the 
nonrelativistic limit this result thereby equals òekeikdt(v^2-k/r)=  òeiòkò(T-V)dtds’ds… =òeiSds’ds 
ºdz1+dz2+.. ºy1+y2+.   many more ys (note S is the classical action) and so integration over all 
possible paths ds not only deriving the Feynman path integral but also Everett’s alternative 
(to Copenhagen) many worlds (i.e., those above many Markov chain  dzi=ys in òdz = 
ysºy1+y2+.) interpretation of quantum mechanics where the possibility of –dt allows a pileup of 
dzs at a given time just as in Everett’s many worlds hypothesis. But note equation 9 curved space 
Dirac equation does not require infinite energies and so unconstrained Markov chains making the 
need for the path integral and Everett’s many worlds mute.: We don’t need them anymore.   Thus 
we have derived both the Many Worlds (Everett 1957) and Copenhagen interpretations (Just 
below) of quantum mechanics (why they both work) and also have derived the Feynman path 
integral.                                                                                                                                     In 
regard to the Copenhagen interpretation if we stop our J.S.Bell analysis of the EPR correlations 
at the quantum mechanical -cosq polarization result we will not get the nonlocality (But if 
instead we continue on and (ad hoc and wrong) try to incorporate hidden variable theory 
(eg.,Bohm’s) we get the nonlocality, have transitioned to classical physics two different ways. 
We then have built a straw man for nothing. Just stick with the h®0, Poisson bracket way. So 
just leave hidden variables alone. The Copenhagen interpretation thereby does not contain these 
EPR problems. And any lingering problems come from that fact that the Schrodinger equation is 
parabolic and so with these noncausal instantaneous boundary conditions.  But the Dirac 
equation is hyperbolic and so has a retarded causal Green’s function. Since the Schrodinger 
equation is a special nonrelativistic case of the Dirac equation we can then ignore these 



nonlocality problems all together. You take a Log of both sides and use Stirling's approximation 
and you get the Fermi Dirac distribution for example. 
 
Ch.2 Details Of The Fractalness   
2.1   The Mandelbrot Set eq.1.1.1, 1.1.2 
C3 min(z-zz) only ‘universality’ (i.e., only one minC, minz and minzz) along with eq.1.1.1, 
1.1.2, 1.1.14 implies a lemniscate sequence. 
The C For |relz|=1 
Given |Relz|=1then single minz (at 45°)=-1 in (-1- (-1)(-1))»-2=C=CM2ºC1 for single minz in 
fig.4. Plug the left side z in eq.1.1.1 into each z in zz on the right side and so start a CN+1= 
CNCN+C1 iteration lemniscate sequence. The N=¥ limit is the Mandelbrot set (1) subset real# 
Fiegenbaum point CMºxC (sect.1.2 appendix C) and so also get the fractalness (GR, gravity 
cosmology). Because of the d in eq.1.1.6 we can add arbitrary -K to dz in eq.1.1.4. Here d(dz-
K)=0 in eq.1.1.6 to initialize to locally flat space as in 1.1.10 (In sect.1.2 K¹dz). For small dz,C»  
dz in eq.1.1.4 so CM=xC»xdz. So x large (in CM=xdz) and z-zz=C=CM/x»0 so z»zz and z»real#1  
So we have derived both physics and mathematics from the postulate of 1.   The universe indeed 
is infinitely simple.      

point CM.                                             
Fig.4 Lemniscate sequence (Wolfram, Weisstein, Eric) CN+1=CNCN+C. C=C1=dr2+dt2, C0=0.                                           
After an infinite number of successive approximations C"=C'C'+C =CM2 
C that is in the Mandelbrot sequence formula where C is small (since dz<<1 given z»1).  The 
Mandelbrot set CM is (and from the postulate dCM=0), zN+1=zNzN+CM (since d(z’-zz)=            
d(zN+1-zNzN)=d(¥-¥)¹0). C+SC’C’=C” ºCM2. Mandelbrot calls CM the ER, Escape Radius (see 
Muency). To get back eq.1.1.6 we divide both sides by dz*. 
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 In order to back out 1+dz=z then so big xºmassºÖ2/dz since CM»zÖ2. dCM=dxdz+xddz=0 so 
ddz=d(idt)=0 and  dx»0 stability.  
Note z=0 is also a solution to z=zz.  So for added z»0, zÖ2= (z+D)Ö2 which we incorporate into 
xºx1ºx+xo where xo ºme is small. If x=xo then CM/x is big.  
 
 



 
Fig.8 
Note at the Fiegenbaum point the Mandelbrot set is 1040X fractal with a 45° between successive 
Mandelbrot sets. See youtube http://www.youtube.com/watch?v=0jGaio87u3A     
Observed Selfsimilarity of Mandelbrot Sets On Next Larger (N+1) And Next Smaller (N) 
Fractal Scales(we live in between these two scales)at the Fiegenbaum point 
2.2 Fractal Invariants 
Speed of light c is a fractal invariant, stays the same in going from one fractal scale to another 
since dr and dt (in c=dr/dt) change the same as you go through rH branch cut . Note nontrivial 
(eq.1.16a) eignefunction  is dz =-1 for C®0 so given z=1+dz then      dzdz=(-1)(-1) =drdr= ds2=1 
in the large N+1 fractal baseline C®0 limit so since ds2 is invariant for all angles then  ds=1 
from selfsimilarity of the small Nth and large N+1 th fractal baselines so ds in eq.2 is also a 
fractal invariant. With c and ds both invariants in eq.1.15 we have 1.15 giving us the Hermitian 
operators with associated eq,1.24 eigenfunction Hilbert space. 
 
2.3   CM  Fractal Consequences  
Recall our two sect.I.1 equation i.e.,(eq.1.3) and two unknowns derivation of second unknown 
CM, our Mandelbrot set along the –dr axis branch cut horizon.  Note also measurements are 
confined inside time-like geodesics inside rH event horizon boundaries in eq.1.24 so the 
measured dd1=0 can then be postulated all over again, given branch cut horizon rH, for r<rH. So 
on the next higher fractal scale (Ch.2) a second e can then be rewritten as a 1040 X larger source. 
Recall the xdr mass term in section 2. Also for the (sect.2.4 just below) fractal Dr=1040X scale 
jump in eDr2=(k/Dr)Dr2=kDr (recall eº2e2/mec2) implying a new mass term kDr (instead of xdr). 
So e goes up by Dr2 =(1040)2=1080.  Dr2 becomes the contravariant tensor dyadic Z multiplier in 
sect 7.4. Note GM then is invariant (constant) as well since e is. It is well known that information 
is stored as horizon rH surface area=4prH2=4p(1040)2 »1081 thus giving us our appendix A 
counting limit. So for single source ((2GM/c2)/1081) =(1040/1081)e»(1/1040)e is an added source 
term of inverse square law force on each electron(2), hence the gravity in fig.3. Ch.7. So the 
radial rate of change of electric field on our own fractal (expanding) scale is the gravity on the 
next larger fractal scale (fig.3), one unified field!  Note also we derived the standard model 
(eq.1.11) gets the strong force section 1.1.11+1.1.11+1.1.11 of Ch.9). See note reference 4 below 
for the underlying theory. The fractal metric quantization (due to object B) also gives a nonzero 
e,De  (fractal) metric quantization mixed states that replaces the need of dark matter (PartIII, 
Ch.11).   



fig. 9  
 
2.3 {{neighborhood    CM}Ç{-r axis}} –dr Fractal Branch Cut 
Recall section 1 and the derivation of the fractal space time. So there is more to these 2D 
complex number solutions to eq.2a  than just irrational and rational numbers, there is also this 
underlying space-time  fractal structure  {neighborhood{CM}Ç{-r axis}} that contains even 
fewer elements than the rational numbers and which only “exists“ when the “fog“ is not thick, 
i.e. when  C goes to 0. It permeates all of space and yet has zero density. It is a very mysterious 
subset of the complex plane indeed. 
Note to be a part of what is postulated (eq.1.3) C®0 we must be in the neighborhood of the 
horizontal Mandelbrot set dr axis. But from the perspective (scale) of this N+1 th scale observer 
one of the 1040X smaller (Nth fractal scale) 45° rotated Mandelbrot sets (fig.5)  is still near his 
own dr axis putting it within the e, d limit neighborhoods of C®0 of eq.2. Thus in this narrow 
context we are allowed the 45° rotations to the extremum directions of the solutions of equation 
2. Our C increases (eg., C®0) discussed later sections are also all in this Nth fractal scale 
context. For example eq. 1.1.11 is then reachable on the Nth fractal scale (r>rH) as a noise object 
(C>0).  So 1.1.12 at 135° must then also result from noise (C>0) introduction and so from that 
first fractal jump rotation in the 2D plane. Later we even note a limit on C (sect.4.3.1). 
 
2.4 Fourier Series Interpretation Of CM Solution 
Recall from equation 1.1.6 that on the diagonals we have particles (and waves) and on the dr axis 
where C=0 only waves, see 1.1.15. Recall 2AC solution dr=dt, dr=-dt   gives 0 as a solution and 
so C=0. But in equation 2 for C®0 dz=0,-1. So 2AC implies the two points dz=0,-1. So for 
waves to give points implies a Fourier superposition of an infinite number of sine waves and so 
wave lengths. In terms of eq.1.11 these are solutions to the Dirac equation and so represent 
fractalness, smaller wave lengths inside smaller wavelengths. So it is fractal. 
 
At a glance what is this all about? 
 It is about the postulate of 1. 
It is about that fractal new pde result of the postulate of 1. 
It is thereby about figuring the core idea of how the universe works (see “applications” below.). 



 

 
 

Flow Chart
Postulate 1

Postulate real 1 (THE Occam’s razor postulate)   

min(zz-z)>0 zz-z=0 algebraic definition of 1,0.    min(zz-z)>0 is our entire theory

Same as z=zz+C,dC<0                    



 

 
 

Postulate real 1 observable (THE Occam’s razor postulate) 

.    

right side repeatedly                                                        get     d(dz+dzdz)=0 or d(dz-K+dzdz)=0 
Im=Clifford algebra, Real=Minkowski metric SR  -> operator formalism so

get     Mandelbrot set iteration                                                                Dirac eq. for e,v

Define Real# by Cauchy seq                                            observable (K = !z flat   (nonvacuum so dr not 0))

gµÖ(kµµ)¶y/¶xµ=(w/c)y. K ≠ !z+!z’ curved &4D 

((dr+dt)/ds)y=-ih(¶y/¶r+¶y/¶(ct))
1y=-ih(¶y/¶r+¶y/¶(ct)) Defines observable 1

1 real observable (in time and space)

Fiegenbaum pt.=CM
& C=CM/"=!z’ large boost " frame of reference at 
next smaller fractal baseline gives the small C.

Plug left side z into zz on                                Plug z=1+!z    

Figure 2

New pde

z=zz+C, dC=0, C<0
zz-z=0 algebraic definition of 1,0

1

Real
observable

Applications of new pde (see part I, partII, partIII: davidmaker.com)

The  3rd term in the Taylor expansion of the two square roots in the new pde gets the Lamb 
shift and anomalous gyromagnetic ratio respectively thus eliminating the need for 
renormalization and the infinite charge, infinite mass, infinite vacuum density, etc.. causing 
theoretical physics to give right answers again
(Infinite everything is 0% right.).

The new pde composite e,v gives the Z,W,g Bosons of the Standard electroweak Model SM 
(PartI) and so  Maxwell’s equations and the weak interaction. 
New pde composite 3e is the baryons (PartII) and so strong force.
Iteration of the new pde on the next higher fractal scale gets the Schwarzschild metric, 
therefore  gravity.
Recall the new pde zitterbewegung oscillation on the next higher fractal scale. Being in the 
expansion stage explains the expansion of the universe.
Many new pde experimentally verifiable  predictions (eg., differential cross-section peak for 
21Tev p-p collisions) contained in these sections, especially in partIII.

Intuitive notion of the Postulate of 1:
Given the fractalness astronomers are observing from the inside of what particle physicists 
are studying from the outside, that ONE new pde object we first postulated.
So we look at big and small scales and all we see is that ONE thing e (even baryons are 3e).



 
 
2.5 Observer < rH Interpretation Of CM Solution 
Since equation 1.1.24 is essentially all there is there is then also anthropomorphic (i.e., observer) 
based derivation of that fractalness using equation 1.24 there is even a powerful ethics lesson that 
comes out of this result in partV). Recall that eq.1.11 has two solution planes and associated two 
points one of which we define as the observer.  In the new pde: Ökµµgµ¶y/¶xµ=(w/c)y 1.1.24, 
(given that it requires these two points), we allow the observer to be anywhere. So just put the 
observer at r<rH and you have derived your fractal universe in one step.  In that regard the new 
pde metric  
Note from equations 1.18 we have the Schwarzschild metric event horizon of radius Rº2Gm/c2 
in the M+1 fractal scale where m is the mass of a point source. Also define the null geodesic 
tangent vector Km to be the vector tangent to geodesic curves for light rays. Let R be the 
Schwarzschild radius or event horizon for rH=2e2/mec2. Thus (Hawking, pp.200) in the case that 
equation applies we have: RmnKmKn>0 for r<R in the Raychaudhuri (Kn=null geodesic tangent 
vector) (1.16a) equation. Then if there is small vorticity and shear there is a closed trapped 
surface (at horizon distance “R” from x) for null geodesics. No observation can be made through 
such a closed trapped surface. Also from S.Hawking, Large Scale Structure of Space Time, 
pp.309...instead he will see O’s watch apparently slow down and asymptotically (during 
collapse) approach 1 o’clock...”. So grr=1/(1-rH/r) in practical terms never quite becomes singular 
and so we cannot observe through rH either from the inside or the outside (space like interval, not 
time like) as long as the bigger horizon rH is isolated (for nearby object B there is some metric 
perturbation). Note we live in between fractal scale horizon rH=rM+1 (cosmological) and rH=rM 
(electron). Thus we can list only two observable (Dirac) vacuum Hamiltonian sources (also see 
section 1.1).                                                                           HM-1 and HM    
But we are still entitled to say that we are made of only ONE “observable” source i.e.,rH   of 
equation 2 (which we can also observe from the inside (cosmology) and study from the outside 
(particle physics).  Thus this is a Ockam’s razor optimized unified field theory using:  

Why Write min(zz-z)>0?
The list-define method* gives the rings and fields and you get the physics from 
z=zz+C,!C=0, C<0. So why do we also write min(z-zz)>0? (Which means the same 
thing.). The answer is that to get real# mathematics you also need the axioms of 
Completeness and Choice as is well known. The axiom of completeness $minsup

is provided by the min (in min(zz-z)>0) and the "choice"  function is f(z)=z-zz.
z-zz=0 (from min(zz-z)>0) is also the algebraic definition of 1,o. 
So the postulate of real 1 then gives both theoretical physics (new pde) and real 
number mathematics without any other postulates!

1 is THE single Occam’s razor postulate meaning we have ‘figured it out’.

*list-define math(appendix C PartI)  replaces the order axioms, 
mathematical induction axiom (giving N) and the field and 
ring axioms to get the algebra we use in the new pde gµÖ(kµµ)¶y/¶xµ=(w/c)y .



ONE “observable” source                                 
of nonzero proper mass which is equivalent to our fundamental postulate of equation 1. Metric 
coefficient krr=1/(1-rH/r) near r=rH (given dr'2=krrdr2) makes these tiny dr observers just as big as 
us viewed from their frame of reference dr'. Then as observers they must have their own rHs, etc. 
. You might also say that the fundamental Riemann surface, and Fourier superposition are 
therefore the source of the “observer”. See end of PART III (of davidmaker.com) for the 
powerful ethics implication of that result (eg.,negation of solipsism since two “observers” are 
implied by the eq.1.11 two simultaneous solutions). If you really wanted to waste time you could 
also add that the onset of observer consciousness begins that circular reasoning argument at the 
postulate of real 1. And that conscious life itself was the (circular argument) loop: life observes 
electrons!.   
Recall we get min(zz-z)>0 from that and 1 as a explicit real observable which goes back to the 
implicit real observable 1 we strted with.  
 
2.6  Illustration Of The fractalness: Recall our mantra implied by this fractal space time that 
“Astronomers are observing from the inside of what particle physicists are studying from the 
outside, ONE thing: the new pde (rotated eq.1.11 = eq.2 electron.”; Think about that as you gaze 
up into a star filled sky some evening! We really then understand how there could ONE object 
(that we postulated).   Below is an illustration: 

 
Fig.10 
 



Ch.3  Equation 1.1.5, 2D Isotropic and Homogenous Space-Time vs A 
NONhomogeneous and NONisotropic Space-Time 
From equation 1.3 solution 1.5a we note that this theory is fundamentally 2D. So what 
consequences does a 2D theory have?  We break the 2D degeneracy of eq. 1.11 at the end by 
rotating by CM (1.16a) and get a 4D Clifford algebra.  Recall 1.11 and 1.12 are dichotomic 
variables with the noise rotation C going from 1.11 at 45° to 1.12 at 135°. 
 Recall eq.1.11 implies simultaneous eq.1.11+1.11 are 2DÅ2D=4D. But single 1.11 plus single 
1.12 are not simultaneous so are still 2D. So this theory is still 2D complex Z then.   Recall the  
kµn, gµn metrics (and so Rij and R) were generated in section 1.4.  
In that regard for 2D for a homogenous and isotropic gij we have identically Rµµ-½gµµR= 0 (3.1.1 
ºsource =Goo since in 2D Rµµ=½gµµR identically (Weinberg, pp.394) with µ=0, 1... Note the 0 
(=Etotal the energy density source) and we have thereby proven the existence of a net zero energy 
density vacuum. Thus our 2D theory implies the vacuum is really a vacuum! It is then the result 
of the fractal and 2D nature of space time!  
 A ultrarelativistic electron is essentially a tranverse wave 2D object (eg., the 2P1/2 electron in the 
neutron).  In a isotropic homogenous space time Goo=0. Also from sect.2  1.11 and 1.12 occupy 
the same complex 2D plane. So  1.11+1.12 is Goo=Ee+s•pr=0 so Ee=-s•pr 
So given the negative sign in the above relation the neutrino chirality is left handed.  
3.1 Casimir Effect 
 Also for this complex space 2D 0=Goo=Ee+s•pr  for two nearby conducting plates the low 
energy neutrinos can leave (since their cross–section is so low) but the E&M (Ee standing waves) 
has to remain with some modes (from the v and anti v), not existing due to not satisfying 
boundary conditions, because of outside De ground state oscillations implying less energy 
between the plates and so a attractive force between them (We have thereby derived the Casimir 
effect). 
Thus the zero energy vacuum and left handedness of the neutrino in the weak interaction are 
only possible in this 2D equation 1.5a  Z plane. If the space-time is not isotropic and 
homogenous the neutrino must then gain mass mo (see section 3.3 for what happens to this mass) 
and it becomes an electron at the horizon rH if it had enough kinetic energy to begin with. It 
changes to an electron by scattering off a neutron with at W- and e- resulting along with a 
proton. So the neutrino transformed into an electron with other decay products. Recall that the 
electron 1.11 and the neutrino 1.12 are dichotomic variables (one can transform into the 
other,sect.2) and can share the same spinor as we assumed in section 2. The neutrino in this 
situation is left handed. g5 is the parity operator part of the Cabibbo angle calculation.  
 
