Postulate 1
Abstract: Modern fundamental physics theories such as the Standard Model (SM) contain many
assumptions. So where do all these assumptions come from? This is not real understanding. It is curve
fitting. So why bother?
This theory in contrast has only one simple postulate:

Postulate 1.

So there is reason to be excited. The 1 in the postulate of 1 generates the 1 U1 =l+1 list-define algebra
(eg.,eq.3.6) underpinning of the rational numbers. / is a real number so we can now:

define the real number 1 from a Cauchy sequence of rational numbers (Cantor) using iteration
zn+1=znzn+C (eq.1a), SC=0 (eq.1b). In that regard solve 1a for noise C in 5C=0 (eq.1b) and get S(zn+1-
znzn) =0 implying zn is finite since co—co cannot equal 0. So as N—oo, C—0 then zn+i (defined to be z then)
has to approach 1 so eq.la zn+1=znzn+C turns uniquely into z=zz+C (eq.1) (eg.,1=1X1+0) thereby
defining real#1 in the postulate of 1.

Solve 1a,1b for C and z(eigenvalues,eq.3.6): So plug eq.1 into eq.1b getting Special Relativity(SR) and a
unbroken degeneracy Clifford algebra (sect.2). Equationla explicitly defines the Mandelbrot set Cu(since
z+1 finite) with a fractal (Y2)¥Mandlebulbs and (10"°)NXcosmology. Cu turns SR into GR and breaks that
2D degeneracy into 4D Clifford algebra of Mandlebulbleptons(eq.9) and associated Boson composites in
the SM(sect.4).

Summary: So given the fractalness, astronomers are observing from the inside of what particle physicists
are studying from the outside, that ONE thing (eq.9) we postulated. So by knowing essentially nothing
(i.e.,ONE) you know everything! We finally do understand.
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Introduction

. We postulate 1. The I in the postulate of 1 generates the 1\1= 1+1 list-define natural
number algebra(eq.3.6) underpinning of rational numbers. Everybody knows 1 is a real
number so we define the real number 1 in the postulate of 1 from a Cauchy sequence

of these rational numbers (Cantor) defined from iteration zn+1=znzn+C (eq.1a), SC=0
(eq.1b). In that regard solve eq.la for noise C and substitute it in 3C=0 (eq.1b) and get
d(zn+1-ZnzN)=0 implying zn is finite since co—oo cannot equal 0. So as N—o0, C—0 then



zn+1 (defined to be z then) has to approach 1 and so eq.1a Zx+1=ZnZx+C turns uniquely
into z=zz+C (eq.1),(eg.,1=1X1+0) defining 1 as a real number in the postulate of

1! This “circular reasoning” (1—rational numbers—real numbers— 1) keeps us down to
just one postulate here. Also we have derived both theoretical physics and real number
mathematics at the same time.

So just postulate 1 (Everyone knows 1 is a real number.).

Then use Gaussian elimination on eq.1 and 1b to solve for z and C.

Notice we have derived both (rel#) mathematics and theoretical physics from the
postulate of 1.

7z=77+C (eq.1)

The mundane context for this 1 in the postulatel is that of an averaged observed signal
X in X+AX, AX=Standard Deviation= SD=Vvariance. So observation (sensor defined
noise) plays a math role here, were X is a function of {observerUsignal} with random
error AX. Then normalize X/X+AX/X=1+(Al)’ =1+(51)’ =Generic Signal(GS)=z’.

So then how do you easily remember this entire theory? Just Postulate 1. That’s the
whole theory! Ah, you say, that can’t be all there is to it since “ONE” has algebraic
properties too (eg.,1=1*1+0). My response to that statement is that this merely means
you then have an equation for algebraic properties, equation 1.

Note this still means “Postulate 1.

Note the only way to include C noise in that 1=1*1 algebraic definition of 1 is to simply
add it so as is usual z=1+9z: GS+C=GS*GS or z-zz=C (eq.l).
for limit C—0. Also a “postulate” is trivial unless what you postulated exiszs. Note noise
0z’=C (z’=1) cannot be infinity given 6C=0 since c0-00#0 and given the normalization 1
X cannot be zero since 0/0 is undefined. So signal exists (i.e., is not 0 and is not drowned
out by noise) if 3C=0 (eq.1b).

with “existence”, and so C=0 thereby is required for eigenvalues in eq.3.6. The I in
postulate 1 itself provides the starting point for a positive integer list-define algebra
(sect.3) underpinning of eq.1 without any new postulates (axioms) making this a self-
contained theory.

Note this still means “Postulate 1.

Everybody knows 1 is a real number so eq.1a,1b hold.
String theory is not the only game in town

Postulate 1
Solve eq.1a,1b for the physics

Use the 1 in the postulate 1 to define the list-define natural number algebra 1U1=1+1
underpinnings of eq.1a,1b.

So we have a self contained theory based on/y on the postulate of 1.

We then have a first principles derivation of both math and physics.



Theory: Small C
If C—0 and eq.1b implies eq.1a reduces to z=zz+C (equationl)
Eigenvalues of this z defined from eq.3.6. Appendix B.

Gaussian elimination: Thus solve eq.1 for C, plug into eq.1b and note we need to factor
the result to solve for z and its eigenvalues.

Section 1 Rewrite equation 1 in z=1+8z form
(Define z=z"+0z, z’=1, 6z=C) So first rewrite eq.1:
7’+0z=(z"+0z)(z’+6z)+C,
So 1+8z=(1+6z)(1+0z)+C and rearranging
1+0z=1+26z+6z0z +C  and canceling

8z0z+6z+C=0 (1.1)
Equation 1.1 is a quadratic equation with in-general complex 2D solution (eg., if large
noise C)

dz=dr+idt (1.2)

or dz=dr-idt for all orthogonal (90°, L) dr and dt and so arbitrary dx Ldy (eg., dz=dx+idy)
(1.3)
with speed coefficient ¢ in cdt=dt explicitly a constant here given variation only over t
(1.4)
Equation 1.2 from 1.1 constitutes the derivation of space and time (in the context of eq.
2A).

Section 2 Small C. Solve for z
Solve eq.1 for C, plug into eq.1b and factor the result to solve for z. By plugging the
small C in equation 1 back into 6C=0 (eq.1b) we get 0=0C=&z+ %) and
we have

8(620z)=9[ (dr+idt)(dr+idt)]=0 (2)
the equivalent of eq. 1a,1b. Note to ‘solve for z (=1+0z) we must solve for the (linear
drtdt) factors.
2.1 Factoring Eq. 2 ‘solves for z’

N &) =8 (dr+idt)(dr+idt)]=d(dr’ +i(drdt+didr)-di’)=0 (2)

The Imaginary part of eq.2 is from the (eq.2) generic o(drdt+dtdr)=0 (2B)
If the dr,dt are +integers (see sect.4.2) then drdt+dtdr=0 is a minimum. Alternatively if dr
is negative then drdt+dtdr=0 is again a maximum for dr-dt solutions. So all dr,dt cases
imply invariant drdt+dtdr=0 (2B1)
Note in general if dr=dt then 2B1 holds. Next factor the real part of eq.2 to get
o(dr’-dt*)=o (dr+dt)(dr-dt)]=ds*=[ [ S(dr+di)] (dr - di))] +[(dr +di)[S(dr — di)]]=0. (2A)
So dr?-(1)?dt>=ds? is invariant along with | =c from eq.1.4. So we have derived special
relativity. (The later sect.4 second solution Cy just rotates dr—dr’=dr-Cy,
dt—dt’=dt+Cwn making the form of 2A unchanged and giving GR). So after factoring
eq.2A then eq.2A is satisfied by:
2A1 8(dr+dt)=0; o(dr-dt)=0. +e,-e two simultaneous objects, 2D®2D, 1U1, eq.9
2A11A 8(dr+dt)=0, dr+dt=0 pinned to the dr’=dt? light cone. v



2AIIB d(dr-dt)=0, dr-dt=0 “ “ (note also dichotomic with 2AT)
anti v

2AIII dr-dt=0, dr+dt=0 so dt=0,dr=0, no ds so eigenvalues=0, vacuum:the default C;m=0
solution

So if the variation(dx+dy)=0 i.e., 6(dx+dy)=0, then dx+dy=ds=invariant. So for invariant
ds:

2AIA dr’+dt? =ds? (so 5z=dse'®) ds? is a min at 45° (so extremum 8z=dse'®?) and drdt is a
max since 2AI dr+dt is invariant.

2AIIA dr+dt=ds, dr+dt=0

2AIIB dr-dt=ds, dr-dt=0

2Al dr+dt=ds, dr-dt=ds; So there are two simultaneous 2Als for every eq.1.1 for 2Al.
So we must write eq.1.1 as an average in the case of eq.2Al. For our positive dr&dt need
15t and 4" quadrants (given 2AIA;45°) so dr~dri~dr,, dt~dt;~-dt,. So for average eq.1.1
dz=dr+idt= (dri+dr2)/2 + i(dti-(-dt2))/2=(dx1+dx2)2a1 Hi(dx3+dx4)2a1)=dsrHidsy . So given
eqs.1.2 and 2AI we have then the 2D unbroken degeneracy
dz=dr’+dt’=ds;+dse=(dx;+dx2 +dx3+dx4)=ds. (2C)

and the solutions for 6z and so .

Section 3 Eigenvalues of z formalism from equation 1b and 2AIA

Note also some invariant C exists from eq.1b (introduction). Note also C is a uncertainty
so all numbers are finite precision here so can be multiplied by a large enough number
(appendix A) to become integers so will then not require new axioms (postulates). Recall
also from eq.1: zz=z-C = z+z6z=z-C. So  8zz=C 3.1

Also eq.1 zz+C=z and from equation 2AIA rotation at 0,=45° implies §z=dse'*>""%" In
eq.3.1 8zz=C we then move the ¢'*>° from the 8z to z and then redefine z~1(=s’) as z” so

the equality 0zz=C=0zmz”

(3.2)

remains. So for this new z”, dzmz”=C. dzum is a constant in eq. 3.2 so z” rotates with noise
C dichotomically in the complex plane as ~ z’=1¢/*>""49)=]¢i(00+46) (3.3)

From 2AIA ds*=dr>+dt? and so we have a circle: dz=dse®. O=kr+wt.
dz'z=C. So dsz'=C. Can multiply by both sides by ds and eq.2AIA implies ds?z'=Cds
and the ds? are still diagonalized as (dr’>+dt?)dz' . Cross terms drdt let us say are not
allowed or the invariance ds fails with this new eq.3.1 method. So ds*z'=C is not
allowed. All we are allowed then is dsz'=C and ds?z'=C were s’~ 1>ds given 2AIA. So
we can substitute 1(cosO)=t, 1(sinB)=r>>dr into:
27 = |elf= @i(00+A0)—g > gi((cosOdt+sinddr)/s))+00)—g gi(t+kr+00) (3.4)

In the exponent of eq.3.4 1sin6=r, k=dr/s so ikz”’=0z"/0r so

kz”=-10z"/0r=(dr/s)z"=p:z” (3.5)
defines our ‘operator’ and is the reason for factoring in sect.1. So for simultaneous
2AI+2AI coming out of our eigenvalue generator 5C=0 (gave 2Al) and 2AIA (gave
eq.3.5) we define the number 2 from operator 2z”=
(1u)z’=2AI+2Al)z"=((dr+dt)+(dr-dt)/s))z”=-120z"/0r (3.6)
=(integer)k)z” (or alternatively subtract to get (integer)wz”). Also eq.3.6 implies
((dr+dt)?/ds?))z” = 0°z”/or*+6%z”/ot?) given 2B1 gets rid of the drdt cross terms. But ds?



does not give integer eigenvalues needed for list-define math. So from eq.3.6 we
obtain the eigenvalue of z=0,1 (3.7

and 1+1. So eq.3.6 defines the finite +integer /ist(i.e.,1 U1=1+1=2)--define(i.e.,A+B=C)
math required for the algebraic rules underpinning eq.1 without any added postulates
(axioms). That Clifford algebra cross term generation (with Cv<0) requires we define
larger numbers than 2 with this math and also implies a 130° dichotomic rotation,
sect.4.3).

The integer k and o integer changes KA® are due to Frobenius series termination jumps
in the eq.9 solutions (Ch.9) of finite countable N without resorting to ad hoc SHM. So AE
=KAw=hNA® (rename Ao—®) and thereby subdivide all of physical reality:
Euniverse=2ihi. Also 2AI 45° diagonal (large noise C so ‘wide slit’) is a particle eg.,2 Al
On dr axis (small C, so ‘narrow slit’) the 2AIA wave equations dominate implying wave-
particle duality. So given eigenvalue generators eq.2AIA, or equivalently eq.3.6
operator formalism and eq.9 (sect.3)

we have derived quantum mechanics from first principles.

2.2 Goemetrical Representation Of 2AI factor: Solution 1
Since the only (ground state) solution is positive integer constant =dr+dt (2AI) first
quadrant we can represent our (eq.2) solution as a square within a square of fig.1 below.
Note if sides dr+dt are invariant then so is the hypotenus ds and corner areas drdt+dtdr.
The corner is interpreted as the comutative ansatz drdt coefficient of section 4.3

dt

dt 2A1: §(dr+dt)=0 so the length of the side dr+dt

of the large square is a constant. Thus from
figure 1 ds in the inscribed small square is
shortest at 0=45°. Thus §(dr’+dt*)= 3(ds?)=0 at
45°. So ds?=dr?+dt? and dr+dt=\2=ds=8zm

Solution 1 Eq.2 given 3(ds?)=0 at 45°.

Fi |
d(dr+dt)=0, d(drdt+dtdr)=0 8ds?=0 at éllgyrgeiven on the complex plane:
ds?>=dr’+dt? so at around 45°: dz=dse® (2A1A)

“dr

Section 4. Large C

Instead of solving eq.1 and eq.1b ds=\2ds=dr+dt (eq.2Al, 2AIL,2AIA) as in section 2 we

solve the general case of eq.1a, 1b which thereby imply the Mandelbrot set {Cm} on the -

dr axis with -dr=drdr+Cy. On the next smaller (10%°X) fractal scale (our baseline

subatomic scale) drdr<<dr and so -dr=Cp. So that to preserve the ds invariance V2ds

=(dr-Cm)+(dt+Cm)=dr'+dt'  (4.1)

Here C—%Cwm (dichotomic 130° rotation in eq.1 with C=Cu=Fiegenbaum point

1.40115..) instead of 0 in eq.4.1 and we fill in the gaps with that C. This =Cw rotation

results in composites.

4.2 Rotation of 8z by Cwm Creates Curved Space Two Body Eigenvalue

Physics

So from 2AIA at 45°and 2AI and eq.3.6 O can change by &/2=Cwu:
V2ds=(dr-&/2)+(dt+&/2)=dr'+dt' (4.1)



AB=¢/ds of eq.2Al dr+dt at 45° (dr’,dt’) € {degenerate solutions eq.2C}) that here break
those 2D degeneracies giving 4D. Define r=dr and «n=(dr/dr’)*=(dr/(dr-¢/2))> =1/(1-
w/r)tm  (4.2)

Putting the ks in eq.2A1A we obtain for both of these spherical symmetry k. metric
coefficients: ds?= Kndr’? +Ke0dt? (4.3)
Note from 2AIA drdt is invariant (at 45°) and so dr’dt’=VkxdrVkeodt=drdt so kn=1/Koeo
(4.4) i.e., the old Schwarzschild-rn result outside ru. Use tensor dyadics to derive the
other GR metrics

So we derived General Relativity by (the Cm=¢) rotation of special relativity (eqs 2A,
2AI)

Also from 2AIA and eq.4.1: ds?=dr’?+dt’>=dr?+dt>+dre/2-dte/2-€%/4 (4.5)
2All: From eq.2All and equation 3.5 the neutrino is defined as the particle for which -
dr’=dt (so can now be in 2" quadrant dr’, dt’ can be negative) so dre/2-dte/2 has to be
zero and so ¢ has to be zero therefore £%/4 is 0 and so is pinned as in eq.2All
(neutrino).dz=y. So Cv=e¢=mdr Is uncharged and also massless in this flat space.
2A1: Recall eq.2Al electron is defined as the particle for which dr=dt so dre/2-dte/2
cancels so € (=Cw) in eq.4.5 can be small but nonzero so that the d(dr+dt)=0. Thus dr,dt
in eq. 2Al are automatically both positive and so can be in the first quadrant as positive
integers. 2A1 is not pinned to the diagonal so €2/4 (and so Cwm) in eq.4.5 is not
necessarily 0. So the electronischarged
If that £Cy rotation covers 2Al or 2AlI the charge on these objects (eg., charge on 2AIl is
0) becomes the charge on the composite. This added intermediate white noise is not
charged.

4.3 Eq.2AI Eigenvalues in equation 3.6 incorporating Cm
To remain within the set of eq.1 solutions set (allowing infinitesimal rotation within the
noise) we note that the 2D degeneracy of eq.2C is broken by the solution? rotation
(eq.4.1) were we use ansatz dx,—y#dx, where y* may be a 4X4 matrix and commutative
ansatz dx,dx, =dx,dx, so that y*yvdx.dx,+y*y*dxvdx, = (y*y¥+y"y* )dxpdxy (p,v=1,2,3.,4;
u#v). So from eq.2AI and resulting eq.(2C) then ds? = (y'dxi+y?dxo+y3dxs+y*dxs)?
=(y"2dx12H(y?)?dx2?H(y? ) 2dxsH(y*) 2 dxa?+ o (YHyYdxudxvtyYyRdxyedx,). But
THyVdxpdxyHyVyrdxedx, = (YRyY+HyYyH )dxedxy implying yHyY+y¥y* =0 from 2B1 and also
(y*)*=1 from 2AIA. So the two 2Al results and 2B1 imply the defining relation for a 4D
Clifford algebra: we have derived our 4Dimensons) with the time component defined to
be y*dx4. So with x,vin eq.3.2 we have

ds=(y! Vi 1dxi+y? \/Kzde2+y3 Vi 3dX3+y4\/K44dX4) (4.6)

Eq.4.6 also implies we can convert the 2AI (dr+dt)z” and the 2AIA (dr’*+dt?)z” to first
and second derivatives of z” terms (z’=y). For example using 4.6:

Eq.2Al —)ds=(y1\/1< 1 1dx1+y2\/1<22dxz+y3 \/K33dX3+y4\/K44dX4)z”—>y“\/ (Kpp)oW/ox=(w/c)y
)

(eq.9) which is our new pde, adds the Cwm to equation 3.5 (electron observables). It also
becomes 2AIl (v pinned to the light cone where Cy=ru=¢=0 (sect.4.1)). The 6 Clifford
algebra cross term requirements imply many multiple lepton contributions giving us
Boson fields around them. Note the w/c in E=ho implies we have found the actual
eq.2Al lepton eigenvalues.



Review: Recall eq.9 gives half integer spherical harmonics with Clebsch Gordon two
body m=m;+m;, m=%)%. m=0 singlet (S state) result of the Pauli exclusion principle. See
appendix B.

4.4 Eq.2A1A Boson Eigenvalues mi+m:

Start by plugging eq.1 into eq.1b. Get 2AI,2All. Include the Cm of eq.1b. To preserve the
ds invariance then V2ds =(dr-Cwm)+(dt+Cy)=dr'+dt' in eq.4.1. We repeat the m1+m?2 Pauli
principe addition of sect.4.3. Here C—=*Cw (dichotomic 130° rotation) instead of 0 in
eq.4.1 and we fill in the gaps with that C. So we have large Cum dichotomic 130° rotation
to the next Reimann surface of 2AIA (dr>+dt?)z’’ from some initial angle 0. Eq.la
solutions imply complex 2D plane Stern Gerlach dichotomic rotations using noise z”’ocC
(4.2) using Pauli matrices o; algebra, which maps one-to-one to the quaternionA algebra.
From sect.4.2, eq.4.11 we start at some initial angle 6 and rotate by 130° the noise
rotations are: C=z"= [eL,v.]"=2"(T)+2’(}) =y(T)+y({) has a eq.4.5 infinitesimal unitary
generator z’=U=1-(i/2)en*c), n=0/¢ in ds>=U'U. But in the limit n—>o0 we find, using
elementary calculus, the result exp(-(i/2)0*c) =z”.(dr+dt)z’’in eq.4.11 can then be
replaced by (dr*+dt? +..)z”=(dr>+dt>+..)eddemionABosons because of eq.2AIA. Rotate: z”:
2AB: 2A11A+2AIIB Dichotomic variables—Pauli matrix rotations—z’ =gduaternion A
—>Maxwell y

=Noise C blob. See Appendix A for the derivation of the eq.2AIA 2"derivatives of
equaternion A'

2AC: 2A1+2 A1 Dichotomic variables—Pauli matrix rotations—z =eauaemion A_s g
Mesons.

2AD: 2A1+2A1+2A1at r=ru =Cwm (also stable but at high energy, including Z,W.)

2AE: 2A1+2All Dichotomic variables—Pauli matrix rotations—z =gduaternionA
Proca Z,W

Ch.8,9 on baryon strong force with Nth fractal scale ry =2e?/mcc?. Equation 2AE is a
current loop implying that the Paschen Back effect with B flux quantization ®=Nh/2e
gives very high particle mass-energy eigenvalues. So we solved the hierarchy problem.
Frobenius series solution from eq.9 gave lower hadron energies. All are singlet or triplet
noise C blobs(2). See davidmaker.com, part II.

We have thereby found the eq.2A1A Boson eigenvalue solutions.

Summary: Solved eq.1 for z. Then we found the eigenvalues of z (eg., 2Al)

Note in equation 9 the Koo=1-ri/r. Given the 10*XCy fractalness in the Cy=ry of
equation 9 “Astronomers are observing from the inside of what particle physicists are
studying from the outside, ONE object, the new pde (2Al) electron”, the same ‘ONE’ we
postulated. Think about that as you look up at the star filled sky some night! Also
postulating 1 gives no more and no less than the physical world. That makes this theory
remarkably comprehensive (all of theoretical physics and rel# math) and the origin of this
theory remarkably simple: “one”.

So given the fractal self-similarity, by essentially knowing nothing (i.e., ONE) you know
everything! ~ We finally do understand.
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Appendix A 2AB (dr’+dt>+..)eduaemion A Derjvation From Sect.4.3 and operator in
eq.4.6

180° rotation from 90°
A is the 4 potential. From 3.4 we find after taking logs of both sides that A;=1/A: (A1)
Pretending we have a only two 1,j quaternions but still use the quaternion rules we first do
the r derivative: dr’6z =(6%/0r?)(exp(iArtjAo))=(0/0r[(10AOr+0A/0r)(exp(iAitjAo)]
=0/0r[(0/0r)1A+(0/0r)j Ao )(exp(1ArtjAo)H[10A/Or+)0Ao/Or]0/0r(1A+) Ao)(exp(1ArtjAo)+
(i0°Ar/or? +j0* Ao/or?)(exp(1Artj Ao ) H1OA/Or+jOA o/ Or|[10A/Or+j0/0r(Ao)] exp(iArtjAo)
(A2)
Then do the time derivative second derivative 6*/0t*(exp(iArtjAo) =(0/0t[(10AOt+OAL/Ot)
(exp(1Ar+jAo)|=0/0t[(0/Ot)1A+(0/0t)j Ao ) (exp(1Astj Ao)+
[10AL/O1+j0A/0t]0/0r (1A Ao)(exp(1ArHjAo) +H(1D?Ar/Ot? +]* Ao/Ot?)(exp(1Art+jAo)
+[10A/Ot+]OA/Ot][10AL/0t+)0/0t(Ao) Jexp(iArtjAs) (A3)
Adding eq. A2 to eq. A3 to obtain the total D’ Alambertian A2+A3=

[10?A/Or*+i0? Ar/Ot ]+ [j0% Ao/Or*+j 0 Ao/Ot* ] +ii(OAT/Or)*+ 1j(OA/Or)(OAL/Or)
+ji(0A/Or)(OAL/Or)+jj(OA L/ Or)?
++Hi(OAT/0t)*+Hij(OAL/Ot)(OA/Ot) Hi(OA/Ot)(OAL/Ot)Hj(OAL/OL)? . Since ii=-1, jj=-1, ij=-
ji the middle terms cancel leaving [i6*Ar/or?+i0*Ar/ot? ]+

[jO?Ao/Or?+j0% Ao/ 0121 +Hi(OAT/Or)*+jj(OAL/Or)? +i(OAT/Ot)*+jj(OAL/Ot)
Plugging in A1 and A3 gives us cross terms jj(OAo/Or)*+i(OAr/ot)* = jj(o(-
Ap/Or)*+Hi(OAr/ot)? =0. So jj(OAL/Or)* =- jj(OA./0t)* or taking the square root: OA./Or +
OA/Ot=0  (A4) i[O*A/or*+id*A/ot*]=0, j[O°Ao/Or*+id?As/ot?]=0 or
O*AOr A/ ot*+. =1 (A5)
A3 and A4 are Maxwell’s equations (Lorentz gauge formulation) in free space, if
u=1,2,3.4.