3.2 Helicity Implications 2D Isotropic And Homogenous State 
From eq.1.16 pxy = -ih¶y/¶x. We multiply equation   pxy = -ih¶y/¶x in section 1.2 by 
normalized y* and integrate over the volume to define the expectation value of operator px for 
this observer representation:                                                  
                                                 

(implies Hilbert space if y is normalizable). Or for any given operator ‘A’ we write in general as 
a definition of the expectation value:                   (3.2.1) 
The time development of equation 1.24 is given by the Heisenberg equations of motion (for 
equation 1.24. We can even define the expectation value of the (charge) chirality in terms of a 
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generalization of eq.9 for ye spin ½ particle creation ye from a spin 0 vacuum ce. In that regard 
let ce be the spin0 Klein Gordon vacuum state in zero ambient field and so ½ . 
Thus the overlap integral of a spin ½ and spin zero field is: 
    <vacuum helicity of charge>º =                            (3.2.2)                                       

So =helicity creation operator for spin ½ Dirac particle: This helicity is the origin of 
charge as well for a spin ½ Dirac particle. See additional discussion of the nature of charge near 
the end of 3.2 Alternatively, in a second quantization context, equation 3.3.2 is the equivalent to 
the helicity coming out of the spin 0 vacuum ce and becoming spin½ source charge with 
½(1±g5)ºat being the charge helicity creation operator. 
The expectation value of g5 is also the velocity. Also gi (i=x,y,z) is the charge conjugation 
operator. 3.1.3  Note from section 3.1.1 the field and the wavefunction of the entangled state are 
related through eifield=y=wavefunction. grÖ(krr)¶/¶r(grÖ(krr)¶c/¶r =0 where y= (grÖ(krr)¶c/¶r and 
½(1±g5)y=c.    <g5> =v=<c/2>=c/4 So 1±g5 =cos13.04±sin13.04,  q=13.04=Cabbibo angle. 
Here we can then normalize the Cabibbo angle 1+g5 term on that 100km/sec object B component 
of the metric quantization. We then add that CP violating object C  1km/sec as a  g5Xgi 
component. You then get a normalized value of .01 for  CKM(1,3) and CKM(3,1). 
The measured value is .008. 
Review 
Vacuum 
 Recall some solutions to 1.10 gives us a vacuum solution as well. Also recall eq.1.1, 1.2 bis 2D. 
Recall the  kµn, gµn metrics (and so Rij and R) were generated in above section 1.2.5. In that 
regard for 2D for a homogenous and isotropic gij we have identically Rµµ-½gµµR= 0 º source 
=Goo since in 2D Rµµ=½gµµR identically (Weinberg, pp.394) with µ=0,... Note the 0 (Goo=Etotal 
the energy density source) and we have thereby proven the existence of a net zero energy density 
eq.2AIII  vacuum. Thus our 2D theory implies the vacuum is really a vacuum.    
  
 Left handedness                                                                                                                            
From sect.1  1.11 and 1.12 and 1.13 are combined. Note also from section 1.4  C rotation in a 
homogenous isotropic space-time. So 1.11+1.12 = Goo=Ee+s•pr=0 so      Ee=-s•pr. So given a 
positive Ee (AppendixB) and the negative sign in the above relation implies the neutrino chirality 
s•p is negative and therefore is left handed.  
 
3.3 Nonhomogenous NonIsotropic Mass Increase For 1.12 
But a free falling coordinate system in a large scale gravity field is equivalent to a isotropic and 
homogenous space-time and so even in a spatially large scale field the neutrino has negligible 
mass if it is free falling.  
To examine the effect of all three ambient metric states 1, e, De we again start out with a set of 
initial condition lines on our figure 3. In this case recall that in the presence of a nonisotropic non 
homogenous space time we can raise the neutrino energy to the e and repeat and get the muon 
neutrino with mass mon=(3km/1AU)me=.01eV (for solar metric inhomogeneity. See Ch.3 section 
on homogenous isotropic space time).  So start with eq. 2AII singlet filled 135°  state 1S½. In that 
well known case E=Ö(p2c2+mo2c4)=E=E(1+(mo2c4/2E’)).  E’»E»pc>>moc2; y=ei(wt-kx)  with 
k=p/h=E/(hc). Set h=1,c=1 so y=ei(wt-kx)eixmo^2/2E’. So we transition through the given yen,yen, y1n 
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masses (fig.6,section 6.7) as we move into a stronger and stronger metric gradient. (strong 
gravitational field) =y  electron neutrinos can then transform into muon neutrinos. Starting with 
a isotropic homogenous space time in the ground state we then we go into steeper metric 
gradients in a inertial frame as seen from at constant metric gradient and higher energies thereby 
the rest of the states fill consecutively. We apply this result to the derivation of the 
1.11+1.11+1.11 proton in section 8.1, starting out with infinitesimal 1.12+1.12+1.12 mass and 
going into the region of high nonisotropy, non homogeneity close to object B, thereby gaining 
mass in the above way. This process is equivalent to adding noise C to 1.12. 
 
Chapter 4 Simultaneous (union) Broken 2D Degeneracy CM rotation of eq. 
1.11 Implies 2DÅ2D=4D 
4.1   2DÅ2D formulation of 1.11+1.11 
To stay within the solutions 1 we note that the 2D degeneracy of eq.1.14 is broken by the CM  2 
rotation (eq.1.17) were we use ansatz dxµ®gµdxµ where gµ may be a 4X4 matrix and 
commutative ansatz dxµdxn =dxndxµ so that gµgndxµdxv+gngµdxndxµ = (gµgn+gngµ )dxµdxv  
(µ,n=1,2,3,4; µ¹n). So from eq.(2C) ds2 =  
(g1dx1+g2dx2+g3dx3+g4dx4)2=(g1)2dx12+(g2)2dx22+(g3)2dx32+(g4)2dx42+Sµn(gµgndxµdxv+gngµdxndxµ). 
But gµgndxµdxv+gngµdxndxµ = (gµgn+gngµ )dxµdxv implying gµgn+gngµ =0 from 1.9 and also (gµ)2=1 
from 1.15. So the two 1.11 results and 1.9 imply the defining rotation for a 4D Clifford algebra. 
So the solution 2 rotation by CM at 45° (eq.1.15) causes the two simultaneous 1.11 electron terms 
to have different dr,dt.since the random C can be different in each case. These 2new degrees of 
freedom for the only particle with nonzero proper mass in this theory are what create the 4D we 
observe. 
The two 2D plane simultaneous solutions of eq.1.11 then imply 2D+2D=4D thereby allowing for 
a imbedded 3D spherical symmetry. So we can without loss of generality use the Cartesian 
product (dr,dt)X(dr’,dt’)=(dr,dt)X(df,dq) to replace  rsinqdf with dy, rdq with dz, cdt with dt”as 
in ds2=-dr2-r2sin2qd2f-r2d2q+c2dt2º-dx2-dy2-dz2+dt”2. Note the two r,t and q,f, sets of 
coordinates are written self consistently as a Cartesian product (AXB)= (r,t,f,q) space.where 
r,tÎA and f,qÎB. Note the orthogonal space of q,f with the f=wt’ carrying the second time 
dependence (note there are two time dependent parameters in (dr,dt)X(dr’,dt’)). Given the 
intrinsic 2D applied twice in the Cartesian product the covariant derivative is equal to the 
ordinary derivative in the operator formalism. Thus here [Ö(krr)dr]y=-i[Ö(krr)(dy/dr)] replaces 
the old operator formalism result (dr)y=-idy/dr in the old Dirac equation allowing us to then 
multiply by the same g  in gr[Ö(krr)dr]y=-igr[Ö(krr)(dy/dr)]. So using this substitution we can use 
the same Dirac gx,gy, gz,gt s that are in the old Dirac equation.  
 
4.2 ds2=kxxdx2+kyydy2+kzzdz2+kttdt2     For spherical Symmetry    From Eq.1.19  Pedagogical 
method of deriving new pde                                       
Here we easily show that our new pde(eq.1.24) is generally covariant since it comes out of this 
4D Pythagorean Theorem equation 83.3 
kxx=kyy=kzz=-1,ktt=1 in Minkowski flat space, Next divide by ds2, define pxºdx/ds, so get                
                                                   kxxp’x2+kyyp’y2+kzzp’z2+kttp’t2=1                                                                                                                   
To get eq.2.1.3 we can then linearize like Dirac did (however we leave the kij in. He dropped it). 
So:     (gxÖkxxpx+gyÖkyypy+gzÖkzzpz+igtÖkttpt)2 =kxxpx2 +kyypy2+kzzpz2+kttpt2      (4.2.1)    



So just pull the term out of between the two  ( ) lines in equation 2.1.3  and set it equal to 1 
(given 1*1=1 in eq.1)  to get eq.1.24 in 4D and divide by ds 
  gxÖkxxpx+gyÖkyypy+gz Ökzzpz+igtÖkttpt =1 
and multiply both sides of that result by the y and write this linear form of equation 1.1.3 as its 
own equation:                        gxÖkxxpxy+gyÖkyypyy+gzÖkzzpzy+igtÖkttpty=y 
Then use eq.4.6. This proves that the new pde (eq.1.24) is covariant since it comes out of the 
Minkowski metric for the case of r®¥. 
 
4.3    2 Simultaneous Equations 1.11: 2DÅ2D Cartesian Product, Spherical  
Coordinates and Ökµn                                                                                                                        
Note from eq.1.11 the (dr,dt;dr’dt’) has two times in it so can be rewritten as 
(dr,rdq,rsinqwdt,cdt)º (dr,rdq,rsinqdf,cdt) 
dr=dr            gives    gr[Ö(krr)dr]y   =-igr[Ö(krr)(dy/dr)]=       -igx[Ö(krr)(dy/dr)]                                 
rdq=dy         gives    gq[Ö(kqq)dy]y =-igq[Ö(kqq)(dy/dy)]=     -igy[Ö(kqq)(dy/dy)]                     
rsinqdf=dz  gives    gf[Ö(kff)dz]y  =-igf[Ö(kff)(dy/dz)]=     -igz[Ö(kff)(dy/dz)]                              
cdt=dt”        gives    gt[Ö(ktt)dt”]y   =-igt[Ö(ktt)(dy/dt”)] =     -igt[Ö(ktt)(dy/dt”)]   (4.3.1) 
For example for the old method (without the Ökii for a spherically symmetric diagonalizable 
metric):  
ds2={gxdx+gydy+gzdz+gtcdt}2=dx2+dy2+dz2+c2dt2 then goes to  
ds2={gx[Ö(kxx)dx]+gy[Ö(kyy)dy]+gz[Ö(kzz)dz]+gt[Ö(ktt)dt]}2=kxxdx2+kyydy2+kzzdz2+c2kttdt2 
and so we can then derive the same Clifford algebra (of the g s) as for the old Dirac equation 
with the terms in the square brackets (eg.,[Ö(kxx)dx]ºp’x) replacing the old dx in that derivation. 
Also here there is a spherical symmetry so there is no loss in generality in picking the x direction 
to be r at any given time since there is no q or f dependence on the metrics like there is for r.  
If the two body equation 1.11 is solved at r»rH (i.e.,our  –dr axis, C®0  of eq.1.3) using the 
separation of variables and the Frobenius series solution method  we get the hyperon energy-
charge eigenvalues but here from first principles (i.e.,our postulate) and not from assuming those 
usual adhoc  qcd gauges, gluons, colors, etc. See Ch.8-10 for this Frobenius series method and 
also see Ch.9. Also En=Rel(1/Ögoo)=Rel(ei(2e+De))=1-4e2/4+..  =1-2e2/2º1- ½a. Multiply both 
sides by !c/r (for 2 body S state l=r, sec.16.2), use reduced mass (two body m/2) to get E=  !c/r 
+(a!c/(2r))= !c/r +(ke2/2r)= QM(r=l/2, 2 body S state)+E&M where we have then derived the 
fine structure constant a. 
 
4.4 Single 1.11 Source Implies Equivalence Principle And So Allows You To Use Metric kµn 
Formalism   
Recall that the electrostatic force Eq=F=ma so E(q/m)=a. Thus there are different accelerations 
‘a’ for different charges ‘q’ in an ambient electrostatic field ‘E’. In contrast with gravity there is 
a single acceleration for two different masses as Galileo discovered in his tower of Pisa 
experiment. Thus gravity (mass) obeys the equivalence principle and so (in the standard result) 
the metric formalism gij (eq.7) can apply to gravity.  
Note that E&M can also obey the equivalence principle but in only one case: if there is a single e 
and Dirac particle me in Eq=ma and therefore (to get the correct geodesics,):  Given an 
equivalence principle we can the write E&M metrics such as rewriting 1.18:                                      
                                    koo =   goo=1-2e2/rmec2 =1-rH/r                                  (4.4.1) 



(with krr=1/koo, in section 1.2.5) and so then trivially all charges will have the same acceleration 
in the same E field. This then allows us to insert this metric gij formalism into the standard Dirac 
equation derivation instead of the usual Minkowski flat space-time gij s (below). Thus by noting 
E&M obeys the equivalence principle you force it to have ONE nonzero mass with charge. Thus 
you force a unified field theory on theoretical physics! But eq.1.24 only applies when you have a 
equivalence principle. So a metric does not exist for eq.1.24 for three or more eq.1.24 objects 
unless ultrarelativistic motion makes the plates not intersect and so there is the “approximation” 
of two objects as in part II 1.1.11+1.1.11+1.1.11. 
ma=eE so a=(e/m)E.  Since only the new pde electron has a nonzero proper mass there is only 
one mass and charge here. So for 2 electrons a=(2e/(2m))E =(e/m)E we still have the same 
acceleration. So we can apply the equilivance principle here as well. Even relativistically the 
mass increases but the E field lines are Fitzgerald contracted and so m (denominator) gets bigger 
and E (numerator) gets bigger so acceleration is still the same! Thus we definitely can apply the 
equivalence principle to the new pde and so we can use metrics kµn with our new pde. 
4.5 Implications of goo =1-2e2/rmec2 =1-eAo/mc2vo) In The Low Temperature Limit  
Of Small Noise C 
  In fig.2 IVth quadrant could also be a negative velocity electron. So combinations of negative 
and positive velocity electron (Cooper pairs) are also solutions to eq.1.1,1.2.  Solution to eq.1.3 
z=zz+C (where C is noise), z=1+dz is: 
𝛿𝑧 = 56±√659:

;
=dr+idt. But if C<1/4 then dt is 0 and time stops for 1.11.  Note 1.11 has two 

counterrotating opposite velocity (paired) simultaneous components dr+dt and dr-dt.  Note 
electron scattering by Cooper pairs is time dependent so the scattering stops and so electical 
resistance drops, and so superconductivity ensues, at small enough noise C or v2 in Adv/dt/v2 
below.  
 Or we could as the mainstream does just postulate ad hoc creation and annhilation operators 
(Bogoliubov) for the Cooper pairs that behave this way and give an energy gap. 
 In any case the time stopping because the noise C is small (in eq.1) is the real source of 
superconductivity.   
Geodesics 
Recall equation 4.3.  goo =1-2e2/rmec2 º1-eAo/mc2vo). We determined Ao,(andA1,A2,A3) in 
section 1.4   We plug this Ai into the geodesics    

                                                                                       (4.5.1) 

where Gmijº(gkm/2)(¶gik/¶xj+¶gjk/¶xi-¶gij/¶xk) 
    

So in general                               , ,                 (4.5.2)                   

 ,  , and define , ( ) and 

 for large and near constant v,,see eq. 1.19 also .  In the weak field gii »1. Note 
e=0 for the photon so it is not deflected by these geodesics whereas a gravity field does deflect 
them. The photon moves in a straight line through a electric or magnetic field. Also use the total 
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differential  so that using the chain rule gives us: 

. 

gives a new A(1/v2)dv/dt force term added to the first order Lorentz force result in these geodesic 
equations (Sokolnikoff,  pp.304). So plugging equation 4.5.2 into equation 4.5.1, the geodesic 
equations gives:  

+ +

+ =

+ 

+ +

= + +

+ +

 . Thus we have the Lorentz force equation form 

plus the derivatives of 1/v which are of the form:  Ai(dv/dr)av/v2.This 

new term A(1/v2)dv/dr is the pairing interaction (4.5.3).       This approximation holds well for 
nonrelativistic and nearly constant velocities and low B fields but fails at extremely low velocities so it 
works when v>>(dv/dA)A. This constraint also applies to this ansatz if it is put into our Maxwell 
equations in the next section. Recall at the beginning of the BCS paper abstract the authors say that 
superconductivity results if the phonon attraction interaction is larger than the electrical repulsion 
interaction 
Given a stiff crystal lattice structure (so dv/dr is large also implying that lattice harmonic oscillation 
isotope effect in which the period varies with the (isotopic) mass.) this makes the pairing interaction 
force Ai(dv/dr)av/v2. The relative velocity “v” will then be small in the denominator in some of the 
above perturbative spatial derivatives of the metric gaa (e.g., the 1/v derivative of H2 (A/v2)(dv/dr)av. 
This fact is highly suggestive for the velocity component “v” because it implies that at cryogenic 
temperatures (extremely low relative velocities in normal mode antisymmetric motion) new forces 
(pairing interactions?) arise from the above general relativity and its spin 0 (BCS) and spin 2 statesi (D 
states for CuO4 structure). For example the mass of 4 oxygens (4X16=64) is nearly the same as the 
mass of a Cu (64) so that the SHM dynamics symmetric mode (at the same or commensurate 
frequencies) would allow the conduction electrons to oscillate in neighboring lattices at a relative 
velocity of near zero (e.g.,v »0 in (A/v2)(dv/dr)av  making a large contribution to the force), thus 
creating a large BCS (or D state) type pairing interaction using the above mechanism. Note from the 
dv/dt there must be accelerated motion (here centripetal acceleration in BCS or linear SHM as in the D 
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states) as in pair rotation but it must be of very high frequency for (dv/dr)av  (lattice vibration) to be 
large in the numerator also so that v, the velocity, remain small in the denominator with the phase of 
“A” such that A(dv/dr)av remain the same sign so the polarity giving the A is changing rapidly as well. 
This explains the requirement of the high frequency lattice vibrations (and also the sensitivity to 
valence values giving the polarity) in creating that pairing interaction force. Note there should be very 
few surrounding CuO4 complexes, just the ones forming a line of such complexes since their own 
motion will disrupt a given CuO4 resonance, these waves come in at a filamentary isolated sequence of 
CuO4 complexes passing the electrons from one complex to another would be most efficient. Chern 
Simons developed a similar looking formula to Ai(dv/dr)av/v2  by trial and error.   This pairing 
interaction force A(dv/dt)/v2 drops the flat horizontal energy band (with very tiny variation in energy) 
saddle point (normally at high energy) associated with a particular layer down to the Fermi level 
making these energies (band gaps) large and so allowing superconducitivity to occur. 