PA=LL oA =0

(A6)
Analogously from 2AC we get with the eq.4.1 doublet exe the Proca equ (3). We have
thereby derived the field equations of the Standard electroweak Model.



Postulate 1 as z =z z +C. goes to Mandelbrot set Cpy4 nearr axis Cy;=z -1 since no oreferred scale
Calculate z and its eigenvalues=(5C=0).

Get (2) 8(8z0z) =[(dr+idt)(dr+idt)]=d(dr +i(drdt+dtdr)-dt)=0 Rotate dr+dt by Cy, (10*Xfractal)
drdt+dtdr=0. ds=(dr-Cy)+(dt+Cp)=dr'+dt’
\) &dr-dt?)=6 (dr dt)(dr-dt)|=ds*= Breaks 2 A | 2D degeneracy
[[dr+dt)](dr - dt))] +[(dr +dt)[&dr —dt)]]=0.factor 4 (n,v=1,2,3,4; u£v) .
2A1 8(dr+dt)=0; 5(dr-dt)=0. 2D degenerate drdt+didr=0 /()r.;'-":"ir’("/“ =0) 4D Clifford Algebra +e,-¢ New pde eq9
2A11A 8(dr+dt)=0, dr+dt=0 pinned to LC drdt+dtdr=0 (or y*=y'+y'y* =0) v
2AI1IB b(dr-dt)=0, dr-dt=0  pinned to LC  drdt+dtdr=0  (or yy'+y*y* =0) anti v (def. Zs1, z =2+5z, LC= light cone)

Min ds on diagonal ds?=dr2+dt? Rotate by C again. Dichotomic variables—Pauli matrix rotations—»z =eauternionA =C Nojse Blob
180deg

'-“C
<wl 2

? ) . L Z
18 nO 6~
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Appendix B Mathematical Considerations

1% type of Fractalness (10°)N Mandelbrot Set Repeat Of The Universe
Go to the Utube HTTP with the 275 in the title to explore the Mandelbrot set. The splits
are in 3 directions from the orbs. There appear to be about 2.5 splits going by each
second and the next Mandelbrot set comes up in about 62 seconds. So

32.7X62 =10N s0 172l0g3=N=82. So there are 10%? splits.

So there are about 10%splits per initial split. But each of these Mandelbrot set
Fiegenbaum points is a ru in €q.9. So for each larger electron there are 1032 constituent
electrons. At the bifurcation point, which is also the Fiegenbaum point, the curve is a
straight line and so 8Cw=0. Also the scale difference between Mandelbrot sets as seen in
the zoom is about 10*°, the scale change between the classical electron radius and 10!'ly
giving us our fractal universe.

2" type of Fractalness (1/4)~ Repeat Of The Mandlebulbs Correction
For 1.4167=2(%)N.5+1.25 And Eq.9 Singlet m;+m: Limitation

We start at 5z=-1 Mandlebulb2 since that is the vacuum z=0. Also eq.1.1 -8z=6z6z+C

implies C<% if 6z is a real number in 6z = # . Note the lack of a set scale makes

the Mandlebulbs (figure below) get smaller by a approximate factor of 4 each time on a
different smaller Mandelbrot set. This is equivalent to a different Riemann surface so
satisfying eq.1 again so implying one 2AI and 2AII doublet for each of the 3 surfaces: the
3 lepton families. Note also these Cm Mandlebulbs get into equation 9 through their
associated equation 4.1 y=z"’s eigenfunctions. So eq.4.1 and Eq.9 implies these
Mandlebulbs are states analogous to atomic orbital states for both spin and also for
charge doublets(isospin). It makes S states into singlets that act like Bosons.
m=m;+my=Y2-"2=0 for two such spin states (spin) and two charge states (isospin). So this
is all simply a Pauli principle application!



So when Mandlebulb2 and Mandlebulb4 fill up with spin up or spin down or charge +
and charge minus- the state is full, no more charges are allowed (as in spin-isospin). So
we must stop with Mandlebulb5 unless charge=0 from then on. Mandlebulb6 would then
be the neutrino mass. This perturbation noise (field) squared C?is energy.

In the context of equation 9 start at z=0 my~"4? is mi; Next 0=m;+m,=singlet,
Mandlebulb2(Cz)+Mandlebulb3(Cs3) =[(1/4)*(1+1/4)]=.0791=n*.
m;=Mandlebulb4=[(1/64)*]~me.. Also 8z=-1, the t. Mandlebulb4 is also near the
Fiegenbaum point fractal X10*’and stable since 8C=0 there, so it is the ground state, with
mass me. The fieldMandlebulb5 (1+1/4) coefficient fills the isospin state.

Eq.9 implies singlet mo +m4 form a S state for spin up and spin down (eg.,spin) as well as for positive and negative charge (eg.,Isospin).
Mangeswos  Mandlebulb2 Mandlebulb 1 Im [(]

Mandiebulté  Mandebuba
Fullisospin state. 7=0
m m .
\s\m 2 14 0 Re[c]
| =
|

-2 Leptons— Mg —my— Tauon=1
= — 2P

All this seems nice and simple (eg., 4*~my, (1/64)*(1+Y4)=m., etc.,) but some subtle
properties of the Mandlebrot set complicate matters. For example the Mandlebulb circle
sum=1.4167=2(1/4)N.5+1.25 is not quite at the Feigenbaum point 1.40115. So (1.4167-
1.40115)/1.40115=.011098 is not zero. 5.2X.011098 =.05772=A which acts both as a
mere energy unit definition here and compensation for this difference. Also the filled
ground state contains the field m so add Y as in (1/64)*(1+ %) and the excited states
contain this same field. So we take into account the Pauli principle (where 1+ adds
field as mz) and compensate completely for this unphysical 1+A expansion and with
these (1-A) coefficients in:
me= (1/64)*(1+%)1777(1-A)=0.510996Mev= ground state. 0.0004%diff. 1+ adds that
m; field.
m=(1/4)*1777(1-A)+2(.511)=105.67Mev. 0.01%dif. Added the 2X0.511Mevground
state values
m.=(1)1777Mev; 0% diff.
These residual discrepancies appear to be A? sized roundoff errors so we are getting
precision answers here. These are the 3 lepton masses inserted into the eq.9 lepton
equation in eq.4.1. Essentially by measuring the widths (squared) of these fractal
Mandlebulbs we get the masses of the tauon, muon and electron in the proper context of
Dirac eq.9 as 3 Riemann surface 2AI&2AIl families. (me=.510999895..,
m,=105.65837..)

Hadrons — o

Origin Of Mathematics

Single Postulate Of 1
eq.3.6 defines the finite +integer /list(i.e.,1 U1=1+1=2)--define(i.e.,A+B=C) math required
for the algebraic rules underpinning eq.1 without any added postulates (axioms). Also
list 2*¥1=2, 1*1=1 defines A*B=C. Division and rational numbers defined from B=C/A.
We repeat with the list 3*1=3, etc., with the Clifford algebra terms satisfaction keeping
this going all the way up to 102 and start over given the above fractal result given the ry
horizons of eq.4.2.



Note the noise C guarantees limited precision so we can multiply any number in our list
with the above integer 103 to obtain the integers in eq.3.6 which gives us quantization of
the Boson fields

Real Numbers Defined from Our Rational Numbers
Real numbers are the core of mathematics (Try balancing your checkbook or measuring a
length without them!) and physics. 1 is a real number. The key thing is that we are
postulating 1, not 1 and a bunch of other stuff.

There are several equivalent ways of defining the real numbers.

One way is through Dedekind cuts. Another method is to define a number as a "real"
number by defining a Cauchy sequence of rational numbers (Cantor's method) for which
it is a limit.

For example it is easy to define 7 as a real number. You can use the Cauchy sequence
4(-1)N/(2N+1) resulting in the series sum 4(1-1/3+1/5-1/7+...)=r.

Note this is a sequence of rational numbers adding up to an irrational number sum
('summability' in the parlance of 'real analysis'). The union of the set of irrational and
rational numbers is the "real " numbers by the way. Note this real number

definition required that Cauchy sequence of rational numbers.

In contrast the rational number sequence defined by the iteration

zn+1=znzntC (eq.1a); 8C=0 (eq.1b); N—oo, noise C—0 defines 1 (and not 7) as a real
number. Solve for C in eq.la and plug that into eq.1b and get d(zn+1-znzn)=0. Note the
variation of co-co cannot be zero so zn+1 has to be a finite number. So the resulting series
has to be summable. Thus given C—0 and N—o we cannot start the sequence with a
number that ends up with a divergent sequence. We are thereby finally left with a
sequence beginning with zo=1 or 0 (N=0) as C—0 and N—o0. Defining zx+1=z for N—>o0
eq.la then becomes z=zz+C (eq.1) (Recall 1=1X1+0), our algebraic definition of 1.

You need an infinite series of rational numbers that do this: so you have to plug zn+1
=znznt+C back into zx in eq.1a and keep doing this as N—o. Also take C—0 and you see
this simple iteration formula expand (as N—0) into a series of rational numbers with a
sumability analogous to what we found for © (We have also thereby imbedded the eq.1a
fractalness into the definition of the real numbers!)

So you have defined 1 in terms of a Cauchy sequence of rational numbers in the context
of this C—0 so you have defined 1 as a real number. This is a unique method (just
giving us 1,0) given the existence of noise C since we required equation la to generate
equation 1 in that case, which gave us our algebraic definition of 1 in the end. Note we
have also defined set theory and also arithmetic in operator equation 3.6 with
simultaneous eq.(2AI+2Al) and its 1U1=1+1 eigenvalues. In that regard note also on this
fundamental ‘set theoretical’ level (1U1) zero behaves like the null set & and we all
know the null set is an element of every set anyway. So we really have just postulated 1
with the 0 merely coming along for the ride.

With that 'uniqueness' there are no other equations besides 1a, 1b (at least not ones that
give us 1,0 since requiring that Cauchy sequence of rational numbers limit of 1 severely
restricts our choices) that do this. Everybody knows 1 is a real number so it obeys eq.1a,
1b.



Postulate 1

So get all of physics from eq. 1a,1b.

Use the | in the postulate of 1 to define the list-define algebra 1\U1=1+1 underpinnings of
eq.la

d dar
dt
2Al is 2 simultaneous equations
| |Cm[>0
drdt/? 2
Solution 1 Eq.2 AB=Cy rotation of Solution1: called solution 2

d(dr+dt)=0, &(drdt+dtdr)=0 dr—)dr-CMzdr’; dt— dt+CMzdt’

2AIA 8ds?>=0, ds*>=dr*+dt? kn=(dr/dr’)?,  ds’=kpdr’?+Keodt>?

/2 is still integer
4.6 Rotation of 8z by Cwm Creates Curved Space Two Body Eigenvalue
Physics

So from 2AIA at 45°and 2AI and eq.3.6 O can change by &/2=Cwu:
\2ds=(dr-¢/2)+(dt+e/2)=dr'+dt' (4.1)
AB=¢e/ds of eq.2Al dr+dt at 45° (dr’,dt’) € {degenerate solutions eq.2C}) that here break
those 2D degeneracies. Define r=dr and kn=(dr/dr’)*=(dr/(dr-£/2))* =1/(1-ru/r)+rn (4.2)
Putting the ks in eq.2A1A we obtain for both of these spherical symmetry k. metric
coefficients: ds?= kndr’? +ioodt™? (4.3)
Note from 2AIA drdt is invariant (at 45°) and so dr’dt’=VkxdrVkeodt=drdt so kn=1/Koeo
(4.4) i.e., the old Schwarzschild-rn result outside ru. Use tensor dyadics to derive the
other GR metrics

So we derived General Relativity by (the Cm=¢) rotation of special relativity (eqs 2A,
2AI)

Also from 2AIA and eq.4.1: ds’=dr’?+dt’>=dr’+dt>+dre/2-dte/2-€%/4  (4.5)
2All: From eq.2All and equation 3.5 the neutrino is defined as the particle for which -
dr’=dt (so can now be in 2" quadrant dr’, dt’ can be negative) so dre/2-dte/2 has to be
zero and so ¢ has to be zero therefore £%/4 is 0 and so is pinned as in eq.2All
(neutrino).dz=y. So Cv=e¢=mdr Is uncharged and also massless in this flat space.
2A1: Recall eq.2Al electron is defined as the particle for which dr=dt so dre/2-dte/2
cancels so € (=Cw) in eq.4.5 can be small but nonzero so that the d(dr+dt)=0. Thus dr,dt
in eq. 2Al are automatically both positive and so can be in the first quadrant as positive
integers. 2A1 is not pinned to the diagonal so £%/4 (and so Cy) in eq.4.5 is not
necessarily 0. So the electronischarged

4.9 Alternative Edr=¢ Ansatz In 4.5 On Nth Fractal Scale: E=mass Definition

If you substitute dt for dr instead you get nothing new at (eq. 2AI) 6=45°since dr~dt
there. Clearly &dr (§=¢/dr, dr= DeBroglie A because of 2AIA) also works in the same
way as ¢ on the diagonals in changing the angle (see sect. 4.1). Note this 4A1 electron has
the only nonzero mass Cwy in free space making it the only fractal solution. In that regard



exactly on the diagonals (light cone) £=0 in 2AIl. So we then identify the & with mass
(see also sect.6.3,6.4 for derivation of the magnitude of & from distance of object B).
Since m. =€ is the only nonzero proper mass here we can define ry=Cm=2e*/mcc? then
mec’ra=Edr=e=ke’=¢ as well, merely redefing our length units again. So set me=1 and
then Cy=1dr=(1)Cwm. Also in the time domain: energy=h/dt (eq.4.6) thereby defining h.
Note the Cy distance units are arbitrary, we have only single mass me, which is a mere
constant unit multiplier redefining distance units with ke*/r then initializing the arbitrary
energy units with h merely transforming 1/time to some energy or the other. So we
avoided any free parameters here in this mass definition. See sect.7.12 for implications.
4.10 Bra-ket Notation

Note e/®*"49) went from 8z over to z” in eq. 4.1 (see eq.4.2) so equation 2A1A also
implies [27*2z°dV=1 with 1/s’2 normalization. So from eq.4.6 [2"*&zmz”dV=<&zm>
=<dzm>[z"*2”dV=<8zp> equivalent to bra-ket <a|8zm|a> with *a’ the eigenstates of
eq.9,eg., half integer spherical harmonics (given 2Al is the only solution).

4.11 Uniqueness Of These Operator Solutions: Note the invariant operator \2=ds here.
So the eq.2AIA operator invariant ds? and eq. 2AI, 2AII \2ds=8zym =dr+dt is the
operator (eq.4.6) solution 8zm (so not others such as ds* ,ds*, etc.,which would then
imply higher derivatives, hence a functionally different operator.).

4.12 C¢<45° Boundary Conditions On E=Nh® Note finite energy E=Nhw (N=1) can
be a spread out with low energy density or a localized at high energy density thereby
implying equation 2AI and 2AII (and entangled states) are indeed equations for a particle
Also for 45°, 135°, 225° and 315° the ds is invariant (sect.2) and so therefore dr and dt
are constants with these integer values, particles. But as C—0, in z’=s’e¢'®', s°—0 so
amplitude s’ in s’e'* flattens it out with also the ds then no longer invariant (for 0<45°)
making the dr and dt non constant introducing some ambiguity into their characterization
as the integer N=1, (i.e., it’s not a particle.). We then have a wave (eq.7 &eq.1.1.4) with
unknown N. So we have only low energy density plane waves for C—0. So for a wide
single slit with large uncertainty C we have particles and for a narrow slit with small
uncertainty C we have waves, thus proving wave particle duality from first principles.

FP=Fiegenbaum point-1.40113 ] Solution 1 4AI dr+dt=2=ds
j—fﬁﬁ;:ii‘}sﬁ{,ﬁfﬁ: / Solution 2 (CM =¢) noise C rotates solution 1
7~ = PR il S (on the diagonal) so (dr- ¢2) +(dt+e/2)=ds =dr'+dt . Thus
\QSQ.lﬁonl ds2=dr2+dt2 =dr2+dt2 -2dre/2+2dte/2+e2/4+e2 /4
) dr2+dt2 +(-dre+dte)+e2/2
f notse gets bigger Note C adds to ds and rotates it by eq.4AI (-dre+dte) added first
Boson P vider z;.ixggle_duahn quadrant difference between dr2 +dt2=ds2 spin 0.1, and
Wave /2 Fp fl ! Fiegenbaum point spin 1/2 and fractalness. This allows the jump from
Rel(Cyg)=-1 since the Fiegenbaum point chiral background -1.40115 to -2=-1.4142.
C—=-0so0 ds=72 .
and so spin 0.1 Boson exchange (forces).

C—0 implies we are in the neighborhood of the real axis so Rel Cy is what we must use.
So RelCv=Rel(zn+1-zazn)=-1 being an element of both the Mandelbrot set and satisfying
equation 2 all at once. Thus at 135° then ds=V2. So ¢ is imaginary since & thereby
moves the V2 solution inward to the Fiegenbaum point radius and provides the added
noise C needed to do that.

Summary: Solved eq.1 for z. Then we found the eigenvalues of z (eg., 2Al)

Note in equation 9 the Koo=1-ri/r. Given the 10*XCy fractalness in the Cy=ry of



equation 9 “Astronomers are observing from the inside of what particle physicists are
studying from the outside, ONE object, the new pde (2Al) electron”, the same ‘ONE’ we
postulated. Think about that as you look up at the star filled sky some night! Also
postulating 1 gives no more and no less than the physical world. That makes this theory
remarkably comprehensive (all of theoretical physics and rel# math) and the origin of this
theory remarkably simple: “one”.

So given the fractal self-similarity, by essentially knowing nothing (i.e., ONE) you know
everything! ~ We finally do understand.
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Appendix D List-define, List-Define, 1032 Derivation Of Mathematics Without Extra

Postulates
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These added cross term eq.9 objects (2Al) extend eigenvalue equation 4.6 from merely
saying 1+1=2 all the way to the number10®2. Recall our first principles derivation means
we postulate 1 as two definitions and we solve these two equation (1) for their two
unknowns: that is the whole shebang.
From section 4.4 we generate 6 cross terms directly from one application of eq,1a that
may or may not be the ones required for our 4D Clifford algebra. To get precisely the 6
cross terms of a 4D Clifford algebra we had to repeatedly plug into eq.2a the associated
dr,dt of the required cross term drdt+dtdr. But in this process we thereby create other 4Al
terms for other electrons and so build other 4D electrons and so a sequence of electrons
We thereby generate the universe! Thus we have derived the below progressive
generation of list- define microcosms. We then plug that into 4.11 as sequence of
electrons. This allows us to use 4.11 to go beyond 1U1, beyond 2 to 3 let’s say. So we
can then define 1U1 from equation 4.11 d6zm just like postulate 1 was defined from eq.1



and eq.2. So consistent with 4.11 and eq.1b we can then develop +integer mathematics
from 1U1 beyond 2 because of these repeated substitutions into eq.1b using a list-define
method so as not to require other postulates. So by deriving the 6 crossterms of one 4D
electron we get all 1032 of them! So just multiply any number (given our limited preicion)
by 10% and it becomes an integer implying all integers here. Given the s of equation 9
for r<r. (So a allowed zitterbewegung oscillation thus SHM analogy) we can then
redefine this integer N-1 also as an eigenvalue of a coherent state Fock space |o> for
which aJa>=(N-1)|o>. Also recall eigenvalue 1U1 is defined from equation 4.6. Note
1082 limit from section 6.1. Any larger and it’s back to one again.

The Progessive "List" Origin Of Mathematics
Microcosm Math 3 Numbers Cosmic Math 1032 Numbers
(allowed by finite precision)
1U1=1+1=2 1+1=1%2
1U2=1+42=3 2+2=2%2
Defines A+B=C | Defines A*B=C Thatbeing eq.2

Finite precision = noise = 0

Eq.2 can now define 0 with 0¥0=0
Use 0 to define subtraction with

1-1=0
-2=0
-3=0

Defines §C=0 That being Eq.1 in this particular microcosm.

Note there are no axioms for defining relations A+B=C or A*B=C, just the list above those relations.

in that particular microcosm. There are no postulated rings or fields here either.
We use 3 number math to progressively develop the 4 number math etc., eg.,2+2=4., so
yet another list. Go on to define division from A*B=C then A=B/C. So the method is
List-define, list-define, list-define, etc., as we proceed into larger and larger microcosms.
There are no new postulates (axioms) in doing that. It follows from our generation of
those 6 Clifford algebra cross terms one after the other and that sequence of 4D electrons,
the objects we are counting. We require integers and so no new axoms. Note C implies
finite precision and we can always multiply a finite precision number by a large enough
integer to make a finite precision number an integer in any case. So we also have our
required integers here. So we don’t need any more axioms such as Peano’s mathematical
induction or ring and field axioms. We generate each microsm number and algebra with
this list define method until we reach 10%? (sect.4.1).

W

Everybody knows that 1 is a real number so obeys eq.1a,1b which also imply fractalness.
String theory isn’t the only game in town.

Postulate 1
Solve 1a, 1b for the physics.

Use the 1 in the postulate of 1 to define the list define mathematics 1 U1=1+1 underlying
eq..la,1b. You have come full circle here and so do not require any more postulates.

You then have a “first principles’ derivation of both real number mathematics and
physics.



Part I

Ch.1 1 is a real number so it obeys eq.la, eq.1b. So postulate 1 and solve eq.1a and eq.1b. Use

the 1 in the postulate of 1 to define the list define mathematics 1\1=1+1 underlying eq..1a,1b.

You have come full circle here and so do not require any more postulates. You then have a ‘“first

principles’ derivation of both real number mathematics and physics.

We note that in the neighborhood of z=1,0 that the real z constraint (given noise C) implies our solution set

(to eq.1,2) is the Mandelbrot set{Cm}(sect.3, 10*°X fractal cosmology).

Plug the C in eq.1 into the eigenvalue definition(see introduction) 3C=0 and you get special relativity

(eq.2A) and a unbroken 2Ddegeneracy (eq.2C) and Clifford algebra and dr+dt=\2ds invariance. {Cwm}

implies we must then rotate ds=(dr-Cm)+(dt+Cwm)=dr'+dt'(eq.3.1) giving general relativity and broken

degeneracy 4D Clifford algebra SM leptons (eq.9). This same rotation (sect.4.3) also generates the SM

Bosons(y,W,Z) and with eq.2AIA their eigenvalue operators eq.4.11.

Ch.2 Details of Fractalness 10*°X cosmological fractal scale Cy jumps

Ch.3 Eq.2 2D isotropic-homogenus Space-Time gives 0 vacuum energy density Goo.