Twisted Graphene 
   Monolayer graphene is not a superconductor by the way. 
 But what about two layers?  For example a graphene bilayer twisted by 1.1deg rotation creates a 
quasi Moire' pattern with periodic hexagonal lattice.  
It is amazing that in this Moire pattern for each hexagonal structure there are carbons far apart 
inside the hexagon and carbons close together around the edge of the hexagon making these two 
groups of carbon atoms distinguishable in terms of their bonding lengths.   
So how many high density carbons are in the less dense region of the hexagon? 
3+4+5+6+5+4+3=30.  How many carbons are in the more dense region of the Moire pattern 
hexagon boundary? 5*6=30 again. So these two groups have the same aggregate mass  (but are 
distinguishable) just like the 4 Os and one Cu  in the cuprates.  
So if you twist one layer of graphene that is on top of another layer by 1.1deg it should become a 
superconductor. And it is.      
This pairing interaction force also lowers the energy gap to near the Fermi level.    
dz=[-1±Ö(1-4C)]/2. If C<1/4 there is no time and the and so dt/ds=0 and so the scattering 
Hamiltonian is 0. Thus there is no scattering and so no electrical resistance. 
This is the true source of superconductivity. 
 
4.5.2 Type B Metric Quantization Is Caused By Adv/dt/r2 Pairing Interaction 
Type A metric quantization is caused by object B and the (a/r)2 term in sect.6.3 (i.e.,electron mass) 
Type B metri in the Gaus’s law Gaussian pillbox region near the rotating black hole 
source.vsource. It is a  quantization A(dv/dt)/v2  motion on the next fractal scale  potential “A” is 
gravitational.A proper (1.4X) stellar mass black hole v»c is all there is since nothing can fall into it in a 
finite amount of time in the inertially dragged frame of reference, so it just gains more and more angular 
momentum (energy) as material falls in so those ultrarelativistic plates are created. It has to expand 
(r=2GM/c2) to conserve both energy and angular momentum. Also both dvdt and “A” are large so there is 
superconductivity (eq.4.5.3) so those ultrarelativistic plates move right through each other with plate 
intersection (lines) being mostly at the equator.(A powerful galactic collision can create other plate planes 
however). So a flat plate equatorial gravity Gauss’s law component kMm/r gravity exists =mv2/r. One of the 
r s cancel on both sides and so v is independent of r. The motion forms those can-can metric quantization 
ultrarelativistic D state lobes (seen as 4 radial lines superposed cylindrical can-can symmetry on the 
equatorial plate here. In our 2P3/2 state at rH it is 3 such lines). These 4 lines are visible in X rays at the 
center of the Andromeda galaxy and as 4 extinction event axis’ (~60My apart in 250My orbit) in the Milky 
Way.  But in the finite (small) thickness diffraction lobe of the plate the gravity field far from the galaxy 
hub it still looks like its spherically symmetric so we can still use the Schwarzschild metric goo. there: So 



you can now set     The plates are self attractive due to the rotator oscillator effect of section 7.3   
dt=(rH/r)wr sin2qdq/[c(1-(rH/r))] equation 2. Giving   d2r/ds2=(a/r)(v((((V/2GM/c2)wbsin4q(d2q/ds2)/[c(1-
(V/2GM/c2)]                 

                                                                koo=goo                     (4.5.4)                                          
in the galaxy halo (where they should be equal) and we can calculate what v is. That is where 
partIII of this paper starts out. 

 
    

Note when the  black hole has accreted too much mass M  rH=2GM/c2 becomes big (so the black 
hole density rho=M/[4pi/3)((rH)^3)] goes down) and so the A in my superconductivity pairing 
interaction force equation F= Advdt/v^2 gets small and so the superconductivity ceases and the 
galaxy suddenly changes from a disk galaxy spiral to an elliptical galaxy 
with completely unconstrained stellar orbits. 

4.6 Summary of Consequences of the Uncertainty In Distance (separation) C In  -dz=dzdz+C  
eq.1.1.6                    

 1) C as width of a slit determines uncertainty in photon location and resulting wave particle 
duality (see above section 4.3.8).                                                                                                                                                  
2) C is uncertainty in separation of particles which is large at high temperatures.  Note 
degeneracy repulsion (two spin ½ can't be in a single state) is not necessarily time dependent and 
is zero only for bosons. Also given the already extremely small Brillioun zone bosonization 
separation (see equation 4.3 for pairing interaction source) then C is small so not much more is 
needed for C to drop below ¼ to the r axis for Bosons. Thus time axis Dt=0 so Dv=aDt =0. (note 
relative v is big here. Therefore there is no Dv and so no force (F=ma) associated with the time 
dependent acceleration ‘a’ for this Boson flowing through a wire with the stationary atoms in the 
wire. So there is no electrical resistance to the flow of the Bosons in this circuit and we have 
therefore derived superconductivity from first principles. But there is a force between electrons 
in a pairing interaction (that creates the Boson) because v between them is so small. Use pairing 
interaction force mv2/r between leptons from sect.4.8: Fpair =A(dv/dt)/v2 is large. Recall that a 
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superfluid has no viscosity. But doesn't viscosity constitute a force F as well (F/m=a in dv=adt) 
and isn't helium 4 already a boson so that when C drops below ¼ then dt drops to zero as well? 
So superfluidity for helium 4 is also a natural outcome of a small C.     
At low temperatures you start seeing some of the same phenomena you see in high energy 
physics (at high temperatures) such as this fractional charge. There is a reciprocity between 
high energy and low energy physics. That pairing interaction force A(dv/dt)/v^2 that gets larger 
as v (temperature) in the denominator gets smaller. These forces get into the new pde and play a 
similar role to the high energy forces.  

3) C is separation between particle-antiparticle pair (pair creation).  For C<1/4 we leave the 135° 
and 45° diagonals jump to the r axis and simple ds2 wave equation dependence (Ch1,section 2).  
Thus we have derived pair creation and annihilation.  The dt is zero giving no time dependence 
thus stable states.  On the superconductivity we derived the pairing interaction (eq.4.5.3) and 
superfluidity (sect.4.6). So for two paired leptons (via the pairing interaction) the Hamiltonian of 
each one is then a function of both wavefuctions:  h¶y1¶/t=u1y1 v2y2 and h¶y2/¶t=u2y1 +v2y2 
which gives the superconducitivity. See Feynman lectures on superconductivity.                                                                                             

Alternative Method Of Doing QM: Markov Chains (eg.,Implying Path Integral) 
4.7 Markov Chain Zitterbewegung For r>Compton Wavelength Is A Blob 
Recall that the mainstream says that working in the Schrodinger representation and  starting 
with  the average current (from Dirac eq. (p-mc)y(x)=0) assumption and so equation 9 gives 
J(+)=òy(+)tcay(+)d3x  . Then using Gordon decomposition of the currents and the Fourier 
superposition of the  b(p,s)u(p,s)e-ipuxu/h solutions (b(p,s) is a normalization constant of òytyd3x.) 
to the free particle Dirac equation(1.2.7) we get for the observed current (u and v have tildas): 
Jk=òd3p{S±s [|b(p,s)|2+|d(p,s)|2]pkc2/E +iS±s,±s’b*(-p,s’)d*(p,s)e2ixqpq/h u(-p,s’)sk0v(p,s) 
iS±s,±s’b(p,s’)d(p,s)e2ixqpq/h v(p,s’)sk0u(p,s).                                                          (4.11.4)                                                                
 (2)   E.Schrodinger, Sitzber.Preuss.Akad.Wiss.Physik-Math.,24,418 (1930) 
Thus we can either set the positive energy v(p,s) or the negative energy u(p,s) equal to zero and 
so we no longer have a e2ixqpq/h  zitterbewegung contribution to Ju, the zitterbewegung  no longer 
can be seen. Thus we have derived the mainstream idea that the zitterbewegung does not exist. 
But if we continue on with this derivation we can also show that the zitterbewegung does exist if 
the electron is in a confined space of about a Compton wavelength in width, so that a nearby 
confining wall exists then.                                                                                                         
(3)   Bjorken and Drell,  Relativistic Quantum Mechanics, PP.39, eq.3.32, (1964) 
Note negative energy does exist from E2=p2c2+mo2c4 so 𝐸 = m𝑝;𝑐; +𝑚F

;𝑐9 so that E can be 
negative(positrons). Note if p small m can be negative since E=pc then.  In E=mgh+ ½mv2 a 
negative energy E does indeed create absurd results but not if E is also negative since the 
negative sign  cancels out.  

Derivation Of Eq.1.2.7 From (uncertainty) Blob   (reference 1)                                                                      
Recall from section 3.4.4 that we can derive the zitterbewegung blob (within the Compton 
Wavelength) from the equation 1.24.(see reference 2.) Also recall from section 1 that we 
postulated a blob that was nonzero, non infinite and with constant standard deviation (i.e., we 
found 1.1.3 ddz=0). But that is the same thing as Schrodinger’s zitterbewegung blob mentioned 
above. So we postulated the electron and derived the electron rotated 1.1.11 (i.e.,eq.1.24)  from 
that postulate. We therefore have created a mere trivial tautology.                                                                                                                

 
4.8 2DÅ2D 



 Also with eq.1.11 first 2D solution there is no new pde and so no wave function. The other 
solution to 1.11 adds the other 2D (observer) and so we get the eq.9 new pde and thereby its 
wave function. So we needed the observer to “collapse” the wave function. This is the proof of 
the core part of the Copenhagen interpretation. Eq.1.11 gives the probability density dz*dz 
(another component of the Copenhagen interpretation so we have a complete proof of the 
Copenhagen interpretation of quantum mechanics here. 
 
4.9 Mixed State 1.1.11+1.1.11 Implies There Is No Need For A Dirac Sea 
The 1928 solution to the Dirac equation has for the positron and electron simultaneous x,y,z 
coordinates (bottom of p.94 Bjorken and Drell derivation of the free particle propagator) creating 
the need for the Dirac sea of filled states so the electron will not annihilate immediately with a 
collocated negative energy positron which is also a solution to the same Dirac equation. Recall 
y(+) and y(-) are separate but (Hermitian) orthogonal eigenstates and so <y(+)|y(-)>=0 without 
a perturbation so we can  introduce a displacement y(x)®y(x+Dx) for just one of these 
eigenfunctions. But the mixed state positron and electron separated by a substantial distance Dx 
will not necessarily annihilate. Note in the 1.11  2DÅ2D (i.e.,Ökµµgµ¶y/¶xµ=(w/c)y) equation the 
electron is at 45°  -dr,dt and the positron is at 135° dr’,-dt’ which means formally they are not in 
the same location in this formulation of the Dirac equation.  In that regard note that dr/Ö(1-
rH/r)=dr’, rH=2e’e/mec2=e so that different e leads in general to different dr’ spatial dependence 
for the y(x) in the general representation of the 4X4 Dirac  matrices. So in the multiplication of 4 
ys the antiparticle y will be given a rH displacement Dr (dr®dr’ here) by the±e term in the 
associated kµn  So the y(+)and y(-) in the Dirac equation column matrix will have different 
(x,y,z,t) values for the y(+) than for the y(-). As an analogy an electron in a given atomic state 
of a given atom can’t decay into a empty state of a completely different atom located somewhere 
else.  Thus perturbation theory (eg.,Fermi’s golden rule) cannot lead to the electron 
spontaneously dropping into a negative energy state since such 1.11 states are not collocated for 
a given solutions to a single Dirac equation (other positrons from other Dirac equation solutions 
can always wonder in from the outside in the usual positron-electron pair annihilation calculation 
case but that is not the same thing). Thus the Dirac sea does not have to exist to explain why the 
electron does not decay into negative energy. 

4.10 No Need for a Running Coupling Constant 
 If the Coulomb V= a/r is used for the coupling instead of a/(kH-r)  then we must multiply a in 
the Coulomb term by a floating constant (K) to make the coulomb V give the correct potential 
energy. Thus if an isolated electron source is used in Z00 we have that (-Ka/r)=a/(kH-r) to define 
the running coupling constant multiplier “K”. The distance kH corresponds to about d=10-

18m=ke2/mtc2, with an interaction energy of approximately hc/d=2.48X10–8joules= 1.55TeV. For 
80 GeV, r»20 (»1.55Tev/80Gev) times this distance in colliding electron beam experiments, so (-
Ka/r)= a/(rH-r) =a/(r(1/20)-r) )= -a/(r(19/20))=(20/19)a/r =1.05a/r so K=1.05 which corresponds 
to a 1/Kaº1/a’»130 also found by QED (renormalization group) calculations of (Halzen, Quarks).  
Therefore we can dispense with the running coupling constants, higher order diagrams, the 
renormalization group, adding infinities to get finite quantities; all we need is the correct potential 
incorporating Ökoo. 
 



  Note that the a’=a/(1-[a/3p(lnc)] running coupling constant formula  (Faddeev, 1981)] doesn’t 
work near the singularity (i.e., c»e3p/a)  because the constant is assumed small over all scales 
(therefore there really is no formula to compare a/(r-rH) to over all scales) but this formula works 
well near a~1/137.036 which is where we used it just above.  
 
4.11 Rotated 1.24  Implies k00=1-rH/r »1/krr So No Klein Paradox  As Is In The Original 
1928 Dirac Equation                                                                                                                                                                       
Recall that krr=1/(1-rH/r) in the new pde eq.1.11.  Recall that for the ordinary Dirac equation that 
the reflection (Rs)  and transmission (Ts)  coefficients at an abrupt potential rise are:                           
Rs= ((1-k)/1+k))2 and Ts=4k/(1+k)2 where k=p(E+mc2)/k2(E+mc2-V) assuming k2 
(ie.,momentum on right side of barrier) momentum is finite.. Note in section1 dr’2=krrdr2 and 
pr=mdr/ds in the 2AI+2AI mixed state new pde so  pr=(Ökrr)p=(1/Ö(1-rH/r))p and so pr®¥ so 
k®¥ the huge values of the rest of the numerator and denominator cancel out with some left 
over finite number.  Therefore for the actual abrupt potential rise at r=rH we find that pr goes to 
infinity so  Rs=1 and Ts=0.as expected.  Thus nothing makes it through the huge barrier at rH 
thereby resolving the Klein paradox: there is no paradox anymore with the new pde. No 
potentials that have infinite slope. Therefore the new pde applies to the region inside the 
Compton wavelength just as much as anywhere else.  So if you drop the Ökrr  in the new pde  all 
kinds of problems occur inside the Compton wavelength such as more particles moving to the 
right of the barrier than as were coming in from the left, hence the Klein paradox(4).                       
  (4) O.Klein, Z. Physik, 53,157 (1929)                                                                                                
So by adopting the new pde (eq.9 ) instead of the old 1928 Dirac equation you make the Dirac 
equation generally covariant and selfconsistent at all scales and so find no more paradoxes. 
 