Ch.4 Solution2 breaks eq.la 2D degeneracy generating 4D Clifford Algebra for eq.4Al

Ch.5 Nearby object B fractal object (and Object C) creating the proton we are inside

Ch.6 Particle mass from object B and A separation. U=¢™ used to derive metric quantizat

Ch.7 Comoving coordinate transformation with object A: Cosmological observables, G

Part I1

Ch.8 2AI+2AI+2AlI at r=ru.Paschen Back, ®=2e/h,high mass particles Separation Of
Variables Of Eq.9

Ch.9 Frobenius Solution To New PDE Getting Hyperons

Part 111

Ch.10 Metric Quantization from U=e'!, replacing need for dark matter

Ch.1 Postulate 1 (as z’=z"z’+C) The rest is trivial math

Trivial math: solve for z’ and get eigenvalues=(6C=0, Don’t assume preferred scale)

Trivial Math: Solve for C in eq.1. Plug 2 into eq.1 to get eq.4, first solution. Split

C in eq.1, get fractalness from the Mandelbrot set given limitations on Cy in eq.1, our

2" solution. Cy rotates SR int GR and breaks 2D degeneracy, creating 4D new pde.

Definitions SR=Special relativity, GR=General relativity, SM=Standard model, FP=Fiegenbaum point.
QM=Quantum Mechanics, PDE=Generally covariant generalization of Dirac eq.4Al, eq.9, z=1

Note Az=C=random noise=SD error in z so variation(z)=6z=Az. See introduction for explanation

Section 1 Solve eq.1. To get eq.2 &(&&)=0 So rewrite eq.1 as eq.1a. Plug eq.1a into eq.1 (our 1%

GE step) to get eq.2 (dzoz)=0,. Factor eq.4 to get eq.4A SR, 441 (dr+dt=ds) degenerate 2D, 4A1A

45°8z=dse’, 4AIl & 4B1.

Section 2 Solve eq.1 to get constant Cw. So rewrite eq. 1a §z=56z8z+C as

0z+C1=020z+Cm=0z1=0620z+Cwm. Eq.1 restricts C and so dzi1<co & gives us a ru=Cwm FP subset of the

Mandelbrot set (our 2™ GE step),10*’ry fractal cosmology

Section 3 A rotation of SR into GR) (dr-Cwm)+(dt+Cwm)=ds=dr’+dt’is rotation at 45°0f (dr&dt) SR to

GR xn=(dr/dr’)*in 2AIA ds’=krdr’*+Koodt’? . Breaks the 2D degeneracy to get 4D Clifford algebra (using
2B1) PDE, SM leptons & dichotomic Bosons.

Section 4 Use the postulated ONE to derive the list-define algebra required by eq.1.
Also generates QM from that eq.4AIA operator. Our list-definelU1=1+1=2 numbers then are eigenvalues.

Ch.2 Details Of The Fractalness
2.1 The Mandelbrot Set Along The -dr Axis As Required By C—0



Recall section 1.2.1 on the Mandelbrot set. Note equation 2 appears to imply that only the
-dr axis objects come out of the postulate since C—0 there. On smaller and smaller scales
separated by 10%°X however this general Mandelbrot set structure is duplicated and
rotated by 45° through that branch cut at r<0 line. Thus our complex plane 2AI and 2AII.
45° particles are then on the new —dr line and thereby also come out of the postulate. We
then have a whole new Reimann surface “universe” in this complex plane but oriented
diagonally. See youtube HTTP http://www.youtube.com/watch?v=0jGaio87u3A

Eq.1.2 -62-828z+C. In equation 1 let C=Cy+Cy where Cy is defined to be the constant component of C

so that C; carries this noise AC,. Define e=Cye=ry. Then rewrite -8z-626z+C as 6z- C;=8z6z+Cy.

Start out our iterations with Cy=-1 so the C;=1 with noise AC; (and do 6z in- . idt
between those two numbers.) So  8z+AC-C=82z52+C. (3.1 Flegenbaum ?j‘y
Rewrite eq. 3.1 as 0-1=(0)(0)-1 with small AC:and then simplify point-1.4011 d L
-1=0%0-1 and iterate (148z)=(1+8z)(1+82z)+C so z=0 solution to eq.1  (3.2) \ w, ’ [
0=(-1)*(-1)-1 (1+8z)~(1+62z)(1+6z)+C so z=1 solution to eq.1 1040 X smaller . sﬁ'k

and repeat iteratively from eq.1.1. Then allow ACy to be larger and larger. In that way perturb

Cy around -1 with ACy so that 8z is not a complex number. Eg., §z = ﬁao C<1/4 (the “Q”J\*P}, ’
head of the Mandelbrot set) for Realdz generating 6z+-1/2 implying 62862<|/Cy|. So there is an i 1»5 - ?

independent convergence at each of the two steps of eq.3.2 (only in the neighborhood of ) - o 2\ ’
Ca=-1-> -1.4) equivalent to the iteration steps creating the T 4 “"[;\2 dine

Mandelbrot set: zx.1=zxzn+Cyi. Cue defined if zx finite for N+ 1= (34 Xo& 45 deg romation

Im[e]
1

Re|¢]
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Fig.5

Note also dt’?>=(1-ru/r)dt>. So r=ru implies dt’=0 so that C=0 (in eq.1) and therefore we
are again on the —dr axis making the entangled state 2AI+2AI+2AlI also come out of our
postulate. (See Chapter 8,9,10). The rest of the Mandelbrot set is completely irrelevant.



So astronomers are observing from the inside of what particle physicists are studying
from the outside, the ONE solution to ground state eq.2Al, equation 9, new pde object.
Go to the Utube HTTP with the 275 in the title. The splits are in 3 directions from the
orbs. There appear to be about 2.5 splits going by each second and the next Mandelbrot
set comes up in about 62seconds. So

32:3%X62 =1 N g0 17210g3=N=82. So there are 10% splits.

So there are about 10%splits per initial split. But each of these Mandelbrot set
Fiegenbaum points is a ry in €q.9. So for each electron there are 108 constituent
electrons. At the the bifurcation point, which is also the Fiegenbaum point, the curve is a
straight line and so 6Cm=0. But the maximum noise C that still keeps z from being
complex is .25 so that thermal noise energy is 4 mass energy which is about what a core
20MK of a average star is. So we have explained the stars.

2.2 Fractal Invariants

Speed of light c is a fractal invariant, stays the same in going from one fractal scale to
another since dr and dt (in c=dr/dt) change the same as you go through ry branch cut . € is
a constant at a single fractal scale so ru=2¢*/m.c? =¢. But going through the horizon ry
makes ¢ 10%X larger =2GM/c? so that GM is also constant on a given scale. So if G is
increasing M is decreasing (Sect.1.7.3). The Bg fractal dipole is responsibke for the fine
structure constant diple (See Webb..Electron has a dipole moment then so does object A

2.3 Cwm Fractal Consequences

Recall our two sect.l.1 equation i.e.,(eq.1) and two unknowns derivation of second
unknown Cy;, our Mandelbrot set along the —dr axis branch cut horizon. Note also
measurements are confined inside time-like geodesics inside ru event horizon boundaries
in q.9 so the measured 651=0 can then be postulated all over again, given branch cut
horizon ry, for r<ru. So on the next higher fractal scale (Ch.2) a second ¢ can then be
rewritten as a 10* X larger source. Recall the &dr mass term in section 1.2.12. Also for
the (sect.Il just below) fractal Ar=10%°X scale jump in eAr’>=(k/Ar)Ar’=kAr (recall
g=2e?/m.c?) implying a new mass term KAr (instead of £dr). So € goes up by Ar?
=(10%)2=10%°, Ar? becomes the contravariant tensor dyadic Z multiplier in sect 7.4. Note
GM then is invariant (constant) as well since ¢ is. It is well known that information is
stored as horizon ry surface area=4nry?=4m(10%°)? ~108! thus giving us our appendix A
counting limit. So for single source (2GM/c?)/10%) =(10*/103")e~(1/10*)¢ is an added
source term of inverse square law force on each electron(2), hence the gravity in fig.3.
Ch.7. So the radial rate of change of electric field on our own fractal (expanding) scale is
the gravity on the next larger fractal scale (fig.3), one unified field! Note also we derived
the standard model (eq.2Al) gets the strong force section 2A1+2AI+2Al of Ch.9). See
note reference 4 below for the underlying theory. The fractal metric quantization (due to
object B) also gives a g,A¢ (fractal) metric quantization entanglement that replaces the
need of dark matter (Ch.6,11).

Alternatively Noise C Generates A New 8z Which Generates New Noise C, etc.,

So another way of using equation 1 is instead to define noise: -6z—6z6z=C;



-1+v1-4C

Let Bo=1 in -B,06z=0z8z with C,=0. New noise C generates new 8z in: 6z = 5

for 8z not imaginary so Ci=Y4 in sect.6.13: C*=1=t quadratic equation C scaled:
-Bo6z=828z+Ci. Y%=Ci=Bi=noise. Ci’>=E,=1/16 =¢ Va

head

-B18z=6282+C,. 1/64=C>=Br=noise. C,*=E.~=1/4096 =A¢ 1/16 hat
-B282=6287+C3. 1/4096=C3=Bs=noise. C3>=E,=1/1677216 1/64 beanie

The first column gets us the lepton masses and the last column derives the individual
pieces of the Mandelbrot set along the -dr axis showing we actually did derive it.

Note the electron me is right over the Fiegenbaum point period doubling where 8C=0 so
there is both stability and the fractalness so it has the 1 in front of the mass below.

Note from Ch.9 that Energy= 1/Vkoo= ¢

ieride)e=] —g—iAe+H(e—1Ag)?/2+. =1—(e— £2/2) +(i(Ae+eAe+E3/6)+.. =m+my+me

Note when C gets large the z crosses the branch cut on the baseline fractal Nth fractal
scale and we have our same 2D complex plane and so electron and electron neutrino
family. Next C rotation the muon and muon neutrino family thereby explaining the 3
Lepton families.

2.3 {{neighborhoodCwm}N{-r axis}} —dr Fractal Branch Cut

Recall section 1.2 and the derivation of the fractal space time. So there is more to these
2D complex number solutions to eq.2a than just irrational and rational numbers, there is
also this underlying space-time fractal structure

{neighborhood{Cm}{-r axis}} that contains even fewer elements than the rational
numbers and which only “exists* when the “fog® is not thick, i.e. when C goes to 0. It
permeates all of space and yet has zero density. It is a very mysterious subset of the
complex plane indeed.

Note to be a part of what is postulated (eq.2) C—0 we must be in the neighborhood of the
horizontal Mandelbrot set dr axis. But from the perspective (scale) of this N+1 th scale
observer one of the 10*°X smaller (Nth fractal scale) 45° rotated Mandelbrot sets (fig5)

is still near his own dr axis putting it within the €, 8 limit neighborhoods of C—0 of eq.2.
Thus in this narrow context we are allowed the 45° rotations to the extremum directions
of the solutions of equation 2. Our C increases (eg., C—0) discussed later sections are
also all in this Nth fractal scale context. For example eq. 2Al is then reachable on the Nth
fractal scale (r>ru) as a noise object (C>0).

So 2AII at 135° must then also result from noise (C>0) introduction and so from that first
fractal jump rotation in the 2D plane. Later we even note a limit on C (sect.4.3.1).

2.4 Fourier Series Interpretation Of Cy Solution

Recall from equation 2 that on the diagonals we have particles (and waves) and on the dr
axis where C=0 only waves, see 2AIA. Recall 2AC solution dr=dt, dr=-dt gives 0 as a
solution and so C=0. But in equation 2 for C—0 8z=0,-1. So 2AC implies the two points
8z=0,-1. So for waves to give points implies a Fourier superposition of an infinite number
of sine waves and so wave lengths. In terms of eq.2AlI these are solutions to the Dirac
equation and so represent fractalness, smaller wave lengths inside smaller wavelengths.
So it is fractal.

2.5 Observer < ry Interpretation Of Cm Solution



Since equation 9 is essentially all there is there is then also anthropomorphic (i.e.,
observer) based derivation of that fractalness using equation 9 there is even a powerful
ethics lesson that comes out of this result in partV). Recall that eq.2Al has two solution
planes and associated two points one of which we define as the observer. In the new pde:
VicuuyHoy/ox,=(w/c)y 2Al, (given that it requires these two points), we allow the
observer to be anywhere. So just put the observer at r<ry and you have derived your
fractal universe in one step. In that regard the new pde metric

Note from equations 3.4 we have the Schwarzschild metric event horizon of radius
R=2Gm/c? in the M+1 fractal scale where m is the mass of a point source. Also define the
null geodesic tangent vector K™ to be the vector tangent to geodesic curves for light rays.
Let R be the Schwarzschild radius or event horizon for ry=2e*mcc?. Thus (Hawking,
pp-200) in the case that equation applies we have: RnnK™K™0 for r<R in the
Raychaudhuri (Ky=null geodesic tangent vector) (3.3) equation. Then if there is small
vorticity and shear there is a closed trapped surface (at horizon distance “R” from x) for
null geodesics. No observation can be made through such a closed trapped surface. Also
from S.Hawking, Large Scale Structure of Space Time, pp.309...instead he will see O’s
watch apparently slow down and asymptotically (during collapse) approach 1 o’clock...”.
So gn=1/(1-ru/r) in practical terms never quite becomes singular and so we cannot
observe through ry either from the inside or the outside (space like interval, not time
like). Note we live in between fractal scale horizon ra=rm+1 (cosmological) and ru=rm
(electron). Thus we can list only two observable (Dirac) vacuum Hamiltonian sources
(also see section 1.1). Hwm+1 and Hm

But we are still entitled to say that we are made of only ONE “observable” source i.e.,
Hwm of equation 9 (which we can also view from the inside (cosmology) and the outside
(particle physics). Thus this is a Ockam’s razor optimized unified field theory using:
ONE “observable” source

of nonzero proper mass which is equivalent to our fundamental postulate of equation 1.
Metric coefficient kn=1/(1-ru/r) near r=ry (given dr'’=k.dr?) makes these tiny dr
observers just as big as us viewed from their frame of reference dr'. Then as observers
they must have their own rus, etc. . You might also say that the fundamental Riemann
surface, and Fourier superposition are therefore the source of the “observer”. See end of
PART III (of davidmaker.com) for the powerful ethics implication of that result
(eg.,negation of solipsism since two “observers” are implied by the eq.4Al two
simultaneous solutions).

Ilustration Of The fractalness: Recall our mantra implied by this fractal space time
that “Astronomers are observing from the inside of what particle physicsts are studying
from the outside, ONE thing: the new pde (rotated 2Al = eq.9) electron.”; Think about
that as you gaze up into a star filled sky some evening!

Below is an illustration:
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Ch.3 Equation 1b, 2D Isotropic and Homogenous Space-Time vs A
NONhomogeneous and NONisotropic Space-Time

From equation 1a solution 1b we note that this theory is fundamentally 2D. So what
consequences does a 2D theory have?

We break the 2D degeneracy of eq. (2C) at the end by rotating by Cwm (3.5) and get a 4D
Clifford algebra.

Recall 2AI and 2AII are dichotomic variables with the noise rotation C going from 4AlI at
45° to 2AIl at 135°.

Recall eq.2Al implies simultaneous eq.2AI+2Al are 2D@2D=4D. But single 2Al plus
single 2All are not simultaneous so are still 2D. So this theory is still 2D complex Z then.
Recall the v, gy metrics (and so Rjj and R) were generated in section 341.

In that regard for 2D for a homogenous and isotropic gj; we have identically Ry,-Y2g. R=
0 = source =G, since in 2D R, ="5g,,R identically (Weinberg, pp.394) with u=0, 1...
Note the 0 (=Eal the energy density source) and we have thereby proven the existence of
a net zero energy density vacuum. Thus our 2D theory implies the vacuum is really a
vacuum! It is then the result of the fractal and 2D nature of space time!

A ultrarelativistic electron is essentially a tranverse wave 2D object (eg., the 2P3.»
electron in the neutron). Also a non isotropic homogenous N+1 th fractal scale space
time makes the above source nonzero so gives this particle a small imaginary mass since
r<ry in that square root. From sect.2 and Clifford algebrathe cross term appendixA the
electron and 2 neutrinos are part of the same object so 2A1+2AIl is Goo=Ectcep=0 so
Ec=-cep:



So given the negative sign in the above relation the neutrino chirality is left handed.
Recall dz=dse®® circle from eq.6 and the resulting trivially fractal Riemann surfaces
making the fractalness of this theory ideal. Note from that eq.9 and neutrino equations
coming out of that square in a square analysis waves apply at the r axis (recall wave
particle duality argument). Here the circle also intersects the nonzero part of the
Mandelbrot at -V2. But the Fiegenbaum point is close to this value so we must slightly
inflate the Mandelbrot set by some ¢ as in:

ds?=(dr-g/2)*+dt?>=dr’-edr+dt2. But dr’=edt (waves, sect.4.1) so edt-edr=ds*=(-V2)?=2
which is a eq.4 spin Y2 solution, neutrino and electron (fig5, lowest energy). Thus the 2D
vacuum ambient metric is chiral and contains the electron and neutrino.

Thus the zero energy vacuum and left handedness of the neutrino in the weak interaction
are only possible in this 2D equation 1 Z plane. If the space-time is not isotropic and
homogenous the neutrino must then gain mass m, (see section 3.3.4 for what happens to
this mass) and it becomes an electron at the horizon ry if it had enough kinetic energy to
begin with. It changes to an electron by scattering off a neutron with at W- and e-
resulting along with a proton. So the neutrino transformed into an electron with other
decay products. Recall that the electron and the neutrino are dichotomic variables (one
can transform into the other,sect.4.3) and can share the same spinor as we assumed in
section 4.3. The neutrino in this situation is left handed. y° is the parity operator part of
the Cabibbo angle calculation.

3.2 Helicity Implications 2D Isotropic And Homogenous State

From Ch.10 pxy = -ihoy/0x. We multiply equation pxy = -ithoy/0x in section 4.2 by
normalized y* and integrate over the volume to define the expectation value of operator
px for this observer representation:

<pt|plpt>= fw’pde
(implies Hilbert space if y is normalizable). Or for any given operator ‘A’ we write in
general as a definition of the expectation value: <A>=<a,t|Ala,t> (3.2.1)
The time development of equation 9 is given by the Heisenberg equations of motion (for
equation 9. We can even define the expectation value of the (charge) chirality in terms of
a generalization of eq.9 for y. spin ' particle creation . from a spin 0 vacuum ye. In
that regard let . be the spin0 Klein Gordon vacuum state in zero ambient field and so 2

(1 Ty ’ )1/6 = J.- Thus the overlap integral of a spin ’2 and spin zero field is:
<vacuum helicity of charge>= IV/;ZedV: Iwél/z(l +y° )yedV (3.2.2)

So 1/ 2(1 Ty : ):helicity creation operator for spin 2 Dirac particle: This helicity is the
origin of charge as well for a spin 2 Dirac particle. See additional discussion of the
nature of charge near the end of 3.1 Alternatively, in a second quantization context,
equation 3.3.2 is the equivalent to the helicity coming out of the spin 0 vacuum 7. and
becoming spin¥ source charge with Y2(14y°)=a' being the charge helicity creation
operator.

The expectation value of y° is also the velocity. Also y' (i=x,y,z) is the charge conjugation
operator. 3.1.3 Note from section 3.1.1 the field and the wavefunction of the entangled
state are related through ef®d=y=wavefunction. y™V(ku)d/dr(yN(ku)dy/0r =0 where y=
(y"N(x)Oy/0r and Va(1Hy)y=y. <y3>=v=<c/2>=c/4 So 14y’ =cos13.04+sin13.04,



0=13.04=Cabbibo angle.

Here we can then normalize the Cabibbo angle 1+y® term on that 100km/sec object B
component of the metric quantization. We then add that CP violating object C 1km/sec
as a y°Xy' component.

You then get a normalized value of .01 for CKM(1,3) and CKM(3,1).

The measured value is .008.

Vacuum

Recall eq.2Alll gives us a vacuum solution as well. Also recall eq.labis 2D. Recall the
Kuv, Zuv metrics (and so Rjj and R) were generated in above section 1.2.5. In that regard
for 2D for a homogenous and isotropic gj; we have identically Ry,-'5g.R= 0 = source
=Goo since in 2D Ry =Y2g,R identically (Weinberg, pp.394) with u=0,... Note the 0
(Goo=Erotal the energy density source) and we have thereby proven the existence of a net
zero energy density eq.2AIll vacuum. Thus our 2D theory implies the vacuum is really
a vacuum.

Left handedness

From sect.1.1.4 2AI and 2AIIA and 2AIIB are combined. Note also from section 4.3 C
rotation in a homogenous isotropic space-time. So 2A1+2All = Goo=Ec+cep=0 so
E=-cep:. So given a positive Ec (AppendixB) and the negative sign in the above relation
implies the neutrino chirality cep is negative and therefore is left handed.

3.3 Nonhomogenous NonlIsotropic Mass Increase For 4All

But a free falling coordinate system in a large scale gravity field is equivalent to a
isotropic and homogenous space-time and so even in a spatially large scale field the
neutrino has negligible mass if it is free falling.

To examine the effect of all three ambient metric states 1, €, Ae we again start out with a
set of initial condition lines on our figure 4. In this case recall that in the presence of a
nonisotropic non homogenous space time we can raise the neutrino energy to the € and
repeat and get the muon neutrino with mass mev=(3km/1AU)m.=.01eV (for solar metric
inhomogeneity. See Ch.3 section on homogenous isotropic space time). So start with eq.
2AIl singlet filled 135° state 1Sy. In that well known case
E=\(p*c+moc*)=E=E(1+(mo2c*/2E")). E’~Expc>>moc?; y=e¢'@ ) with k=p/h=E/(hc).
Set h=1,c=1 so y=¢!(®-kX)eixmo"22E" G4 we transition through the given Wev,Wev, Wiv
masses (fig.6,section 6.7) as we move into a stronger and stronger metric gradient.
(strong gravitational field) =y electron neutrinos can then transform into muon
neutrinos. Starting with a isotropic homogenous space time in the ground state we then
we go into steeper metric gradients in a inertial frame as seen from at constant metric
gradient and higher energies thereby the rest of the states fill consecutively. We apply
this result to the derivation of the 2AI+2AI+2Al proton in section 8.1, starting out with
infinitismal 2AII+2 AII+421I mass and going into the region of high nonisotropy, non
homogeneity close to object B, thereby gaining mass in the above way. This process is
equivalent to adding noise C to 4All.

Chapter 4 Simultaneous (union) Broken 2D Degeneracy Cwm rotation of
eq. 2AI Implies 2D®2D=4D



4.1 2D@2D formulation of 2AI+2Al

To stay within the solutions 1 we note that the 2D degeneracy of eq.2C is broken by the 2
rotation (eq.3.1) were we use ansatz dx, —)#dx,, where y* may be a 4X4 matrix and
commutative ansatz dx,dx, =dx,dx so that y*yVdx,dx,+y y*dxydx, = (yHyV+y"y" )dxudxy
(u,v=1,2,3,4; u=v). So from eq.(2C) ds> =

(' dxiHy2dxoty3dxsHytdxa) = (v dx 2 H(y?)2dx 2 H(y ) 2dx a2 H(y ) 2dxa®+ 2 (YR dxpd X Hy e
dxvdx,). But y*yvdxudxHyVyrdxvdx, = (YHyY+HyYy* )dxudxy implying yHyY+y¥y* =0 from
2B1 and also (y*)*>=1 from 2AIA. So the two 2AI results and 2B1 imply the defining
rolation for a 4D Clifford algebra.

So the solution 2 rotation by Cwm at 45° (eq.2AIA) causes the two simultaneous 2AI
electron terms to have different dr,dt.since the random C can be different in each case.
These 2new degrees of freedom for the only particle with nonzero proper mass in this
theory are what create the 4D we observe.

The two 2D plane simultaneous solutions of eq.2Al then imply 2D+2D=4D thereby
allowing for a imbedded 3D spherical symmetry. So we can without loss of generality
use the Cartesian product (dr,dt)X(dr’,dt’)=(dr,dt)X(d¢$,d0) to replace rsinBd¢ with dy,
rd0 with dz, cdt with dt”as in ds?=-dr?>-r’sin®0d*¢-r>d?0+c2dt’=-dx>-dy>-dz*+dt2. Note the
two r,t and 6,0, sets of coordinates are written self consistently as a Cartesian product
(AXB)= (1,t,0,0) space.where r,te A and ¢,0 €B. Note the orthogonal space of 0,¢ with
the p=wt’ carrying the second time dependence (note there are two time dependent
parameters in (dr,dt)X(dr’,dt’)). Given the intrinsic 2D applied twice in the Cartesian
product the covariant derivative is equal to the ordinary derivative in the operator
formalism. Thus here [N(ic)dr]y=-i[V(ix)(dy/dr)] replaces the old operator formalism
result (dr)y=-idy/dr in the old Dirac equation allowing us to then multiply by the same y
in Y V(kw)dr]y=-iy"[V(kx)(dy/dr)]. So using this substitution we can use the same Dirac
v~,yY, ¥%,y' s that are in the old Dirac equation.