 



 
4.12 Mixed State 1.11+1.11  C>1/4 and C<1/4 Implications For Pair Creation And 
Annihilation                                                                                                                              Note 
that if C<1/4 in equation 1 (dz=(-B±Ö(B2-4AC))/2A, A=1, B=1) the two points are close together 
and time disappears since dz is then real for the neighborhood of the origin where opposite 
charges can exist along the 135° line. So we are off the 45° diagonal and therefore the equation 2 
extrema does not apply.  So the eq.1.12 fermions disappear and we have only that original 
second boson derivative dds2=0 circle (�2Aµ=0, �•A=0) Maxwell equations. So when two 
fundamental fermions are too near the origin and so get too close together (ie., dr=dr’, dt=dt’) 
you only have a boson and the fermions disappear.  So we have explained particle-antiparticle 
annihilation from first principles.  In contrast two fermions of equal charge require energies on 
the order of 100GeV to get this close together in which case they also generate bosons in the 
same way and again the fermions do disappear from existence. You then generate the W and the 
Z bosons (since above sect.4.11 nonweak field knknkµµ=Proca equation term) .                                                 
 
Chapter 5 Second Solution CM Contribution To kµn  Due To Object B                                                                            
Note we are within the Compton wavelength of the next higher fractal scale new pde (we are 
inside of rH). Also our new pde does not exhibit the Klein paradox within the Compton 
wavelength (because of the kij s) or anywhere else so our new pde is valid there also. Note for 
r<rH then E=hw=E=1/Ökoo=1/Ö(1-rH/r) and therefore this square root is imaginary and so  iw ®w 
in the Heisenberg equations of motion.  Therefore r=roeiwt becomes instead r=roewt (that 
accelerating cosmological expansion) which is observable zitterbewegung motion since wt does 
not cancel out in y*y in that case and again we are within the Compton wavelength and so even 
according to the Bjorken&Drell PP.39 criteria the zitterbewegung therefore exists.  
Also note in the above krr=1/ktt we have derived GR from our theory in eq. 1.17-1.20. For 
loosely bound states (eg., 2P½ at r»rH)  object C contributes a xWZ.  (see B4) 
 
5.1 The Rµn Is Also A Quantum Mechanical Operator. 
  Recall section 4 implies General relativity (recall eq.1.18,1.20 and the Schwarzschild metric 
derivation there).  Note this all exists in the context of  appendix B MandelbulbLepton results. So 
it is a local metric normalization to get the ambient eq.1.10 flat background metric. and so 
equation 1 and observables.  Note also in section 1.2 above we defined the quantum mechanical 
[A,H]|a,t>=(¶A/¶t)|a,t>  Heisenberg equations of motion in section 1.2 with |a,t> a eq.2 (1.11) 
eigenstate. Note the commutation relation and so second derivatives (H relativistic eq.2 (1.11) 
Dirac eq. iteration 2nd derivative) taken twice and subtracted. (¶A/¶t)|a,t>.  For example if ‘A’ is 
momentum px= -i¶/¶x. H= ¶/¶t then [A, so we must use the equations of motion for a curved 
space. In this ordinary QM case I found for r<rH that r=roewt’  H]|a,t>=(¶A/¶t)|a,t>=(¶/¶t)(¶/¶x)-
(¶/¶x)(¶/¶t)=pdot. But Ökrr is in the kinetic term in in the new pde with merely 
perturbative  t’=tÖkoo. But using the C2 of properties of operator A (C2 means continuous first 
and second derivatives and is implied in sect.1.1) in a curved space time we can generalize the 
Heisenberg equations of motion to curved space nonperturbatively with:  (Ai,jk-Ai,kj)|a,t> 
=(RmijkAm )|a,t>  where Rabcd is the Riemann Christofell Tensor of the Second Kind 
and  kab®gab. Note all we have done here is to identify Ak as a quantum vector operator here, 
which it should be. Note again the second derivatives are taken twice and subtracted looking a 
lot like a generalization of the above Heisenberg equations of motion commutation relations. 



Note also Rmijk  could even be taken as an eigenvalue of pdot since it is zero when the space is 
flat, where force is zero. These generalized Heisenberg equations of motion reduce to the above 
QM form in the limit w®0, outside the region where angular velocity is very high in the 
expansion (now it is only one part in 105). 
 
5.2 Solution To The Problem Of General Relativity Having 10 Unknowns But 6 
Independent Equations 
From Chapter 4 this zitterbewegung (de Donder harmonic motion (2) ) plays a much more 
important role in general relativity(GR)  The reason is that  General  Relativity has ten 
equations  (e.g., Rµn=0)  and 10 unknowns gµn. But the Bianchi identities (i.e., 
Rabµn;l+Rablµ;n+Rabnl;µ=0) drop the number of independent equations to 6.  Therefore the  four 
equations  (ie., (kµnÖ-k),µ =0)  of the (zitterbewegung) harmonic condition  fill in the four 
degrees of freedom needed to  make GR    10 equations Rµn=0 and 10 unknown gµn. We thereby 
do not allow the gauge formulations that give us wormholes or other such arbitrary, nonexistent 
phenomena. In that regard this de Donder harmonic gauge (equivalent condition) is what is used 
to give us the historically successful theoretical predictions of General Relativity such as the 
apsidal motion of Mercury and light bending angle around the sun seen in solar eclipses. So the 
harmonic ‘gauge’ is not an arbitrary choice of “gauge”. It is not a gauge at all actually since it is 
a physically real set of coordinates:  the zitterbewegung oscillation harmonic coordinates.                                                                
(3)    John Stewart (1991), “Advanced General Relativity”, Cambridge University Press, ISBN 0-
521-44946-4 
                                                                                                                                                                                  
6.2 r<rH Observational Evidence For Object B  
 Recall there are two metrics in section 3.1 and outside Schwarzschild and inside De Sitter. But 
because of eq.2AI (and so eq.9 modified Dirac equation) we are in a rapidly rotating object, the 
electron rotating at rate c (in the fractal theory at least. It is the solution to the Dirac equation 
eq.9).  But because of inertial frame dragging in object A observed spin is extremely small 
except for a small contribution to reducing inertial frame dragging of object B (section 4.1.2).  
So the geodesics are parallel (flat space holonomy) just like the cylinder. Inertial frame dragging 
should not destroy the holonomy, just rotate the cylinder but it stays a cylinder. We can realize 
that for a spherical metric by maintaining the parallel transport which means the expansion is 
needed to maintain the cylinder. From our perspective we see a sphere with a flat space. Recall 
the mainstream guy also said this space is in fact that of a 3D cylinder, which it is.                                                                                                   
This 'seeing ourselves' is also predicted by the mainstream stuff too given the observations of the 
flat space and the requirement of the cylinder topology. But seeing ourselves is so weird to the 
mainstream that they have postulated a pretzel space instead at large distances.                           
So the universe is fractal with the (Dirac spinor) the Kerr metric high angular momentum local 
cylinder near rH dominates and creates the flat space time associated with a cylinder so that two 
parallel lines do remain parallel within the time like interval at least. When we look out at the 
edge of the universe in some specific direction, beyond that space like interval (that we cannot 
see beyond) we are very nearly (just over the space- like edge) looking at ourselves as we were 
over 12by years ago. We are looking back in time at ourselves!  (in this fractal model). 
The hydra-centaurus supercluster of galaxies is about 150MLY away. We would find it by 
looking in the opposite direction of the sky from where we see it now, it would be a smudge at 
submillimeter wave lengths.  



So create a map of the giant galaxy clusters within 2By of the Milky Way galaxy and invert each 
object by 180° to find the map of the oldest redshift galaxy clusters 
Given 2D piece of paper, you can connect the ends a few different ways by folding it. Connect 
one of the dimensions normally and you have a cylinder. Flip one edge over >before connecting 
and you've made a Mobius strip. Connect two dimensions, the top to the bottom and one side to 
the other, and you have a torus (aka a donut). In our 3D universe, there are lots of options — 18 
known ones, to be precise. Mobius strips, Klein bottles and Hantzsche-Wendt space manifolds 
are all non-trivial topologies that share something in common: if you travel far enough in one 
direction, you come back to where you started. Bg gravimagnetic dipole from the new pde 
provides the spherical torus shape for this. 
In this fractal universe we do this.  In fact there is only one way to do it: in the rH cylinder region 
of the Kerr metric near c rotation rate, so the topology is a given.  
 
6.3 The Distance Of Object B From Object A Determines Particle Mass                                        
   Introduction                      Nth scale is 10-40X small baseline                   
Recall that Eq. 1 (with its small C) gave us eq.1.15 at min ds at 45°, for our observables 
(eigenvalues). 
 Also eq.1.1 gives -dr=drdr+CM so for large fractal baseline CM»|drdr|>>dr so that  
 if we define mass x from the Mandelbrot set with  xµdz then CM=<dz>+<dzdz> has to equal 
xdrN+xxdrN+1with resultant dr2 definition from CMºxdr=x(dr1+dr2)=xdrN+xdr2 with drN local r.  
  On the big (cosmological) fractal eq.1.24 baseline both drN+1 and dr2 are large constants (since 
zz>>z) so we can also define some new constant e from e=xxdr2. So e/x=xdr2 with e=eN+eN+1.  
C=xdr+e/xºe1. So:  e=eN+eN+1  in   dr-e1º dr-(e/x+xdr)ºdr’               (4.1)                                  
Also on the big cosmological eq.1.24 object B&A fractal baseline (as sect.6.6 implies) 
vibrational mt and rotational mµ modes so  x ºmL=mt+mµ+me for (a/r)2 in the Kerr metric. At 
r=rHN+1 (see Ch.7) then 1-x+rHN/r-rHN+1/r=x-rHN/r= 1-(mµ+me)-rHN/r and so (a/r)2®mµ and mµ is 
the rotational eigenvalue as it must be in the Kerr metric 6.1.1. So from object A&B relative 
motion   x=mt+mµ+me. me is the ground state.  So k00= 1-x-(e/x)/rº 1-x-rH/r. So in free space 
 x=mt+mµ+me=mL is clamped in with the Kerr metric so            r=rH=2e2/(mLc2)   (4.1a) 
 D+me with me the ground state and rH=e/mL º2e2/(mLc2) in eq.4.1 below. But a large noise 
perturbation dqdt to the Kerr metric leaves KE=D in the  high energy dx/dt terms instead of (a/r)2 
and so x=me. Also in the object B Kerr metric also (a/r)2º(xrdr/ds)/r)2=(xdr/ds)2ºx from 4.1 for 
the small fractal baseline.  So x(dr/ds)=CMds/dr º h/l=mv  (eg., 6.1.3). 
Also rH=e/mL º2e2/(mLc2) in eq.4.1 below. 2P3/2 B flux quantization modifies this (in the Kerr 
metric)  to rH=e/me large . See Ch.2, figure 4. 
.Also on the big cosmological eq.1.2.7 object B&A fractal baseline (in sect.6.3 implies) 
vibrational mt and rotational mµ modes so  x ºmL=mt+mµ+me = D+me with me the ground state 
and rH=e/mL º2e2/(mLc2) in eq.4.1 below. So a large noise perturbation just leaves KE=D high 
energy and x=me.  So rH=e/mL º2e2/(mLc2) in eq.4.1 below. 2P3/2 B flux quantization modifies 
this (in the Kerr metric)  to rH=e/me large . See Ch.2, figure 4. 
For 2AI we can define e =xdrC is the CM contribution for large C.  Thus (a/r)2 =x in the Kerr 
metric because of  koo=1+xdrC/drC-rH/r =1+x-rH/r showing the mass is x  in e=xdr. is generated 
form object decrease in inertial frame dragging. Recall appendix B and the derivation of the 1081 
X electron mass there. That implies that our universe is not the only object on the N+1 fractal 
scale. Since we are at the Fiegenbaum point the fractalness is exact so that there is a 75% chance 



our object A is one of three such “electrons” inside a proton. Note in sect.2.1 the equilibrium 
established after the initial slow expansion so that energy density is uniform so that k(4/3)pr3. 
We are located in a huge (rotating) electron Kerr metric object. But if there was no nearby object 
there would be complete inertial frame dragging. But recalling the large rotating shell 
approximation of GR (Mach’s principle implication) we see that a nearby large object B will 
reduce the inertial frame dragging and so make the metric a Kerr metric:                                                            
Section 3.1 implies a Schwarzschild metric for the outside observer r>rH for an isolated object 
(eg., no object B nearby) since that was the assumption made in the derivation. But equation 2A1 
(solution to equation 4) leads to equation 1.24 and the new pde. In that equation the object 2A1 
electron has spin S, is rotating and can be seen as such if there is an object B nearby (see below). 
Thus for no nearby object we have the Schwarzschild metric but in general with a nearby object 
the internal r>rH sees a rotational (Kerr) metric (so from section 4.1.2 assumed to be a quantum 
operator) which is given by: 

                 
where , Note the oblation term a2cos2q. 
To find the perturbative contribution of Eq.1.1.16 in sect.3.1  to the Schwarzschild metric we 
note that for near  zero rotational speed we can take dq/ds=0,  or just dq=0. Also for q=90° then 
cos90°=0, r2 =r2. So the above equation becomes  
  ds2= dr2/(1-2m/r+(a/r)2)+r2dq2+(r2+a2)sin2q(vdt/r2)2+ 2asin2qdqcdt+(2m/r-1)dt2 
  ds2= dr2/(1-2m/r+(a/r)2)+r2dq2+(r2+a2)sin2qdf2+ 2asin2qdqcdt+(2m/r-1)dt2 
»ds2= dr2/(1-2m/r+(a/r)2) +(2m/r-1)dt2          (6.1.1)   
The (a/r)2 is the energy e angular momentum term which also turns out to be the muon mass.  
The fractal ground state De (is part of the background mass xo) is added to this.                                                                  
 That rH in the old GR metric is rH=2GM/c2 (the fractal M+1) scale rH. The Mth scale rH is that 
2e2/mec2=rH and gives those QED results without the renormalization. 
dr2/(1-2m/r+(a/r)2) –c2dt2(1-2m/r)                                                               (6.1.2) 
with (a/r)2 =being in the ambient metric of section 6.4. Thus the ambient metric is caused by the 
reduced inertial dragging associated with a nearby object B.  
On the large factal baseline dr2=CM. So in the Kerr metric eq.6.1.1  
(a/r)2º(xrdr/ds)/r)2=(xdr/ds)2=CM ºxrH from 4.1a for the small fractal baseline.  So 
x(dr/ds)=CMds/dr º h/l=mv  (6.1.3) 
Note in equation 7 we are again subtracting e but this time possibly in the form of xrHº(a/r)2 
where xºe/dr. This x is the mass energy term of equation 3.2, sect.1.1.5. The (a/r)2 in eq.6.1.1 is 
the energy e angular momentum term (and also De), which turns out to be the muon mass. 
Equipartition of Energy 
So from the above section at the horizon  r®1/r2 so t®1/t2  in koo=1-rH/r and so inside rH 
vibrational states are at low frequency and rotational staes at high frequency. Also recall for 
quantum mechanical equipartition of energy outside rH rotational rotatational vibration and 
rotational states are the same energy inside then that makes each each vibrational wave have 
much more energy than each rotational wave. See equipartition of energy inside deuteron PartII.                                                                
6.4 This Added Object B (a/r)2 term Is Then The Source Of The Ambient Metric And Mass 
Tensor Geometry Consequences of C2  
Recall section 4 implies General relativity (recall eq.1.17 and the Schwarzschild metric 
derivation there). But the context is that of keeping equation 1 C2 and so that local 
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MandelbulbLepton model.eq.1.10 flat space ambient metric manifold. In that regard given a 
(observable) vector operator A that explicitly operates on the y of equation 1.24) we can  then 
construct the Riemann Christofell Tensor of the Second Kind Rabcd (from  section 4. we can 
assume it is a quantum operator) from the kabºgab using the C2 of A given by  (Ai,jk-Ai,kj)|a,t> 
=(RmijkAm )|a,t>. We can then contract this RmijkAm|a,t>= tensor to get the Ricci tensor Rij  (here 
Rij ºRmijm). 
Note here A is the Quantum Operator and the coefficient Rµn is a (geometry) tensor.  Define the 
scalar R = kµnRµn We then define conserved quantity Zµn from  
                                                                  Rµn-½kµnRºZµn                                     (6.4.3) 
after substituting in equations 3.2, 4.1 we see for example that      Zoo=4prH        (6.4.4)  
where from equation 4.4.3 we have rH =2e2/mec2.   
In free space we can see from equation 4.2 that:                              RµnAn|a,t>= 0 
From section 1.5 solving the geometry components R22=0 and R11 =0 using 3.2-3.5 for spherical 
symmetry gives us respectively                   1/krr=1-rH/r,  and   krr=1/koo  (6.4.5) 
showing that equation 6.4.2 is equivalent to equations 3.2 and 3.3 if there is no nontrivial 
background metric contribution (i.e.,e=0).  The (a/r)2 in eq.6.1.1 is the energy e contribution of 
the energy angular momentum term, which turns out to be the muon mass in:                                  
1/Ökoo=(1±e±De/2)e/De                                                               
Use metric a ansatz: ds2=-el(dr)2-r2dq2-r2sinqdf2+eµdt2 so that goo=eµ, grr=el.(6.4.6) 
 From equation Rij=0  for spherical symmetry in free space 
                              R11= ½µ”- ¼l’µ’+ ¼(µ’)2-l’/r =0               (6.4.7)                                                        
                              R22=e -l[1+½ r(µ’-l’)]-1=0     (6.4.8)                                                                     
                              R33=sin2q{e-l[1+½r(µ’-l’)]-1}=0                                                 (6.4.9)                                                          
                              Roo=eµ-l[-½µ”+¼ l’µ’-¼(µ’)2- µ’/r]= 0                                  (6.4.10) 
                              Rij=0 if i¹j                     
(eq. 6.4.7 -6.4.10  from pp.303 Sokolnikof): Equation 6.4.8 is a mere repetition of equation 6.4.9. 
We thus have only three equations on  and µ to consider. From equations 6.4.7;  6.4.10 we 
deduce that  
l’=-µ’ so that radial l=-µ+constant =-µ+C for our nonzero free space metric of section 4.4 
normalizing to one real dimension as in the postulate. So e-µ+C=el. Note C can be imaginary or 
real. Then 6.4.8 can be written as:                                                                            
                                                          e–Ceµ (1+rµ’)=1                                               (6.4.11)                          
Set eµ=g. So e-l =ge-C and so integrating this first order equation (equation.6.4.11) we get: 
                              g=-2m/r +eC ºeµ and e-l=(-2m/r +eC)e–C                                    (6.4.12) 
From equation 6.4.3 we can identify radial eC»1+2e with also rotational oblateness perturbation 
De already a component here (section 6.4). 
 koo=1-(C+C2/2+..))-2m/r; e-l=1/krr=1/(1-2m’/r);                                                  (6.4.13)     
Our new pde has spin S and so the self similar ambient metric on the N+1th fractal scale is the 
Kerr metric which contains rotations.                                           

               (6.4.14) 

where , 
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leaving the ground state De  and simply resetting the clock dt.  
z=0 Given the local Meisner effect can’t normalize out the Meisner effect e (instead of De) 
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Transitions 
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There is a resulting asymmetry in 1/krr and koo by implied by 6.4.13. We can reset the clock  
resetting the proper time (squared) clock ds2 (details in section 6.4.13) by multiplying by the 
pure radial eC»1+2e coefficient allowing here for both (relative) positive and negative e in the 
background metric:  

                                                     

𝑑𝑠; = (1 − 𝜀) B(1 − 𝜀 − De)𝑑𝑡; − 6
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Note for the 1+e choice in equation 6.4.13 we have goo=1+2e+De, g22=1/(1+De) (used below in 
equation 8.3 for real metric coefficient case) or for imaginary C as above  
 
e, De as operators 
Alternatively write e, De as operators on the eq.1.2.7  y. So e does not operate on De( for 
example eDey=0). allowing us to write the koo component of 6.4.13 where ansatz eC generates 
eµ=goo= ei(2e+De) =koo above only if e, De act as operators. 
 
                                                                                              goo= ei(2e+De)               (6.4.15) 
 for background metric case. e=.060406.  
Note the (a/r)2 in 6.4.14 is then the e+De in the denominator on the right side of eq.6.4.13, the 
main reason we went to so much trouble to derive 6.4.13. Thus we have shown how a nearby 
object B creates mass in object A. 
Note(r,t)X(f,q) is a Cartesian product of two 2D spaces here. 
Thus the (a/r)2 term in Eq.6.4.13 thus provides a background metric and this ambient metric then 
provides the mass of the fundamental leptons. Tauon (1), muon(e) and electron De). Object B 
and object A area two body object on the next fractal scale (with wB=wA at the rH boundary due 
to causality) effect of causing a drop in inertial frame dragging and a increase in the mass of the 
particles through the mass degeneracy provided by quantum mechanical vibrational t tauon and 
rotational e muon and ground state De electron metric quantization eigenstates of object A and B 
together.   In  k00=1+e+De-rH/r.  (6.4.1) 
 
Normalization 
Equation 6.1.2 (Kerr) and equation 6.4.1 and 6.4.13 (ambient metric) thereby shows how to 
normalize. Recall normalization of z=(1+dz)+dz’ using  1/(1+dz) was required (sect.1.2) to also 
have the neighborhood (and not just the point) a subset of the Mandelbrot set. 
   Details: Ambient metric 1-e in the Kerr (a/r)2 is normalized out. The ground state De cannot be 
normalized out. Because koo = x1-rH/r, all 3 leptons are in sect.1.2. So the new pde normalization 
results for z=1 are koo=1-(CM/x1)/r , krr=1/(1-(De/(1-e))-(CM/x1)/r). (6.6.15) 
For z=0, 2P1/2 and 2P3/2 at r=rH  so koo=1-e-De-(CM/xo)/r, krr=1/(1-e-((CM/xo)/r))   (6.6.16) 
because of the Meisner effect e (partII) as in eq. 6.4.13. 2P½ at r=rH  z=0®z=1  transition occurs  

when the internal virtual decay event occurs so that there is no Meisner effect e, just the usual 
object B background e. See (6.6.17) 
In 2P1/2 at exactly r=rH (with small but nonzero probability) we have z=0®1z= case since we 
have a huge x1 so we again normalize out 1-e and so koo=1-De/(1±e)-((CM/xo)/r) for r=rH. 
(6.6.17) transition case. In summary: 
z=1,0  so rH=SCM/(x3+x2+xo)ºSCM/x1  in eq.1.2.7; sect.6.3       infinitesimal rotation  
 krr=1/[(1-De/(1±e) –(CM/x1)/r))], and koo=1–(SCM/x1)/r                     (6.6.15) 
z=0  alone   sect.1.2  rH=CM/xo                                                   180°rotation   
krr=1/[(1-e/(1±e) –(CM/xo)/r))], and   koo=1–(CM/xo)/r                        (6.6.16) 
        Transitions 
z=0 ®z=1 
    krr=1/[(1-De/(1±e) –(SCM/x1)/r))], and koo=1–(SCM/x1)/r                      
z=1®z=0 tauon and muon decay into electrons at r=rH contained by flux quantization. 



    krr=1/[(1-e/(1±e) –(CM/xo)/r))], and   koo=1–(CM/xo)/r                         
6.5 Sum Of All These Effects: Stair Step Metric Expansion 
Given the inertial frame dragging reduction effects of nearby object B (sect.6.4.3) the e (muon) 
and De (electron) have their own zitterbewegung frequencies from the new pde. It is at r<rC so it 
exists (sect.1.41). Also from the object A new pde locally r=roekt for expansion. Also the 
underlying object A space-time is Minkowski, flat space-time as we see in equation 5.1.1 since 
the time spent in the later parts of the expansion the eq 4 Gauss’s law Gaussian Pillbox is nearly 
empty since most of the material is most of the time next to the horizon rH  So classically the 
interior of rH has no gravitational force associated with it and thus is a flat Minkowski metric. 
These two object A criteria are not perturbations (6.11.1). Recall the outside observer sees a 
zitterbewegung independent of location inside: it all happens at once. So for the r=roekt expansion 
to work simultaneously with the Minkowski metric it all must happen simultaneously within rH. 
The whole thing rises at once from the outside observer’s point of view. The two object A and 
two object B criteria are satisfied everywhere if we have a stair step Minkowski space 
time, where the space-time is Minkowski at the flat part of the steps with the vertical part being 
infinitesimal in both time and space. So over the entire interior of object A we have the step 
function goo=Snsin((2n+1)wt)/(2n+1) with w being both separately the e and De omegas giving a 
square wave which is (locally) flat if the sum is to n=¥. The separate sums also exhibit the 
required perturbation frequencies e and De. Both e and De are smaller than 1/k=rc so they can be 
actual oscillations (sect.6.11). So the jumps in the larger e square wave function  
Sn(sin((2n+1)wt)/(2n+1)) functions must be to the envelope of the exterior observer r=roekt 
nonpertutbative function turning the notional space-time rubber sheet into a stair step function. 
The whole thing still rises at once.  But the e and De object B transmissions are local and so get 
dispersive frequency cut-offs at galaxy scattering cut-offs at 1/100kLY so have 100kLy wide 
Gibbs jumps. Thus the space time (and so Gamow factor) briefly jumps up and down every e (So 
every 270My, the mass extinctions, the last one being at 248My.) and to a much weaker 1/100 
amplitude for De every 2.5My. The whole thing rising at once gives rise to some interesting 
phenomenology. For example a metric quantization event is seen to happen locally at first and 
then spread out from the observer at speed c. So for example the previous 248My metric jump 
event can be seen still happening at 248My from us, where in general we then see “rings” of 
these cyclic events.  



 
270My apart thick radii (red lines) as in this right figure along with remnants of the Rayleigh 
Taylor instability (4.3.3) RT of the original big bang µ=m𝑘𝑔 in RT=eµt. Note from rings in 
image nonrelativistically Dz=.02=x/13.7, x»270My.. The researchers looked at 800 galaxy 
clusters across the universe, measuring the temperature of each cluster's hot gas. They then 
compared the data with how bright the clusters appeared in the sky. If the universe was in fact 
isotropic, then galaxy clusters of similar temperatures, located at similar distances, would have 
similar levels of luminosity. But that was not the case. Object B and Kerr contribution from 
6.4.16  koo=1-rH/r ®1-(a/r)2-rH/r=1/krr from eq.1.2.4 is (a/r)2=De/(1-e). Note from the Kerr metric 
contribution eq. 6.4.16 given space-like rH barrier separations the operators (sect.2.5) are on 
quantities only within a given fractal scale. If a locally homogenous space-time (where tiny De 
background metric change my still be nonzero.) we can at least normalize out the 1-e .Given the 
local ekr metric expansion these QM  jumps occur over the whole space-time all at once. So they 
appear from any given point to propagate radially making each observer think they are the center 
of explansion.   So ekr is then a stair step exponential with Gibbs overshoots at each transition. 



 
 
Rolland Bacon MUSE VLT study of Lyman Alpha 121.4nm redshifted emission in 2021 
 



 
A map showing the rate of the expansion of the Universe in different directions across the sky.K. 
Migkas et al. 2020, CC BY-SA 3.0 IGO 
 
In my theory the universe is fractal (note Mandelbrot set discussion below) with 1040X fractal 
scale separation. Postulate 1 implies eq.1a and eq.1b and they in turn  imply eq.1.11 and that 
Clifford algebra. so they imply leptons, eq.1.11  (eq.1,24) is the electron which has spin so is 



dipole  which also thereby is fractal.  So we are inside of the next largest "electron" and it is a 
dipole, as in that image  below. Thus an interior cosmological dipole is the most blatant 
manifestation of the fractalness 
From the mainstream: 
"The researchers looked at 800 galaxy clusters across the universe, measuring the temperature of 
each cluster's hot gas. They then compared the data with how bright the clusters appeared in the 
sky. 
If the universe was in fact isotropic, then galaxy clusters of similar temperatures, located at 
similar distances, would have similar levels of luminosity. But that was not the case. " 
Note this dipole has the same orientation as the axis of evil (for the CBR). 
6.6 Origin Of Mass 
  Introduction                      Nth scale is 10-40X small baseline                   
Recall that Eq. 1.3 (with its small C) gave us eq.1.15 at min ds at 45°, for our observables 
(eigenvalues). 
 Also eq.1.5 gives -dr=drdr+CM so for large fractal baseline CM»|drdr|>>dr so that  
 if we define mass x from the Mandelbrot set with  xµdz then CM=<dz>+<dzdz> has to equal 
xdrN+xxdrN+1with resultant dr2 definition from CMºxdr=x(dr1+dr2)=xdr1+xdr2 with drN local r.  
  On the big (cosmological) fractal eq.9 baseline both drN+1 and dr2 are large constants (since 
zz>>z) so we can also define some new constant e from e=xxdr2. So e/x=xdr2 with e=eN+eN+1.  
C=xdr+e/xºe1.  
B2 Introduction To Chapter 6 and PartII  
Also on the big cosmological eq.9 object B&A fractal baseline (as sect.6.6 implies) vibrational 
mt (½kx2) and rotational mµ  (L(L+1))  modes so ½kx2 and L(L+1) from section 6.4 (ambient 
metric formalism: koo=1+e+De) add to true angular moment effect of the mµ so can replace (a/r)2 
in the Kerr metric. For example ½kx2 mt allows squared x2=dr2 to occupy the squared (a/r)2. And 
so  x ºmL=mt+mµ+me for (a/r)2 is clamped into the Kerr metric in free space with D+me with me 
the ground state.  
So from object B vibrational and rotational many bodied states in Kerr metric (a/r)2 in eq.4.1 
k00=1-mt+2mµ+me-(rHN+1/r1) –(rL/r).  At our cosmological position r1=rHN+1: 
k00=1-mt+2mµ+me-)-rL/r-(rHN+1/rHN+1)= 
k00=1-mt+2mµ+me-1-rL/r=mt+2mµ+me-rL/r=x-e/rN. Normalize and get k00=1-(e/x)/r, (B2) 
r=rH=2e2/(mLc2).   Use in E&M free space applications.        
 
Section 3.3 (object B implications sect.4.1.3; 4.1.4) then give us the origin of the mass of 2AI. 
For example object B is close to object A (so smaller inertial frame dragging and larger (a/r)2) 
and larger mass term x in 4.1.2 and so in 4.1.3. Also 2AI is off the diagonal so xdr>0 so 
CM=xdr=e so e/x=l=De Broglie and so eo/rH=De=4AI is larger than if object B was farther away. 
 In that regard recall that object B is outside the big 1011LY horizon so its state is still oscillatory 
in the eq.9 Heisenberg QM formulation for p for example T(t)|p>=p(t)> where T(t)=eiHt/h. Recall 
alternatively inside rH the i®1 so the time evolution is purely exponential, hence the r=roekt 

accelerating universe expansion discovered by Perlmutter et al in 1998. We did a radial 
coordinate transformation (sect.7.8) to the comoving observer frame and got 
ln(rM+1/rbb)+2=[1/(eµ-1)-ln[eµ-1]]2 which is locally still r=roekt but jumping by e and De and 
mixed state values (sect.4.2.4). The dyadic radial coordinate transformation of Too=e2 dyadic 
divided by me to that local coordinate system comoving with r=roekt gives “constant” gravity G 



(see Ch.12). So what the N+1th fractal scale observer sees as the electric field the Nth fractal 
scale observer sees as gravity. The dyadic angular transformation at our present r=rH gives 
coefficient 1/(1±e)2 (from 4.7.3). Mass is also time since 2GM/c2=invariant in sect.7.4 with G 
changing with time. So mass is also our clock time.    
 
6.7 Fractal Selfsimilarity And Object B Implications  
Given our dr frame of reference between our two fractal baseline scales separated by that 1040X 
scale jump we have that drdr<<dr =CM (subatomic) and dr<<dr’dr‘=C’M (cosmological, sect.4.1) 
in the context of the Kerr metric.  
Given object B decreases the effects of frame dragging and so accentuates the effect of the Kerr 
metric (a/r)2 term thereby creating a nonzero mass x in the goo of the Kerr metric: the self 
similarity between the two baseline scales implies that C’Mµ CM so that dr’dr’µdr and so:                                                    
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/
:
;
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6
/
,   dr=l,  v=dr/dt, m=x,    h=Kc/ds.      So 𝜆 = ]

J^
 (6.6.1)  

This result in the context of sect.1.1 (eq.1.1.15, mv/hºk=2p/l) allows you to interpret dr as a 
wave length l. So we defined both mass x and derived the De Broglie wavelength l and found 
the origin of Planck’s constant h and so found the origin of quantum mechanics and mass. 
 
Section 6.8 N+1 Fractal Scale Object B and C Rotation, Vibrational, Entangled State 
Transitions For r<rH                      
 In section 7.4 we do the radial coordinate transformation. In this section we do the 
transformation to the rotating frame allowed by object B. With object B close by there are two 
quantum states rotation  e and ground chiral state De just as you see in Raman spectra for a 
diatomic molecule and the entangled states. These are the lepton states 1.11 1.12 of section 1). 
So  w1®w2. and wo gets through at the cosmological rH boundary (i.e., rope not broke). So what 
was outside (object A cosmological object) as ordinary "diatomic" quantum states (t vibration 
E=hwo(N+1/2) and rotation e E=hw'oÖ(L(L+1)), wo>>w'o) is the metric quantization inside and 
also the entangled states. These are classical GR gravitational wves. 
  
6.9   3 Metric Quantization Levels From Object B 
Recall there are 3 main levels of metric quantization coming out of object B, the De,e,1 levels 
(i.e., electron, muon, tauon) arising from the QM ground state, rotation and vibration levels of 
object A with B that get through the rH boundary and also become GR metrics inside. This means 
that instead of that single GR single ambient metric rubber sheet there are 3 gij.   So  w1®w2. 
across the rH boundary so rotation and oscillation hw eigenstates are passed inside as metric 
quantization provided by object B as r®0: Metric disturbances cross the metric boundary and 
curved space unscattered just as light moves through magnetic and electric fields unscattered. 
 Alternatively, you could also say that object B gives the metric quantized energy levels De, e,  t 
analogous to carbon monoxide vibrational t and rotational e and ground state electron mass De  
energy levels.  
6.10 Multiple Applications Of The  eq.B6  
Ultrarelativistic Object B Also Source Of The Mexican Hat Potential  
Recall equation B6. Equation B6 



So from the fractal theory object B has to be ultrarelativistic (g =1836) for the positrons to have 
the mass of the proton. So the time behaves like mc2 energy: has the same gamma: t®to/Ö(1-
v2/c2)=KH since energy H=moc2 has the same g factor as time does. So in the eiHt of object B the 
Ht/h=(H/Ö(1-v2/c2))to/Kto= KH2=f2.   Define f=HÖK.  Note also ultrarelativistically that p is 
proportional to energy:  for ultrarelativistic motion E2=p2c2+mo2c4 with mo small so E=Kp. 
Suppressing the inertia component of the k thus made us add a scalar field f. Thus 
f’=p(t)=eiHt/h|po>=cos(Ht/h)=exp(iH2to/Kto)= exp(if2)=cos(f2)=f'=1-f4/2. Thus for a Klein 
Gordon boson we can write the Lagrangian as L= T-V=(df/dx)(df/dx)-f'2= (df/dx)(df/dx)-f'2= 
(df/dx)(df/dx)-i(1-f4)'2. Thus we define this Klein Gordon scalar field f=1.1.11  by itself from: 
v𝐷Hx

Cv𝐷H𝜙x −
6
9
𝜆v((𝜙C𝜙); − 𝑣;)x; Note in the covariant derivative 

 𝐷H𝜙 = B𝜗H + 𝑖𝑔𝑊H𝑡 + 𝑖𝑔′
6
;
𝐵HD 𝜙 

W is from our new pde S matrix. Need the Bµ of the form it has to make the neutrino charge 
zero. Need to put in a zero charge Z.  The B component is generated from the rH/r  and the 
structure of the B and A=W+B =𝐴H = 𝑐𝑜𝑠𝜃_𝐵H + 𝑠𝑖𝑛𝜃_𝑊H6is needed to both have a zero 
charge neutrino and nonzero mass electron. So Define 
𝐴H = 𝑐𝑜𝑠𝜃_𝐵H + 𝑠𝑖𝑛𝜃_𝑊H6 
𝑍H = −𝑠𝑖𝑛𝜃_𝐵H + 𝑐𝑜𝑠𝜃_𝑊H6 
The left handed doublet was given by the fractal theory (section 4.4) 
𝑙- = 9

𝑣`I
𝑒I : 

W is needed in W +B to bring in the epsilon ambient metric mass.  
Need to add the second term to the Dirac equation to give the electron mass. 