4.2 ds*=kxdx*+kyydy*+K,,dz*+xk«dt?  For spherical Symmetry From Eq.3.3
Here we easily show that our new pde(eq.9) is generally covariant since it comes out of
this 4D Pythagorean Theorem equation 83.3
Kx=Kyy=Kz=-1,k=1 in Minkowski flat space, Next divide by ds?, define px=dx/ds, so get
KxxP ’ x2+Kyyp ’ y2+Kzzp ’ 22+Kttp ’ t2: 1

To get eq.2.1.3 we can then linearize like Dirac did (however we leave the «;jin. He
dropped it). So:

(P Vicsapx iy Py Y VP HY Vikupy)? =i +iyy Py HizapHicupd (4.2.1)
So just pull the term out of between the two () lines in equation 2.1.3 and setit equal to
1 (given 1*1=1in eq.1) to get eq.9 in 4D and divide by ds

YVt Y Vicyy Dy H* Vet Vicpe =1

and multiply both sides of that result by the y and write this linear form of equation
1.1.3 as its own equation: Y Vicxx Py Vicyy Py WA zp yHYNicapey =y
Then use eq.4.6. This proves that the new pde (eq.9) is covariant since it comes out of the
Minkowski metric for the case of r—oo.

4.3 2 Simultaneous Equations 2Al: 2D®2D Cartesian Product, Spherical
Coordinates and Second Solution Vic,y



Note from eq.2Al the (dr,dt;dr’dt”) has two times in it so can be rewritten as
(dr,rd6,rsinBwdt,cdt)= (dr,rd0,rsinfd¢,cdt)

dr=dr gives yr[\/ (ker)dr]y =-iyr[\/(l<rr)(dw/ dr)]= -iy"[\/ (k) (dy/dr)]

rdo=dy gives  Y*[N(ico0)dy]y =-iy[V(kee)(dy/dy)]|=  -iy*[V(ico0)(dy/dy)]
sinddg=dz gives P[V(xeo)dzly =iy’ [N(koo)(dw/dz)]= -1y [V(icos)(dy/d)]

cdt=dt”  gives y[V(ko)dt'ly =-iy'[N(o)(dy/dt?)] = -iy'[N(u)(dy/dt”)] (4.3.1)
For example for the old method (without the ki for a spherically symmetric
diagonalizable metric):

ds?={y*dx+yYdy+y*dz+ytedt} >=dx>+dy>+dz>*+c2dt? then goes to

ds?= {y*[V(icxx)dX ]y [V(kyy)dy HYV(i22)dZ]Hy [V (k) dt] } 2=t d X3 Hicyydy >+ dZ2+HcPicud
and so we can then derive the same Clifford algebra (of the y s) as for the old Dirac
equation with the terms in the square brackets (eg.,[\/(Kxx)dx]zp’x) replacing the old dx in
that derivation.

Also here there is a spherical symmetry so there is no loss in generality in picking the x
direction to be r at any given time since there is no 0 or ¢ dependence on the metrics like
there is for r.

If the two body equation 9 is solved at r=ry (i.e.,our —dr axis, C—0 of eq.l) using the
separation of variables and the Frobenius series solution method we get the hyperon
energy-charge eigenvalues but here from first principles (i.e.,our postulate) and not from
assuming those usual adhoc qcd gauges, gluons, colors, etc. See Ch.8-10 for this
Frobenius series method and also see Ch.9. Also Ex=Rel(1/Vgoo)=Rel(ei?:4)=]1-4¢24+..
=1-2¢2/2=1- Y40 Multiply both sides by 7c/r (for 2 body S state A=r, sec.16.2), use

reduced mass (two body m/2) to get E= fic/r +(ahc/(2r))= hc/r +(ke*/2r)= QM(r=A/2, 2

body S state)+E&M where we have then derived the fine structure constant a.

4.4 Single 3AI Source Implies Equivalence Principle And So Allows You To Use
Metric xuv Formalism
Recall that the electrostatic force Eq=F=ma so E(q/m)=a. Thus there are different
accelerations ‘a’ for different charges ‘q’ in an ambient electrostatic field ‘E’. In contrast
with gravity there is a single acceleration for two different masses as Galileo discovered
in his tower of Pisa experiment. Thus gravity (mass) obeys the equivalence principle and
so (in the standard result) the metric formalism gj; q.7) can apply to gravity.
Note that E&M can also obey the equivalence principle but in only one case: if there is a
single e and Dirac particle me in Eq=ma and therefore (to get the correct geodesics,):
Given an equivalence principle we can the write E&M metrics such as rewriting 3.2:

Koo = Zoo=1-2€*/rmec? =1-rp/r 4.4.1)
(with kr=1/K00, in section 1.2.5) and so then trivially all charges will have the same
acceleration in the same E field. This then allows us to insert this metric gjj formalism
into the standard Dirac equation derivation instead of the usual Minkowski flat space-
time gjj s(below). Thus by noting E&M obeys the equivalence principle you force it to
have ONE nonzero mass with charge. Thus you force a unified field theory on theoretical
physics!

4.5 Implications of g, =1-2€*/rmec? =1-eA,/mc?v®) In Low Temperature Limit
Recall equation 4.3. goo =1-2€*/rmec? =1-eA,/mc?v°). We determined Ao,(andA1,A2,A3)



in section 4.1 We plug this A; into the geodesics
d’x" A E

———=-T 4.5.1
ds’ " ds ds “3.1)
where I'™;ii=(gk™/2)(0gikOxH0gji0x'-0gij0x~)
So in general g.=n,+h, =1— e4; (x, t), i#0, (4.5.2)
g m_cv'
egl.1)

Ay=ep/mc’s gy, =1- =1-4,,anddefine g' =1-4' /v, (a=0)and

m_c’

g"., =g, 2 forlarge and near constant v,,see eq. 4.2 also . In the weak field gl ~1.
Note e=0 for the photon so it is not deflected by these geodesics whereas a gravity field
does deflect them. The photon moves in a straight line through a electric or magnetic

field. Also use the total differential %dx“ = dg,, so that using the chain rule gives us:

Ry dx* &y, N gy, - &

&’ A" T’ A&
gives a new A(1/v?)dv/dt force term added to the first order Lorentz force result in these
geodesic equations (Sokolnikoff, pp.304). So plugging equation 4.5.2 into equation
4.5.1, the geodesic equations gives:

d*x!
ds*

1 1 1 1 1 1 1 1 _
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Lorentz force equation form (— ( ¢ 2](§¢ + VX1 (%}(}2))} plus the derivatives of 1/v which
m.c

are of the form: A;(dv/dr)a,/v2.This new term A(1/v?)dv/dr is the pairing interaction (4.5.3).

This approximation holds well for nonrelativistic and nearly constant velocities and low B

fields but fails at extremely low velocities so it works when v>>(dv/dA)A. This constraint also

applies to this ansatz if it is put into our Maxwell equations in the next section. Recall at the



beginning of the BCS paper abstract the authors say that superconductivity results if the
phonon attraction interaction is larger than the electrical repulsion interaction
Given a stiff crystal lattice structure (so dv/dr is large also implying that lattice harmonic
oscillation isotope effect in which the period varies with the (isotopic) mass.) this makes the
pairing interaction force Ai(dv/dr)a,/v2. The relative velocity “v”” will then be small in the
denominator in some of the above perturbative spatial derivatives of the metric gqo (€.g., the
1/v derivative of H2 (A/v?)(dv/dr)ay. This fact is highly suggestive for the velocity component
“v” because it implies that at cryogenic temperatures (extremely low relative velocities in
normal mode antisymmetric motion) new forces (pairing interactions?) arise from the above
general relativity and its spin 0 (BCS) and spin 2 states' (D states for CuOs structure). For
example the mass of 4 oxygens (4X16=64) is nearly the same as the mass of a Cu (64) so that
the SHM dynamics symmetric mode (at the same or commensurate frequencies) would allow
the conduction electrons to oscillate in neighboring lattices at a relative velocity of near zero
(e.g.,v =0 in (A/v?)(dv/dr).y making a large contribution to the force), thus creating a large
BCS (or D state) type pairing interaction using the above mechanism. Note from the dv/dt
there must be accelerated motion (here centripetal acceleration in BCS or linear SHM as in the
D states) as in pair rotation but it must be of very high frequency for (dv/dr)ay (lattice
vibration) to be large in the numerator also so that v, the velocity, remain small in the
denominator with the phase of “A” such that A(dv/dr).y remain the same sign so the polarity
giving the A is changing rapidly as well. This explains the requirement of the high frequency
lattice vibrations (and also the sensitivity to valence values giving the polarity) in creating that
pairing interaction force. Note there should be very few surrounding CuO4 complexes, just the
ones forming a line of such complexes since their own motion will disrupt a given CuOg4
resonance, these waves come in at a filamentary isolated sequence of CuO4 complexes passing
the electrons from one complex to another would be most efficient. Chern Simons developed a
similar looking formula to Ai(dv/dr)ay/v? by trial and error. This pairing interaction force
A(dv/dt)/v? drops the flat horizontal energy band (with very tiny variation in energy).saddle
point (normally at high energy) associated with a particular layer down to the Fermi level
making these energies (band gaps) accellible and so allowing superconducitivity to occur.
Twisted Graphene
Monolayer graphene is not superconductor by the way.
But what about two layers? For example a graphene bilayer twisted by 1.1deg rotation
creates a quasi Moire' pattern with periodic hexagonal lattice.
It is amazing that in this Moire pattern for each hexagonal structure there are carbons far
apart inside the hexagon and carbons close together around the edge of the hexagon making
these two groups of carbon atoms distinguishable in terms of their bonding lengths.
So how many high density carbons are in the less dense region of the hexagon?
3+4+5+6+5+4+3=30. How many carbons are in the more dense region of the Moire
pattern hexagon boundary? 5*6=30 again. So these two groups have the same aggregate
mass (but are distinguishable) just like the 4 Os and one Cu in the cuprates.
So if you twist one layer of graphene that is on top of another layer by 1.1deg it should
become a superconductor. And it is.
This pairing interaction force also lowers the energy gap to near the Fermi level.
8z=[-1+N(1-4C)]/2. If C<1/4 there is no time and the and so dt/ds=0 and so the scattering
Hamiltonian is 0. Thus there is no scattering and so no electrical resistance.
This is the true source of superconductivity.