Λ𝐿- = 𝑒a𝑖𝛾Hv𝜕H − 𝑖𝑔′𝐵Hx𝑒a − 𝑓H(𝑙-𝜙- + 𝑒a𝜙𝑙-) 
Recall section 4.9 ambient metric requires division by (1+e+De+rH/r) to create the nontrivial 
ambient metric term 1±e.  
y(t)=eiHty(to)=ei(1+e+De)^2y(to). See partIII 
 
6.11 S States Are Point like Particles And P States Are Not Point Like Particles 
P States At r=rH 
Recall De is ultrarelativistic so integrating the 1.1.11+1.1.11+1.1.11(PartII) Fitzgerald 
contraction in the 2P state (L=1), r=rH gives (cosqºv/c=b),      q=90°                                                                  
                             rHòÖ(1-cos2q)cosqdq=rHòsinqcosqdq=rHsin2q/2=rH/2ºrHP   
so there is contraction by only a factor of 2 from the vantage point of the plane of rotation (From 
the axial perspective the radius is Fitzgerald contracted to near zero.). From part II. The e P state 
big radius:   rHPº2ke2/electron»2ke2/mec2 =2.817F =rH     
NS½  States at r=rH 
From equation 1.21         rL =rH/(mLc2)                Lepton rL                                            (6.11.2)                                                                 
Thus the object B:  S and P state metric quantization is the source of the tiny S state radius   
                                     eºrcºke2/(tauon+muon)»ke2/(mLc2) »10-18m                  (6.11.3)   
This explains why leptons (S states) appear to be point particles and baryons aren’t! 
 
                                                                                                                                                                       
6.12 kµn Metric: without the operator formalism so that then koo¹1/krr. 
 



Use metric a ansatz: ds2=-el(dr)2-r2dq2-r2sinqdf2+eµdt2 so that goo=eµ, grr=el. From equation 
Rij=0 for spherical symmetry in free space 
                              R11= ½µ”- ¼l’µ’+ ¼(µ’)2-l’/r =0               (6.4.7)                                                        
                              R22=e -l[1+½ r(µ’-l’)]-1=0     (6.4.8)                                                                     
                              R33=sin2q{e-l[1+½r(µ’-l’)]-1}=0                                                 (6.4.9)                                                          
                              Roo=eµ-l[-½µ”+¼ l’µ’-¼(µ’)2- µ’/r]= 0                                  (6.4.10) 
                              Rij=0 if i¹j                     
(eq. 6.4.7 -6.4.10  from pp.303 Sokolnikof): Equation 6.4.8 is a mere repetition of equation 6.4.9. 
We thus have only three equations on  and µ to consider. From equations 6.4.7;  6.4.10 we 
deduce that  
l’=-µ’ so that radial l=-µ+constant =-µ+C for our nonzero free space metric of section 4.4 
normalizing to one real dimension as in the postulate. So e-µ+C=el. Note C can be imaginary or 
real. Then 6.4.8 can be written as:                                                                            
                                                          e–Ceµ (1+rµ’)=1                                               (6.4.11)                          
Set eµ=g. So e-l =ge-C and so integrating this first order equation (equation.6.4.11) we get: 
                              g=-2m/r +eC ºeµ and e-l=(-2m/r +eC)e–C                                    (6.4.12) 
From equation 6.4.3 we can identify radial eC»1+2e with also rotational oblateness perturbation 
De already a component here (section 6.4). 
 koo=1-(C+C2/2+..))-2m/r; e-l=1/krr=1/(1-2m’/r);                                                  (6.4.13)     
Our new pde has spin S and so the self similar ambient metric on the N+1th fractal scale is the 
Kerr metric which contains rotations.                                           

               (6.4.14) 

where , 
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for z=1. To make this result consistent with ambient metric 6.4.12 at large r and make dr have 
the same 1+e dependence as (r^)2 we merely divide by 1-e as in 
 6

&2+1+E1231 (
𝑑𝑟; 9 6

65>
: = 6

&6' E1
231(

𝑑𝑟; 9 6
65>
:                                      (6.4.15)                                               

leaving the ground state De for z=1.   
For z=0 the Meisner effect implies  
 6
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Recall from sect.1.2 k00=(1-((CM/x1)/r)) (from eq.6.6.16).  Recall also x1=x2+x3+xo 

ºt+µ+meº1+e+De, with x1 big and xo both stable and small. Also recall from sect.1.2 that x2, x3, 
xo all spin ½ and xo the ground state. C= CM/x1 
From eq.1.2.7 and eq,8.2 E=1/Ökoo so E=x1/Ö(1-(CM/x1)/r).   We normalize to the Coulomb 
interaction potential energy by multiplying by x1 =tauon+muon+electron and then get the 
electron energy contribution by subtracting off the tauon and muon contributions. From eq.1.2.32 

 𝐸- =
;()FG(#+DG(#)

6

<65&4@&

+ 2𝑚-/2 − 2(𝑡𝑎𝑢𝑜𝑛 +𝑚𝑢𝑜𝑛 + 𝑃𝐸t+ 𝑃𝐸𝜇)/2                  (6.11.4)                                                                                                                                              

Note the PE=e2/2r potential for the electron since it is orbiting the Hydrogen atom proton 
mv2/r=ke2/r2 so KE=½mv2= (½)ke2/r =PE in PE+KE=E. So for the electron (but not the tauon or 
muon who are not in this orbit) PE=(½)ke2/r. Note all we did in 6.11.4 is to write the hydrogen 
energy and pull out the electron contribution. Also recall the 2,0,0 state hydrogen eigenfunction  
y2,0,0=(1/(2ao)3/2(1-r/(2ao))e-r/2ao.  
Variation d(Ey*y)=0 At r=n2ao  
Next note the y2,0,0 eigenfunction variation in energy is equal to zero at maximum y*y 
probability density where for the hydrogen atom is r=n2ao=4ao.  Also from 1.2.1 and eq. 4.4.1: 
rH’=(1+1+.5)2e2/(mt+mµ+me)/2=2.5e2/(mpc2). mLc2 =(mt+mµ+me)=2mpc2 normalizes ½ke2: 

𝐸- =
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=hf=6.626X10-34 27,360,000 so that f=27MHz 
 
 
6.13 Why Does The Ordinary Dirac Equation (kµn=constant) Require Infinite Fields? 



Note from section 1.3.2 that   kµn=possibly nonconstant. So it does not have to be flat space, 
whereas for the standard Dirac equation gµn=constant in eq. 4.2.1.   Also eq.9 has closed form 
solutions (eg. section 4.9), no infinite fields required as we see in the above eq.6.12.1. So why 
does the mainstream solution require infinite fields (caused by infinite charges)? To answer that 
question recall the geodesics Gmijvivj give us accelerations, with these vk s limited to <c. Recall 
gij also contains the potentials (of the fields) Ai. We can then take the pathological case of ògij 
=òA=¥ in the S matrix integral context and ¶gik/¶xj=0 since the mainstream (circa 1928) Dirac 
equation formalism made the gij constants in eq.4.2.1. Then Gmijº(gkm/2)(¶gik/¶xj+¶gjk/¶xi-
¶gij/¶xk) =(1/0)(0)=undefined, but not zero. Take the ¶gik/¶xj to be mere 0 limit values and then 
Gabg becomes finite then. Furthermore 9.13  (Coulomb potential) would then imply that Ao=1/r 
(and U(1)) and note the higher orders of the Taylor expansion of the Energy=1/(1-1/r) term (=1-
1/r+(1/r)2-(1/r)3...(geometrical series expansion) where we could then represent these n th order 
1/rn  terms with individual 1/r Coulomb interactions accurate if doing alternatively Feynman 
vacuum polarization graphs in powers of 1/r). Also we could subtract off the infinities using 
counterterms in the standard renormalization procedure. Thus in the context of the S matrix this 
flat space-time could ironically give nearly the exact answers if pathologically òA=¥ and so we 
have explained why QED renormalization works! Thus instead of being a nuisance these QED 
infinities are a necessity if you mistakenly choose to set rH=0 (so constant kij).                                                                          
But equation 1.2.4 is not in general a flat space time (i.e.,.in general kµn¹constant) so 
 we do not need these infinities and the renormalization and we still keep the precision 
predictions of QED, where in going from the N+1th fractal scale to the Nth fractal scale  
rH=2GM/c2®2e2/mec2 See sect.3.9  and Ch.1.2.4 where we calculate the Lamb shft and 
anomalous gyromagnetic ratio in closed form from our eq.1.24 energy 1.21: E=1/Ökoo=1/Ö(1-
rH/r+De) (Ch.3.9) and the square root in the separable eq.1.2.4 (Ch.1.2.4 and section 6.12 for 
Lamb shift calculation without renormalization.). 
 
 Metric quantization (and C) As A Perturbation Of the Hamiltonian 
Hoy=Enyn 

for normalized yns. We introduce a strong local metric perturbation H’=DG due to motion through 
matter let’s say so that:   
H’+H=Htotal  where H ºDG is due to the matter and H is the total Hamiltonian due to all the types 
of neutrino in that HM+1 of section 4.6.H’=C2. Because of this metric perturbation  
y=SaiyIi=orthonormal eigenfunctions of Ho. |ai|2 is the probability of being in the neutrino state i. 
The nonground state ais would be (near) zero for no perturbations with the ground state energy ai 
(electron neutrino) largest at lowest energy given for ordinary beta decay for example. Thus the 
passage through matter creates the nonzero higher metric quantization states (i.e., H’ can add 
energy) with:  
ak=(1/(ħi)òH’lkeiwlktdt 
wlk =(Ek– El)/ħ 
Thus in this way motion through matter perturbs these mixed eigenstates so that one type of 
neutrino might seemingly change into another (oscillations). 
 
Pure States From 1.1.11+1.1.11+1.1.11 Equation 6.13.2 (Also see Part II of This Book) 



Instead of the (hybrid) mixed metric quantization state 1/Ö(De+e) of sect.6.13 we find the masses 
of the pure states 1/ÖDe and 1/Öe individually in the bound state 1.11+1.11+1.11 (or 1.11+1.11) 
at r=rH of part II so that 1-rH/r=0 in 6.13.2 (rH =Nth fractal scale, our subatomic scale). 
 Note these are not the free particle pure states De (electron) and e (muon) giving also the 
galactic halo constant stellar velocities. 
eiDe ®1/[Ö(1-De-rH/r)](1/(1±e))=(1/ÖDe)(1/(1±e) =mass of  W,Z i.e., ^same as Paschen Back: 
EZ=BuB(0+1+1+1)) (fixes the value of the LS coupling coefficient) 
eie ®1/[Ö(1-e-rH/r)](1/(1±e))=(1/Öe)(1/(1±e)= mass of         p±, po. || Paschen Back 
                 Fixes the value of the LS coupling coefficient  
 
6.14 More Implications of The Two Metrics Of Equation 1.18 Of 1.19 and  
Eq.11.2 Gaussian Pillbox Approach To General Relativity  
From equation 11.2 the koo=1-rH/r all the comoving observers are all at r=rH so that only 
circumferencial motion is allowed with the new pde zitterbewung creating some radial motion 
dr’/ds. Also dr’2=krrdr2=[1/(1-rH/r)]dr2 so that the dr’ space inside this volume is very large. See 
equation B8 in section B3. The effect of all this math is to flip over rH/r in the Schwarschild 
metric to r/rH in the De Sitter metric (see discussion of eq.11.2) at r=rH:     
                                         ds2=-(1-r2/α2)dt2+(1-r2/α2)-1dr2+ dW2n-2                                (6.14.1)                           
which also fulfills the fundamental small C requirement of eq.1.1.14  Dirac equation 
zitterbewegung (for r<rC and r»rH) and the eq.1.1.10 Minkowski metric requirement for a=1. It 

also keeps our square root  m𝜅QQ = S1 − /4
/
®S1 − /6

/46
   real. Given the geometric structure of 

the 4D De Sitter submanifold surface we must live on a 4D submanifold hyperspace in this many 
point limit. So inside rH for empty Gaussian Pillbox (since everything is at rH)                                                          
 Minkowski ds2=-dxo2+Si=1n dxi2                                                                                                              
Submanifold is –x02+Si=1nxi2=α2                                                                                                                
In static coordinates r,t :     (the new pde harmonic coordinates for r<rH)                                                                                                                    
xo=Ö(α2-r2)sinh(t/α):                                                                            (6.14.2)                                                                                                        
x1=Ö(α2-r2)cosh(t/α):                                                                                                                                          
xi= rzi        2≤i≤n     zi is the standard imbedding n-2 sphere. Rn-1. which also imply the De Sitter 
metric 6.14.3. Recall from eq. 6.13.6                                                                                              
ds2=-(1-r2/α2)dt2+(1-r2/α2)-1dr2+ dW2n-2                                                 (6.14.3)                                                          
a®ia, r®ir   Outside is the Schwarzschild metric to keep ds real  for r>rH  since rH is fuzzy 
because of objects B and C. 
For torus (x2+y2+z2+R2-r2)2=4R2(x2+y2).  R=torus radius from center of torus and r=radius of 
torus tube. 
Let this be a spheroidal torus with inner edge at so r=R. If also x=rsinq, y=rcosq, q=wt from the 
new pde 
Define time from 2R=t you get the light cone for a®ia in equation 6.14.2. 
x2+y2+z2-t2=0 of 6.14.1 with also (x=rsinq, y=rcosq) ® 
(x=Ö(α2-r2)sinh(t/α), y=Ö(α2-r2)cosh(t/α)), a®ia.  So to incorporate the new pde into the 
Gaussian pillbox inside we end up with a spheroidal torus that has flat space geodesics.  
  Note on a toroid surface two parallel lines remain parallel if there was no expansion. So you 
have a flat space which is what is what is observed.  The expansion causes them to converge for 



negative t. Note the lines go around the spheroidal toroid back to where they started, have the 
effect on matter motion of a gravimagnetic dipole field. 
You are looking at yourself in the sky as you if you were a baby (370by ago that is). The sky is a 
baby picture of YOU! 
The problem is that you are redshifted out to z=infinity so all you can see of your immediate 
vicinity (within 2byly that is) is the nearby galaxy super clusters such as the Shapely 
concentration and Perseus Pisces with lower red shifts.  
So these superclusters should have a corresponding smudge in the CBR in exactly the opposite 
direction! I checked this out. The radial component r =rM+1 in 6.14.1 is still a function of that rbb 
mercuron radius in  ln (rM+1/rbb)+2=[1/(eµ-1)-ln[eµ-1]]2.  
Also the koo=1-r2/rH2 in 6.14.1 (instead of the external observer koo=1-rH/r) in E=1/Ökoo in 
looking outward (internal observer) at the cosmological oscillation from the inside (r<rH) implies 
that the longer the wavelength the higher the energy cosmological “photons”. So small 
wavelength cosmological oscillations (eg., object C De Period=2.5My) have much smaller 
effects than the larger wavelength oscillations (eg., e Period=270My). 
                                                                                                                                   
Note the sine wave has a period of 10trillion years and we are now at 370billion years, near q=-
p/2 in r=rosinq where the upswing is occurring and so accelerating expansion is occurring. This 
is where we start out at in the sect.7.3 derivation. Since the metric is inside r<rH it is also a 
source as we see in later section 5.4 
 
Observations Inside Of rH 
 The metric quantization pulses ride the metric like sound waves moving in air, including going 
in straight lines in our toroidal universe. That means that when we look in the direction of object 
B using nearby metric quantization effects, like galaxies falling into a compression part of the 
vibration wave, which also organizes galaxy clusters as in the Shapely and Perseus-Pisces 
concentration, we are looking in straight lines at least for local superclusters (<2BLY) and so are 
actually looking in the direction of object B.  But the CBR E&M radiation that is bent by strong 
gravity follows that toroidal path and so you really are looking at the (red shifted) light coming 
from yourself as you formed 370BY ago in this expanding frame of reference.  
So the direction to the nearby galaxy clusters, even out to the Shapely concentration, is  metric 
quantization dependent so we have straight line observation, but the CBR follows the curved 
space and so the galaxy superclusters we see in a given direction have CBR concentration 
counterparts in exactly the opposite direction. Note distant galaxy clusters are also not seen along 
straight lines, but lines on that spherical torus. So you only see hints of the actual directions of 
object B, of the object A electron dipole, etc. for relatively nearby superclusters. 
  The spherical torus Bg gravimagnetic dipole shape comes from the rotational motion implied 
by the new pde (from eq.1.11). Recall the new pde applies to dipole Bg field and spin motion; 
The electron has spin as you know. The new pde spherical torus is applied on top of a 
Minkowski space-time inside rH because the Gaussian pillbox does not (usually) contain 
anything if its radius is smaller than rH. So astronomers really are observing the inside of an 
electron (i.e.,what comes out of the new pde) in this fractal model! 
 
 
 



6.15 Relevance (Of These Two Metrics Of Section 1.1.5) to Shell Model of The Nuclear 
Force Just Outside rH 
Note my model is a flat de Sitter a®ia inside rH and perturbed Schwarzschild (i.e.,Kerr) just 
outside, the two metrics of section 1.4 and Part II (on 1.11+1.11+1.11) above.  The transition 
between the two is quite smooth. So at about rH we have a force that gets stronger as r increases. 
But this is what the simple harmonic oscillator does in this region. So my model gives the simple 
harmonic oscillator (transition to Schwarzschild metric) and the flat part inside that the Shell 
model people have to arbitrarily have to adhoc put in (they call it the flattening of the bottom of 
the simple harmonic potential energy). Anyway, the above fractal theory explains all of this. 
Also the object B perturbation metric is a perturbative Kerr rotation.  
 
7 Comoving Coordinate System: What We Observe Of The Ambient Metric 
7.1 Comoving Coordinate System  
Here we multiply eq. 1.16 result py=-i¶y/¶x by y* and integrate over volume to define the 
expectation value: 
                                         òy*pxydVº <px>=<p,t|px|p,t> of px.                                 (7.1.1) 
  In general for any QM operator A we write  <A>=<a,t|A|a,t>. Let A be a constant in time (from 
Merzbacher, pp.597). Taking the time derivative then:   

 

= =    º[H,A]                                         

In the above equation let A=a, from equation 9 Dirac equation Hamiltonian H, [H,a]=i da/dt  
(Merzbacher, pp.597).  
The second and first integral solutions to the Heisenberg equations of motion (i.e., above  
[H,a]=i da/dt) is:        r=r(o)+c2p/H+ (hc/2iH)[e(i2Ht/h)-1](a(0)-cp/H).                 (7.1.2) 
                                               v(t)/c=cp/H +e(i2Ht/h)(a(0)-cp/H) 
Note there is no Klein paradox at r<Compton wavelength in this theory and also Schrodinger’s 
1930 paper on the lack of a zitterbewegung does not apply to a region smaller than the Compton 
wavelength. So the above zitterbewegung analysis does apply in that region. The Ökoo = Ö(1-rH/r) 
modifies this a little in that from the source equations for kµnyou also need a feed back since the 
field itself, in the most compact form, also is a eq.4.4.1.  Goo energy density (source). 
 
7.2 r<rH ewt -1 Coordinate transformation of Zµn: Gravity Derived 
Summary: 
Fractal Scale Content Generation From Generalized Heisenberg Equations of Motion 
Specifically C in equation 1 applies to “observable” measurement error. But from the two 
“observable” fractal scales (N,N+1) we can infer the existence of a 3rd next smaller fractal N-1 
scale using the generalized Heisenberg equations of motion giving us 
 (¶xoN)/¶xoN+1) (¶xoN)/¶xoN+1)TooN-TooN=TooN-1                                                                           (7.2.3) 
which is equation 7.4.4 below.  Thus we can derive the content of the rest of the fractal scales by 
this process. 
 
7.3 Derivation of The Terms in Equation 7.2.3 
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For free falling frame no coordinate transformation is needed of source Too. For non free falling 
comoving frame with N+1fractal  eq.1.1.24  motion we do need a coordinate transformation to 
obtain the perturbation DT of Too caused by this motion (in the new coordinate system we also 
get 5.1.2: the modified Rij=source describing the evolution of the universe 
 ln(rM+1/rbb)+2=[1/(eµ-1)-ln[eµ-1]]2 in our own coordinate frame).      

 
7.4 Dyadic Coordinate Transformation Of Tij In Eq. 7.2.3 eq., 1.2.31 Frame of Reference                                                                        
Given N+1 fractal cosmological scale (Who just sees the Too) frame of reference we then do a 
radial dyadic oordinate transformation to our Nth fractal scale frame of reference so that 
Too®Too'=Too+dToo.ºToo+Goo (Section 7.4 attachment). 
The Dirac equation object has a radial center of mass of its zitterbewegung. That radius expands 
due to the ambient metric expansion of the next larger N+1th fractal scale (Discovered by 
Slipher. See his above instrumentation). We define a Zoo E&M energy-momentum tensor 00 
component replacement for the Goo Einstein tensor 00 component. The energy is associated with 
the Coulomb force here, not the gravitational force. The dyadic radial coordinate transformation 
of Zij associated with the expansion creates a new zoo. Thus transform the dyadic Zoo to the 
coordinate system commoving with the radial coordinate expansion and get Zoo®Zoo+zoo 
(section 3.1). The new zoo turns out to be the gravitational source with the G in it. The mass is 
that of the electron so we can then calculate the value of the gravitational constant G. From Ch.1 
the object dr as see in the observer primed nonmoving frame is:     dr=Ökrrdr’= 
Ö(1/(1+2e))dr’=dr’/(1+e).  1/Ö(1+.06)=1.0654. Also using S½ state of equation 1.21. 
e=.06006=mµ+me 
From equation 11.4 and eiwt oscillation in equation 11.4. w=2c/l so that one half of  l equals the 
actual Compton wavelength in the exponent of section 4.11. Divide the Compton wavelength 
2prM by 2p to get the radius rM so that rM=lM/(2(2p))= h/(2mec2p)= 6.626X10-34/(9.1094X10-

31X2.9979X108X4p)=1.9308X10-13    
From the previous chapter the Heisenberg equations of motion give eiwt oscillation 
(zitterbewegung) both for velocity and position so we use the classical harmonic oscillator 
probability distribution of radial center of mass of the zitterbewegung cosine oscillation lobe.  So 
the COM (radial) is: xcm= (åxm)/M= =òòòr3cosrsinqdqdfdr/(òòòr2cosrsinqdqdfdr)  =1.036. As a 
fraction of half a wavelength (so pphase) rm we have          1.036/p=1/3.0334             (7.4.1) 
Take Ht=13.74X109 years=1/2.306X10-18/s. Consistent with the old definition of the 0-0 
component of the old gravity energy momentum tensor Goo we define our single S½ state particle 



(E&M) energy momentum tensor 0-0 component From eq.3.1 Zoo  we have:  c2Zoo/8pºe =0.06,. 
e=½Öa=square root of charge.     
Zoo/8pºe2/2(1+e)mpc2=8.9875X109(1.6X10-19)2/(2c2(1+e)1.6726X10-27)=0.065048/c2       
Also from equation 1.24 the ambient metric expansion component Dr is:     
                                                   eq.1.12 Dr=rA(ewt-1)   .                                         (7.4.2) 
To find the physical effects of the equation 11.4 expansion we must do a dyadic radial coordinate 
transformation (equation 7.4.3) on this single charge horizon (given numerical value of the 
Hubble constant Ht= 13.74 bLY in determining its rate) in eq.4.2. In doing the time derivatives 
we take the w as a constant in the linear t limit: 

with in particular Zoo→Z’ooºZoo+zoo                                               (7.4.3) 

After doing this Z’oo calculation the resulting (small) zoo is set equal to the Einstein tensor gravity 
source ansatz Goo=8pGme/c2 for this single charge source me allowing us to solve for the value of 
the Newtonian gravitational constant G here as well. We have then derived gravity for all mass 
since this single charged me electron vacuum source composes all mass on this deepest level as 
we noted in the section 4.2 discussion of the equivalence principle. Note Lorentz transformation 
similarities in section 2.3 between r=ro+Dr and ct=cto+cDt using   for 
v<<c with just a sign difference (in 1-D, + for time) between the time interval and displacement 
D interval transformations. Also the t in equation 10.2 and therefore 12.3 is for a light cone 
coordinate system (we are traveling near the speed of light relative to t=0 point of origin) so 
c2dt2=dr2 and so equation 11.4 does double duty as a r=ct time xo’ coordinate.  Also note we are 
trying to find Goo (our ansatz) and we have a large Zoo. Also with Zrr<<Zoo we needn’t 
incorporate Zrr. Note from the derivative of ewt-1 (from equation 11.4) we have slope=(ewt-
1)/Ht=wewt. Also from equation 2AB we have d(r)= d(ro(ewt-1))= (1/(ewt-1))d(ro). Plugging values 
of equation 7.4.1 2 and 7.4.2 and the resulting equation 4.7.1 into equation 7.4.3 we have in S½ 
state in equation 4.3: 

,  (7.4.4)                                                             

        

 

(Recall 3.03 value from eq.7.4.1.) So setting the perturbation zoo element equal to the ansatz and 
solving for G:    
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Make the cancellations and get:                  
 2(.065048)[( 1.9308X10-13/(3X108X9.11X10-31X3.0334(1+.0654))] (2.306X10-18) = 
=2(.065048)(2.2X108)(2.306X10-18)  = 6.674X10-11 Nm2/kg2ºG   (7.4.5)   
from plugging in all the quantities in equation 7.4.5. This new zoo term is the classical 
8pGr/c2=Goo source for the Einstein’s equations and we have then derived gravity and 
incidentally also derived the value of the Newtonian gravitational constant since from our 
postulate the me mass (our “single” postulated source) is the only contribution to the Zoo  term. 
Note Dirac equation implies +E and -E solutions for –e and +e respectively and so in equation 
7.4.5 we have e2=ee=q1Xq2 in eq.7.4.5. So when G is put into the Force law Gm1m2/r2 there is an 
additional m1Xm2 thus the resultant force is proportional to Gm1m2 =(q1Xq2)m1m2  which is 
always positive since the paired negatives always are positive and so the gravitational force is 
always attractive.  
Also recall in the free falling frame (So comoving with M=me so is constant) fractal scale for 
ke2/((GM’)M) =1040 fractal jump, ke2/(mec2)=ke2/(Mc2) is also constant so if G is going up (in 
7.4.4) then M’ is going down. Note then rH=ke2/(mec2)®1040XrH=rH(N+1)= 
=GM’me/(mec2)=GM’/c2=famous Schwarzchild radius. 
To summarize we have then just done a coordinate transformation to the moving frame to find the 
contributing fields associated with the moving frame. Analogously one does a coordinate 
transformation to the charge comoving frame to show that current carrying wires have a magnetic 
field, also a ‘new’ force, around them. Also note that in the second derivative of eq.7.1.2 d2r/dt2 
=row2ewt= radial acceleration. Thus in equations 7.1.4 and 7.1.5 (originating in section 4) we 
have a simple account of the cosmological radial acceleration expansion (discovered recently) 
so we don’t need any theoretical constructs such as ‘dark energy’ to account for it. 
If ro is the radius of the universe then row2ewt»10-10m/sec2=aM is the acceleration of all objects 
around us relative to a inertial reference frame and comprises a accelerating frame of reference. If 
we make it an inertial frame by adding gravitational perturbation we still have this accelerating 
expansion and so on. Thus in gravitational perturbations naM=a where n is an integer. 
Note below equation 7.4.5 above that t=13.8X109years and use the standard method to translate 
this time into a Hubble constant. Thus in the standard method this time translates into light years 
which are 13.8X109/3.26 =4.264X109 parsecs= 4.264X103 megaparsecs assuming speed c the 
whole time. So 3X105km/sec/4.264X103 megaparsecs = 70.3km/sec/megaparsec= Hubble’s 
constant for this theory. 
7.5 Metric Quantized Hubble Constant 
    Metric quantization 4.2.3 means (change in speed)/distance is quantized. Given  6billion year 
object B vibrational metric quantization the radius curve  
 ln(rM+1/rbb)+2=[1/(eµ-1)-ln[eµ-1]]2 is not smooth but comes in jumps.  
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 I looked at the metric quantization for the 2.5My metric quantization jump interval using those 3 
Hubble "constants" 67,  70,  73.3  km/sec/megaparsec. 
 Recall that for megaparsec is 3.26Megalightyear=(2.5/.821)Megalightyear. 
But 2.5 million years is the time between one of those metric quantization jumps.  
So instead of the 3 detected Hubble constants 67km/sec/megaparsec and 70km/sec/megaparsec 
and 73.3km/sec/megaparsec we have 
81.6km/sec/2.5megaly,  85.26km/sec/2.5megaly,  89.3km/sec/2.5megaly. the difference between 
the contemporary one, the last and the two others then is 
 
89.3km/sec/2.5megaly- 85.26km/sec/2.5megaly,=4km/sec/2.5megaly 
and 89.3km/sec/2.5megaly- 89.3km/sec/2.5megaly=8km/sec/2.5megaly. 
So the Hubble constant, with refernence to the 2.5my metric quantization jump time, appears 
quantized in units of 4km/sec,8km/sec, etc. Other larger denominator „averages“ are not 

accurate.  
 
                           7.6 Cosmological Constant In This Formulation 
In equation 4.6 rH/r term is small for r>>rH  (far away from one of these particles) and so is  
nearly  flat space since e and De are small and nearly constant. Thus equation 6.4.5 
can be redone in the form of a Robertson Walker homogenous and isotropic space time.  Given 
(from Sean Carroll) the approximation of a (homogenous and isotropic) Robertson Walker form 
of the metric we find that: 

 

L=cosmological constant, p=pressure, r=density, a =1/(1+z) where z is the red shift and ‘a’ the 
scale factor. G the Newtonian gravitational constant and a” the second time derivative here using 
cdt in the derivative numerator. We take pressure=p=0 since there is no thermodynamic pressure 
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on the matter in this model; the matter is commoving with the expanding inertial frame to get the 
a” contribution. The usual 10 times one proton per meter cubed density contribution for r gives 
it a contribution to the cosmological constant of 4.7X10-36/s2.  
Since from equation 7.6.1 a=ao(ewt-1) then a” = (w2/c2 )sinhwt=a(L/3)= (L/3)sinhwt and there 
results:  
 L=3(w2/c2 ) 
From section 7.4 above then w=1.99X10-18 with 1 year=3.15576X107 seconds, also c=3X108 
m/s. So:  
L= 3(w2/c2)=1.32X10-52 /m2,  which is our calculated value of the cosmological constant. 
Alternatively we could use 1/s2 units and so multiply this result by c2 to obtain:   
1.19X10-35/s2. Add to that the above matter (i.e.,r) contributions to get L=1.658X10-35/s2 
contribution.  
7.7 
Note that we have thereby derived the Newtonian gravitational constant G by using a  radial 
coordinate transformation of the Too =e2d(0) charge density component to the coordinate system 
commoving with the expansion of the N+1 th fractal scale  (cosmological). 
Note that our new force we derived was charge and mass independent but the old force was 
charge dependent. Also note that the new force metric has universal geodesics that even curve 
space for photons. The old one had a q in the kij (chap.17). If q=0 as with the photon there would 
be no effect on the trajectory of the photon whereas the same photon moving near a gravitational 
source would be deflected.  Recall again this is all caused by the taking of the derivative in the 
above coordinate transformation. 
So as a result of this coordinate transformation photons are deflected by the N+1 fractal scale 
metric and area not deflected by the Nth scale metric.  
Also the GM does not change in the commoving coordinates for the same reason as the speed of 
light does not change as you enter a black hole, your watch slows down because of GR to 
compensate. 
References 
Merzbacher, Quantum Mechanics, 2nd Ed, Wiley, pp.597 
7.8 Comoving Interior Frame 
Recall from solution 2 (section 1.2) that the new pde zitterbewegung E=1/Ökoo energy smudged 
out r=<roeiw t > with w®iw inside rH. so m r=sinhwt. Do a coordinate transformation (Laplace 
Beltrami) to the coordinate system of the r>rH commoving observer (us) and that equation pops 
right out.  
 
 The Origin of that Mercuron. 
My new pde uses a source term koo in the external inertial reference frame. In contrast for the 
comoving term the field itself can be the origin of the field, especially near the time of the big 
bang so I must transform to the comoving coordinate system to derive the fields the comoving 
observer measures. 
In that context in the commoving De Sitter metric reference frame inside rH we are not in free 
space anymore with instead the source term as   the multiple of the Laplacian of the metric tensor 
in harmonic local coordinates (recall the Dirac eq.) whose components satisfy Ricci tensor = Rij 
=-(1/2)D(gij)  where D is the Laplace-Beltrami second derivative operator  is not zero. 
Geometrically, the Ricci curvature is the mathematical object that controls the growth rate of the 
volume of metric balls in a manifold. Note also the second derivative (Laplacian) of sinwt is –



w2sinwt. Also recall that inside rH so that r<rH, then sinwt->sinhwt, which is rewritten as sinhµ to 
match with  R22=e -n[1+½ r(µ’-n’)] with  µ=n (spherical symmetry). So the de Sitter metric 
submanifold is itself the source of this R22 which is a nontrivial effect in the very early, 
extremely high density, universe.     
I solved this R22 equation and got          ln (rM+1/rbb)+2=[1/(eµ-1)-ln[eµ-1]]2  
That Mandelbrot set Lepton analysis (appendix C) implies that u is the muon contribution (as 
a fraction of the tauon mass). Set rM+1 =1011LY and get rbb (radius of Big Bang) of about 
30million miles, approximately the size of Mercury's orbit (hence the "Mercuron"), a large 
enough volume to just pack together those 1082 electrons (With 3 each a proton) at r=rH 
separation.  
Given these protons we do not require protogenesis and we also have an equal number of 
particles and antiparticles(proton 2e+,e-; extra e-). The rotation gives us CP violation since t 
invariance is broken in the Kerr metric. This formula predicts an age of 370by explaining these 
early supermassive black holes (they had plenty of time to accrete) and the thermodynamic 
equilibrium required to create the black body CBR: all these modern cosmological 
conundrums are solved here 
 
Recall we start out in the new pde external frame of reference that observes the Schwarzchild 
metric  with perturbative rotation. Furthermore at r=rH we the Schwarzchild metric appears to 
the comoving observer as a De Sitter universe. But in the  commoving De Sitter metric reference 
frame inside rH we are not in free space anymore so  the multiple of the Laplacian of the metric 
tensor in harmonic local coordinates whose components satisfy Rij =-(1/2)D(gij)  where D is the 
Laplace-Beltrami second derivative operator  is not zero. Geometrically, the Ricci curvature is 
the mathematical object that controls the growth rate of the volume of metric balls in a manifold 
Note the second derivative (Laplacian) of sinwt is –w2sinwt. Also recall that inside rH so that 
r<rH, then sinwt®sinhwt, which is rewritten as sinhµ to match with R22=e -l[1+½ r(µ’-n’)] with  
µ=n (spherical symmetry) and µ’=-n’. So the de Sitter metric submanifold is itself the source of 
this R22 which is a nontrivial effect in the very early, extremely high density, universe.  (Note 
that the contemporary G calculation in Ch.12 just uses the de Sitter sinhµ (just as in Ch.12 
coordinate transformation because this feedback effect no longer is dominant in this era).  So the 
usual spherically symmetric:  
R22=e -l[1+½ r(µ’-n’)]-1=0 ® de Sitter metric coshµ=1, itself is the source, comoving coordinate  
R22=e -l[1+½ r(µ’-n’)]-1=-sinhµ   (A) 
Use metric a ansatz: ds2=-en(dr)2-r2dq2-r2sinqdf2+eµdt2 so that goo=eµ, grr=en. From Rij=0 for 
spherical symmetry in free space 
                              R11= ½µ”- ¼n’µ’+ ¼(µ’)2-n’/r =0               (6.4.7)                                                        
                              R22=e -n[1+½ r(µ’-n’)]-1=0     (6.4.8)                                                                     
                              R33=sin2q{e-n[1+½r(µ’-n’)]-1}=0                                                 (6.4.9)                                                          
                              Roo=eµ-l[-½µ”+¼ n’µ’-¼(µ’)2- µ’/r]= 0                                  (6.4.10) 
                              Rij=0 if i¹j                     
(eq. 6.4.7 -6.4.10 from pp.303 Sokolnikof): Equation 6.4.9 is a mere repetition of equation 6.4.8. 
We thus have only three equations on n and µ to consider. From equations 6.4.7;  6.4.10 we 
deduce that  n’=-µ’. Here we consider the possibility of a large ambient metric C µ=n+C and 
fractal selfsimilar comoving frame with Laplace-Beltrami -sinhu rotation (Kerr 
perturbation) R22 source as observed internally to rH. 



R22=e -n[1+½ r(µ’-n’)]-1=-sinhn=(-(en- e-n)/2),   n’=-µ’ so 
e -µ[-r(µ’)]=-sinhµ-e-µ+1=(-(-e-µ+ eµ)/2)-e-µ+1=(-(e-µ+eµ)/2)+1=-coshµ+1. So given n’=-µ’ 
e -n[-r(µ’)]= 1-coshµ. Thus 
e -µr(dµ/dr)]=1-coshµ   
This can be rewritten as:                              eµdµ/(1-coshµ)=dr/r                                 (B) 
The integration is from x1= µ=e=1 to the present day mass of the muon= .06 (X tauon mass). 
Integrating equation B from  e=1 to the present e value we then get:                          
ln(rM+1/rbb)+2=[1/(eµ-1)-ln[eµ-1]]2            (7.8.1) 
the equation that gives the comoving observer time evolution of the universe. The equation 
works near the min of the sinusoidal oscillation where we are slightly inside rH. 
 
Also Spherical Bessel Function Oscillation Nodes Inside Mercuron 
Given µ is the muon mass 7.4.4 in equation 7.8.1 the smallest radius of this oscillation period is 
about the radius of that Mercuron). Because of object B rotational energy 51 radial oscillation  
(270My into 14BY) nodes also exist in the Mercuron creating (4p/3)(51)3=5.5X105 (gravitational 
wave spherical Bessel function nodes with Mercuron surface boundary conditions creating the) 
voids we see today. Note these voids thereby have reduced G in them and are local higher rates 
of metric gij expansion regions. GM is invariant. The Sachs Wolfe effect then creates the 
resulting CBR inhomogeneities. 
Fortran Program for Eq.7.8.1 
        program FeedBack 
        DOUBLE PRECISION e,ex,expp,rM1,rd,rb,rbb,uu,u11,den,eu1,u 
        DOUBLE PRECISION NN,enddd,bb,ee,rmorbb,Ne,rr 
        INTEGER N,endd 
        open(unit=10,file='FeedBack_m',status='unknown') 
        !FeedbackEquation 
        !e^udu/(1-coshu)=dr/r                                  
        !ln(rM+1/rbb)+2=[1/(e^u-1)-ln[e^u-1]]2   
        e=2.718281828 
        u11=.06 
        endd=100 
        enddd=endd*1.0 
        uu=.06/enddd 
        Ne=1000.0 
        Do 1000 N=100,1000 
        Ne=Ne-1.0 
        rr=n/100.0 
        rbb=30.0*(10.0**6)*1600.0 
        rbb=1.0 
       ! rd=2.65*(10**13) 
        u=Ne*uu 
        eu1=(e**u)-1.0 
        ex=(2.0/eu1)-(2.0*LOG(eu1))-2.0 
        expp=(ex) 
        rM1=(e**expp)*rbb  !ln logarithitnm 
        rM1=e**ex 
        !rMorbb 
        !bb=log(ee)  
        if (ex.GT.36.0)THEN 
        goto 2001 
        endif 
        write(10,2000) rr,rM1 
 1000   CONTINUE 
 2000   format(f7.2,1x,1x,1x,f60.6) 
 2001   end 

Sin(1-u)=r  gives the same functionality as the above program does for µ»1 the sin(1-µ) 



And the sine: sin(1-µ)»sinh(1-µ). For larger 1-µ we must use 1-µ®i(1-µ) given sect 5.2 
harmonic coordinates from the new pde in the sine wave bottom.  

 
Recall object B is close by so we must include the small Kerr metric oblation term acosq=.9602 
in rbb2 = r2+a2cos2q that gives an added De when it is inserted.  
So substituting into ln (rM+1/rbb)+2=[1/(eµ-1)-ln[eµ-1]]2 using the rbb value=~30M miles to the 
present rM+1= 13.7X109LY value for the case with and without the oblation term gives 
ln(rM+1/rbb)=36.06  and current value e=.06, and De=.00058 from  the oblation term. Thus the 
present day mass of the muon gives us the size of the universe at the time of the big bang, it was 
not a point! Note that (from appendix A) all the 1081 baryons at rH            (~10-15m) separation 
were packed into this (4p/3)rbb3 volume and so not violating baryon number conservation since 
from this fractal theory these objects originated from a previous collapse. Thus we do not need to 
be concerned with baryogenesis because the baryons survived the big bang. Equation B implies 
that the commoving time turns out to be 370by. So the universe is not 13.7by old but 370by. This 
long of time explains the thermalization of the CBR and the mature looking galaxies and black 
holes at 13by ago. The contemporaneous tangent line intersection with the r axis for r=roekt gives 
the 13by. 
Thus we have derived the values of the free lepton masses in our new pde and have a curved 
space, non perturbative curved space generalization of the Heisenberg equations of motion. The 
comoving field is almost inertial on the straight sides so the sine wave is observed as a perfect 
sine wave by the external Dirac equation observer and near perfect by the comoving observer 
(that self field term on the bottom blunts the sine wave there.) 
This would be the Schwarzschild metric (a=0) without object B. Given the incomplete inertial 
fram dragging angular momentum then provides an oblation term. 
Recall that the new pde for r<rH gives iw®w in its Heisenberg equations of motion.(Ch.10)  
Thus r=roewt or ln(r/ro)=wt=wtoÖ(1+e) where the sum of the free lepton masses in the new pde  is 
under the square root sign.  Recall this equation gives our expanding universe and the second 
derivative gives the acceleration in this expansion. Note the (section 1.2.1) 1081 particles give 
above r=rH if edges touching can be contained in volume of radius 1.746X1012 m Also the 



present radius of the universe is approximately 13.7X109LY=1.27X1027m. Given the oblation 
term a2cos2q ºD2 from the above rotation metric we have then 
ln(rM+1/Ö(rM2+D2))=ln(1.27X1027/1.746X1012)=34.22  if D=0. Given the muon mass =.06  
((1/16.8) tauon mass) we find that D=1.641X1012m so that acos(1.64X1012/1.746X1012)=20°, our 
polar angle from the rotation axis. 
Recall from the above nonperturbative derivation we got e=.060 without oblateness and with 
oblateness rL get the added rotation contribution De=.00058. Note here (i.e.,eq.5.1.2) that there is 
no big bang from a point. Instead it is from 434million km radius object, so with just enough 
volume to hold all the baryons (1081each of radius~.434Fermi) and so this type of “big bang” 
event can be easily computer modeled as a core collapse supernova like rebound (but too hot 
even for iron production). Note that the mass of the electron is determined by the drop in inertial 
dragging (giving that oblation term) due to nearby object B.  1, e, De/2 is the ratio of the tauon to 
muon to electron mass and so our new Dirac pde 9 gives us the three fundamental S state lepton 
masses with De the single ground state lepton with nonzero rest mass.  Note also De=meµ h from 
eq.9 and me µ e2 µah since rH is an integration constant. . The main result though of this chapter 
is that the present numerical value of the lepton masses imply this huge fig.2a 1040X scale jump 
(from S state classical electron radius=10-18m to the rfinal cosmological radius) of equation 5.1.2 
from the electron equation 9 object to the cosmological scale equation 9 object implied by 
equation 5.1.2. The rebound time is 350by =very large >>14by solving the horizon problem 
since temperatures could (nearly) come to equilibrium during that time (From recent Hubble 
survey: "The galaxies look remarkably mature, which is not predicted by galaxy formation 
models to be the case that early on in the history of the universe." “lots of dust already in the 
early universe”, “CBR is the result of thermodynamic equilibrium” requiring slow expansion 
then, etc.). 
That formula for the electron mass and also the fine structure constant alpha has the ambient 
metric epsilon (muon) in it. 
Looked up the variation of alpha from:   arXiv:1608.04593 
Δα/α = − 2.18 ± 7.27 × 10−5. At 13by. 
So to get it at 1by divide by 10 then: Δα/α= 2X10-6 at 1by. 
The fine structure constant is proportional to the square of 1.25-([(1/64)/(1-ep/2)]+1/16+1/4). 
Looked at the change in ep in the Grand Canyon Tonto to Unkar jump vs 270 My. 
ep/2=.03 changes 1by by 10% which is: .003.  0.003 of 1/64 is 4.7X10-5.  After squaring it is 
1/32  get 1.46X10-6.   Actual is 2X10-6.  
My electron mass formula appears to also work for a completely different application: that of 
calculating the rate of change of the fine structure constant alpha.  
Sine Wave 
The 10 trillion years represents the period of object A we are inside. The 6billion year oscillation 
represents the gamma =917 of electron object B that we are on the edge of. It has a frequency 
917X object A’s from our frame of reference.  
 
7.9 Summary 
In the external reference frame the koo=1-rH/r and the equation 9 (4AI) zitterbewegung gives a 
smudged out blob r=<roeikt> first solution (r>rH, new pde, eq.9, 4AI) and Rij=0 from the second 
solution.  But in the commoving frame of reference inside r<rH in the new pde is not free space 
anymore and so Rij does not equal 0 anymore and so equals the above De Sitter dual choices sinh 
or cosh so the second solution requires  Rij=sinhu  (R22 eq.A left side does not match with cosh). 



A second derivative of sinh is once again a sinh so this is a source in the Laplace-Beltrami 
second derivative operator-(De Sitter source). This result also comes out of the second solution 
but for the commoving internal observer frame of reference.  Recall that the multiple of the 
Laplacian of the metric tensor in harmonic local coordinates whose components satisfy Rij=-
(1/2)D(gij) where D is the Laplace-Beltrami second derivative operator. In that regard 
geometrically, the Ricci curvature is the mathematical object that controls the growth rate of the 
volume of metric balls in a manifold. 
So R22=sinhu comes out of the new pde with the second solution! This is equal to               
eudu/(1-coshu)=dr/r whose solution is ln(rM+1/rbb)+2=[1/(eu-1)-ln[eu-1]]2.  
This equation and the metric quantization sect. 6.8  stair step give the equation of motion stair v 
steps of our universe for the inside rH and so give that quantized Hubble constant.    
 
Note here also the muon (and so the pion) were 100X times heavier at the big bang making the 
nuclear force equal to the E&M force then. 
7.10  Construct The Standard Model Lagrangian                                                                                                      
Note we have derived from first principles (i.e.,from postulate 1) the new pde equation for the 
electron (1.11, eq.1.24), pde for the neutrino (eq.1.12)  Maxwell’s equations for the photon, the 
Proca equation for the Z and the W (Ch.3) and the found the mass for the Z and the W (4.2.1). 
We even found the Fermi 4 point from the object C perturbations.  The distance to object B 
determines mass and we found that it is equivalent to a scalar field (Higgs) source of mass in 
sect.4.1.5. We have no gluons or quarks or color in this model but we can at least derive the 
phenomenology these concepts predict with our 1.11+1.11+1.11 at r=rH strong force model (ie., 
1.11+1.11+1.11 r=rH, Ch.9,10) 
So from the postulate of 1 we can now construct the standard model Largrangian, or at least 
predict the associated phenomenology, from all these results for the Nth fractal scale. Here it is: 

 
Fig. 10 
The next fractal scale N+1 coming out of our eq.1 gives the cosmology and GR gravity, which is 
not included in the standard model.  In fact the whole model repeats on the N+1 fractal scale. 
Object B provides ambient metric quantization states that have been observed implying new 
physics. So there is the promise of breakthrough physics from our new (postulate 1) model. 
 
 



Review 
 Note from our ONE assumption  min(zz-z)>0 (postulate of 1) we derived the new 
pde with its fractal rH (sect.1.1-1.2) 
Note in contrast the SM has 23 (and counting) free parameters and oodles and oodles 
of assumptions , perhaps hundreds (see above figure). 
 
Our Free Parameters: Actually there are no free parameters here. 
  The ratio of electron mass m to proton (or tauon mass)  is determined by the distance 
to object B, 
 is the closest thing to a free parameter here  (but it really isn't since in principle we 
could find that distance.). 
 Also the muon mass changes with time here, can be calculated from the present 
gravitational constant G. (Ch.7) 
For example: 
The charge  ke^2  is determined from the Fiegenbaum point CM. (CM/m=rH) 
The Lamb shift and anomalous gyromagnetic ratio found from the third term of the 
Taylor expansions of the square roots  in the new pde. 
The 10^82 particles in the universe are found from the Mandelbrot set (counting 
trifurcations at the Fiegenbaum pt) 
The 10^40X fractal scale jump comes out of the Mandelbrot set. 
The average temperature T of the universe found from the Mandelbrot set (C>1/4 for 
time). 
We derive the gravitational constant G from our fractal new pde separation of variables 
and present Hubble "constant"(Ch.7).  
h is a unit multiplier that first defines energy (E=hf=2mc^2) from frequency f in that circle 
operator formalism exponent. (sect.1.1) 
c is  from the units we choose for time dt and dr distance (in c=dr/dt) and also 
determines uo and eo (in c=1/sqrt(uoeo)) 
uB (Bohr magneton) is found from the Dirac equation (recall gyromagnetic 
ratio derivation). 
W and Z masses derived for e sitting at  2P1/2 at r=rH and those  required polar 
coordinate rotations. 
The strength of the strong force is from the relativistic dilation of those E field lines due 
to the ultra relativistic motion in 2P3/2 at r=rH. 
The rH'=rH/2000 of the leptons is derived from the Fitzgerald contraction (not rotation) 
of the S state. 
Fermi constant GF from Compton wavelength volume for W. 
Cabibbo angle 'A' comes out of that gamma 5 iteration of the new pde 1/4=sinA  for the 
2P1/2 ->2P3/2 +e decay. 
CP  conservation 'constant' proportional to Energy from the (rotating) Kerr metric cross 
term kdtdphi  caused by us being inside a rotating object,  
strong additional evidence we are in a (rotating new pde) fractal universe.  
(so we get the entire CKM matrix)    
etc,. 
Derivation of the Standard Model But With No Free Parameters 



Since we have now derived MW, MZ, and their associated Proca equations, and mµ,mt,me, etc., 
Dirac equation, GF, ke2, Bu, Maxwell’s equations, etc. we can now write down the usual 
Lagrangian density that implies these results. In this formulation Mz=MW/cosqW, so you find the 
Weinberg angle qW, and then get gsinqW=e, g’cosqW=e; solve for g and g’, etc., We will have 
thereby derived the standard model from first principles (i.e.,postulate1) and so it no longer 
contains free parameters! 
 
Hey, being able to derive the Standard electroweak Model (SM) in such a clean way  
is the mother of all reality checks. 
Cool Heh? 
 
7.11 Summary 
This is a first principles derivation of mathematics and theoretical physics. “Astronomers are 
observing from the inside of what particle physicists are studying from the outside, ONE object, 
the new pde (2AI) electron”. Recall the electron was the only object in the first quadrant (so 
positive integer), every other object is an excited state, caused by increasing noise C. So we started 
with postulate of 1 and ended with ONE after all this derivation (solving two equations for two 
unknowns) derivation, we derived ONE thing, which must be the same thing! So we really did just 
"postulate ONE" and nothing else, as we claimed at the beginning. That makes this theory 
remarkably comprehensive (all of theoretical physics and rel# math) and the origin of this theory 
remarkably simple: “one”.   
So we have only ONE simple postulate here. 
 
7.12 The Above Mainstream Model (fig.10) Has Many Free Parameters,  
This Fractal Model has None 
For example the Mandelbrot set {CM}=rH in dr-CM so we can always set CM=2ke2/mec2. 
c2medr=c2meCM=2ke2 to define our length units. In section 1.2.7 we show that with a single me 
(nonzero proper mass) we can start with arbitrary ke2/r energy units and have no free parameters 
among these values. Note this 1.11 electron has the only nonzero proper mass me (i.e.,so only 
CM) in free space making it the only fractal solution. In the time domain the h in E=h(1/t) just 
defines energy units (equation 4.6) in terms of event time intervals t.  The gyromagnetic ratio of 
me is derived from the rotated 1.11, eq.1.24 new pde. The muon mass comes from the distance to 
object B (Ch.5). The proton mass comes from the flux quantization h/2e (Sect.8.1). The other 
highest energy boson masses come from the Paschen Back effect given this proton mass (Ch.8). 
The strength of the strong force arrises from the ultrarelativistic field line compression in the 3e 
model (Ch.8). The mass energies and quantum numbers of the many particles below about 
1.5GeV come out of the Frobenius solution (Ch.9) which is merely a solution to eq.1.24 (i.e., 
1.11).  Recall the CP violation is due to the fractalness (selfsimilarity with a spinning electron): 
we are inside a rotating object Kerr metric implying a cross term dfdt in it. So you can derive the 
CP violation magnitude that they use in the CKM matrix. Multiply through the Fermi interaction 
integral (from the Standard model output and this output from the theory) and integrate to get the 
Cabibbo angle eq.10.8.7). The pairing interaction force of superconductivity is even derived by 
substituting the kµµ  in the geodesic equations (sect.4.5). You can derive the neutrino masses for 
a nonhomogenous non isotropic space time (Ch.3). We derived the exact value of the pion mass 
(Ch.9). 



Note since quarks don’t exist in this model (they are merely those 2P3/2 trifolium lobes at r=rH) 
those 6 quark mass free parameters vanish. The Mandelbrot set 1040X scale change automatically 
sets the universe size and the gravitational constant size (sect.7.4) in comparison to classical 
electron mass and E&M force strength respectively.  
  If you do a tally that free parameter list has just shrunk from ~30 down to 0: so they are all 
derivable parameters, not free.. In contrast setting these parameters as free parameters is really 
postulating them because the parameter values are postulated. The equations they are used in 
constitute many more postulates (fig.10), so the number of potulates you get doing it that way 
goes out the roof, 100 or so? 
But you have to ask yourself: where did all these assumptions come from? You actually do not 
understand the fundamental physics at all if you require a lot of postulates, free parameters, etc., 
you are merely curve fitting. In contrast here we have only one simple postulate and get the 
whole shebang out all at once: that being the standard model particles and cosmology and 
gravity. We finally ‘understand’ in the deepest sense of that word! 
Note this model (Ch.1) also has none of the mainstream paradoxes either (Klein paradox, Dirac 
sea, 1096grams/cm3 vacuum, infinite mass and charge,.. in Ch.4) and not a single gauge but it still 
keeps the QED precision (eg., see Lamb shft calculation in 6.12). 
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