4.6 Summary of Consequences of the Uncertainty In Distance (separation) C In
-0z=0z8z+C  eq.1
1) C as width of a slit determines uncertainty in photon location and resulting wave
particle duality (see above section 4.3.8).
2) C is uncertainty in separation of particles which is large at high temperatures. Note
degeneracy repulsion (two spin %2 can't be in a single state) is not necessarily time
dependent and is zero only for bosons. Also given the already extremely small Brillioun
zone bosonization separation (see equation 4.3 for pairing interaction source) then C is
small so not much more is needed for C to drop below % to the r axis for Bosons. Thus
time axis At=0 so Av=aAt =0. (note relative v is big here. Therefore there is no Av and so
no force (F=ma) associated with the time dependent acceleration ‘a’ for this Boson
flowing through a wire with the stationary atoms in the wire. So there is no electrical
resistance to the flow of the Bosons in this circuit and we have therefore derived
superconductivity from first principles. But there is a force between electrons in a pairing
interaction (that creates the Boson) because v between them is so small. Use pairing
interaction force mv”2/r between leptons from sect.4.8: Fpair =A(dv/dt)/v2. is large.
Recall that a superfluid has no viscosity. But doesn't viscosity constitute a force F as well
(F/m=a in dv=adt) and isn't helium 4 already a boson so that when C drops below 4 then
dt drops to zero as well? So superfluidity for helium 4 is also a natural outcome of a small
C.
3) C is separation between particle-antiparticle pair (pair creation). For C<1/4 we leave the
135° and 45° diagonals jump to the r axis and simple ds*> wave equation dependence
(Chl,section 2). Thus we have derived pair creation and annihilation. The dt is zero giving
no time dependence thus stable states. On the superconductivity we derived the pairing
interaction (eq.4.5.3) and superfluidity (sect.4.6). So for two paired leptons (via the pairing
interaction) the Hamiltonian of each one is then a function of both wavefuctions:
hoy10/t=uly1 vay2 and hoy/ot=woy1 +vay2 which gives the superconducitivity. See
Feynman lectures on superconductivity.
Alternative Method Of Doing QM: Markov Chains (eg.,Implying Path Integral)
4.7 Markov Chain Zitterbewegung For r>Compton Wavelength Is A Blob
Recall that the mainstream says that working in the Schrodinger representation and
starting with the average current (from Dirac eq. (p-mc)y(x)=0) assumption and so
equation 9 gives JO=[yMicony™d3x . Then using Gordon decomposition of the currents
and the Fourier superposition of the b(p,s)u(p,s)e P**** solutions (b(p,s) is a
normalization constant of [yhyd®x.) to the free particle Dirac equation(9) we get for the
observed current (u and v have tildas):
=] dp{Zss [[b(p,$)PHd(p,s)PIp e/ E +HZus o b*(-p,s”)d*(p,s)e? P u(-p,s")*V(p,s)
1Z45.45b(p,s”)d(p,s)e? P v(p,s”)a*u(p,s). (4.11.4)
(2) E.Schrodinger, Sitzber.Preuss.Akad.Wiss.Physik-Math.,24,418 (1930)
Thus we can either set the positive energy v(p,s) or the negative energy u(p,s) equal to
zero and so we no longer have a e?*%% zitterbewegung contribution to J, the
zitterbewegung no longer can be seen. Thus we have derived the mainstream idea that
the zitterbewegung does not exist.
But if we continue on with this derivation we can also show that the zitterbewegung does
exist if the electron is in a confined space of about a Compton wavelength in width, so



that a nearby confining wall exists then.

(3) Bjorken and Drell, Relativistic Quantum Mechanics, PP.39, eq.3.32, (1964)
Derivation Of Eq.9 From (uncertainty) Blob (reference 1)
Recall from section 3.4.4 that we can derive the zitterbewegung blob (within the Compton
Wavelength) from the equation 9.(see reference 2.) Also recall from section 1 that we
postulated a blob that was nonzero, non infinite and with constant standard deviation (i.e.,
we postulated 661=0). But that is the same thing as Schrodinger’s zitterbewegung blob
mentioned above. So we postulated the electron and derived the electron rotated 2AI
(i.e.,eq.9) from that postulate. We therefore have created a mere trivial tautology.
4.13 The Most General Uncertainty C In Eq.1 Contains Markov Chains
This final variation wiggling around inside dr= error region near the Fiegenbaum point
also implies a dz that is the sum of the total number of all possible individual dz as in a
Markov chain (In that regard recall that the Schrodinger equation free particle Green’s
function propagator mathematically resembles Brownian motion, Bjorken and Drell) where
we in general let dt and dr be either positive or negative allowing several 6z to even
coexist at the same time (as in Everett’s theory and all possible paths integration path
integral theories below). Recall dt can get both a \/(l-vz/cz) Lorentz boost (with the
nonrelativistic limit being 1-v?/2¢?+...) and a 1-ra/r=Ko, contraction time dilation effects
here. In section 2.2.6 we note that for a flat space Dirac equation Hamiltonian the potentials
are infinite implying below an unconstrained Markov chain and so unconstrained phase in
the action So dt—dt\(1-v¥/c*)Vkeo. ru=2¢%(mec?). We also note the alternative (doing all
the physics at the point ds at 45°) of allowing C>C; to wiggle around instead between ds
limits mentioned above results in a Markov chain. dZ=y=[dz=[e¢i%®dc=[eidsodc= [eidV(1-
v 2/er2pkoosods’ds. . In the nonrelativistic limit this result thereby equals
[ekeikdt(24n= [ei(T-V)dtgs ds . =[eiSds’ds =dzi+dzo+.. =y1+yat+.  (4.13.1)many more s
(note S is the classical action) and so integration over all possible paths ds not only
deriving the Feynman path integral but also Everett’s alternative (to Copenhagen)
many worlds (i.e., those above many Markov chain 8z=ys in [dz = ys=y+ya+.)
interpretation of quantum mechanics where the possibility of —dt allows a pileup of dzs at a
given time just as in Everett’s many worlds hypothesis. But note equation 9 curved space
Dirac equation does not require infinite energies and so unconstrained Markov chains
making the need for the path integral and Everett’s many worlds mute.: We don’t need
them anymore. Thus we have derived both the Many Worlds (Everett 1957) and
Copenhagen interpretations (Just below) of quantum mechanics (why they both work) and
also have derived the Feynman path integral.
In regard to the Copenhagen interpretation if we stop our J.S.Bell analysis of the EPR
correlations at the quantum mechanical -cos6 polarization result we will not get the
nonlocality (But if instead we continue on and (ad hoc and wrong) try to incorporate hidden
variable theory (eg.,Bohm’s) we get the nonlocality, have transitioned to classical physics
two different ways. We then have built a straw man for nothing. Just stick with the h—0,
Poisson bracket way. So just leave hidden variables alone. The Copenhagen interpretation
thereby does not contain these EPR problems. And any lingering problems come from that
fact that the Schrodinger equation is parabolic and so with these noncausal instantaneous
boundary conditions. But the Dirac equation is hyperbolic and so has a retarded causal
Green’s function. Since the Schrodinger equation is a special nonrelativistic case of the
Dirac equation we can then ignore these nonlocality problems all together.



4.14 2D2D

Also with eq.2Al first 2D solution there is no new pde and so no wave function. The
other solution to 2AI adds the other 2D (observer) and so we get the eq.9 new pde and
thereby its wave function. So we needed the observer to “collapse” the wave function.
This is the proof of the core part of the Copenhagen interpretation. Eq.42IA gives the
probability density 6z*3dz (another component of the Copenhagen interpretation so we
have a complete proof of the Copenhagen interpretation of quantum mechanics here.

4.15 Mixed State 2AI+2AI Implies There Is No Need For A Dirac Sea

The 1928 solution to the Dirac equation has for the positron and electron simultaneous
X,y,z coordinates (bottom of p.94 Bjorken and Drell derivation of the free particle
propagator) creating the need for the Dirac sea of filled states so the electron will not
annihilate immediately with a collocated negative energy positron which is also a
solution to the same Dirac equation. Recall y(+) and y(-) are separate but (Hermitian)
orthogonal eigenstates and so <y(+)|y(-)>=0 without a perturbation so we can introduce
a displacement y(x)—y(x+Ax) for just one of these eigenfunctions. But the mixed state
positron and electron separated by a substantial distance Ax will not necessarily
annihilate. Note in the 2AI (i.e., Vi, y"dy/dx,=(w/c)y) equation the electron is at 45° -
dr,dt and the positron is at 135° dr’,-dt’ which means formally they are not in the same
location in this formulation of the Dirac equation. In that regard note that dr/N(1-
ru/r)=dr’, r==2¢’e/m.c*=¢ so that different e leads in general to different dr’ spatial
dependence for the y(x) in the general representation of the 4X4 Dirac matrices. So in
the multiplication of 4 s the antiparticle y will be given a ry displacement Ar (dr—dr’
here) by thete term in the associated kv So the y(+)and y(-) in the Dirac equation
column matrix will have different (x,y,z,t) values for the y(+) than for the y(-). As an
analogy an electron in a given atomic state of a given atom can’t decay into a empty state
of a completely different atom located somewhere else. Thus perturbation theory
(eg.,Fermi’s golden rule) cannot lead to the electron spontaneously dropping into a
negative energy state since such 2Al states are not collocated for a given solutions to a
single Dirac equation (other positrons from other Dirac equation solutions can always
wonder in from the outside in the usual positron-electron pair annihilation calculation
case but that is not the same thing). Thus the Dirac sea does not have to exist to explain
why the electron does not decay into negative energy.

4.16 No Need for a Running Coupling Constant

If the Coulomb V= ov/r is used for the coupling instead of o/(ku-r) then we must multiply

a in the Coulomb term by a floating constant (K) to make the coulomb V give the correct
potential energy. Thus if an isolated electron source is used in Zoo we have that (-
Ko/r)=a/(ku-r) to define the running coupling constant multiplier “K”. The distance ku
corresponds to about d=10"'8m=ke?/m.c?, with an interaction energy of approximately
he/d=2.48X10%joules= 1.55TeV. For 80 GeV, r~20 (=1.55Tev/80Gev) times this distance
in colliding electron beam experiments, so (-Ko/r)= o/(ra-r) =a/(r(1/20)-r) )= -
o/(r(19/20))=(20/19)a/r =1.05a/r so K=1.05 which corresponds to a 1/Ka=1/a’~130 also
found by QED (renormalization group) calculations of (Halzen, Quarks). Therefore we



can dispense with the running coupling constants, higher order diagrams, the
renormalization group, adding infinities to get finite quantities; all we need is the correct
potential incorporating Vioo.

Note that the o’=0/(1-[a/31(Iny)] running coupling constant formula (Faddeev, 1981)]
doesn’t work near the singularity (i.e., x~¢*¥*) because the constant is assumed small over
all scales (therefore there really is no formula to compare o/(r-rn) to over all scales) but
this formula works well near a~1/137.036 which is where we used it just above.

4.17 Rotated 4Al Implies koo=1-ru/r =1/ So No Klein Paradox As Is In The
Original 1928 Dirac Equation
Recall that krr=1/(1-ru/r) in the new pde eq.2Al. Recall that for the ordinary Dirac
equation that the reflection (Rs) and transmission (Ts) coefficients at an abrupt potential
rise are: Rs= ((1-x)/1+x))? and Ts=4«/(1+k)*> where
k=p(E+mc?)/ka(E+mc?-V) assuming k> (ie.,momentum on right side of barrier)
momentum is finite.. Note in sectionl dr’*=kdr* and p~=mdr/ds in the 2AI+2Al mixed
state new pde so pr=(Vix)p=(1/N(1-r/r))p and so pr—>o0 so k—o the huge values of the
rest of the numerator and denominator cancel out with some left over finite number.
Therefore for the actual abrupt potential rise at r=rn we find that p, goes to infinity so
R¢=1 and Ts=0.as expected. Thus nothing makes it through the huge barrier at ru thereby
resolving the Klein paradox: there is no paradox anymore with the new pde. No
potentials that have infinite slope. Therefore the new pde applies to the region inside the
Compton wavelength just as much as anywhere else. So if you drop the Vi in the new
pde all kinds of problems occur inside the Compton wavelength such as more particles
moving to the right of the barrier than as were coming in from the left, hence the Klein
paradox(4).

(4) O.Klein, Z. Physik, 53,157 (1929)
So by adopting the new pde (eq.9 ) instead of the old 1928 Dirac equation you make the
Dirac equation selfconsistent at all scales and so find no more paradoxes.
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4.18 Mixed State 2AI+2Al1 C>1/4 and C<1/4 Implications For Pair Creation And
Annihilation

Note that if C<1/4 in equation 1 (dz=(-Bi\/(B2-4AC))/2A, A=1, B=1) the two points are
close together and time disappears since dz is then real for the neighborhood of the origin
where opposite charges can exist along the 135° line. So we are off the 45° diagonal and
therefore the equation 2 extrema does not apply. So the eq.2AIl fermions disappear and
we have only that original second boson derivative 8ds?>=0 circle ({2A,=0, [leA=0)
Maxwell equations. So when two fundamental fermions are too near the origin and so get
too close together (ie., dr=dr’, dt=dt’) you only have a boson and the fermions disappear.
So we have explained particle-antiparticle annihilation from first principles. In contrast
two fermions of equal charge require energies on the order of 100GeV to get this close
together in which case they also generate bosons in the same way and again the fermions
do disappear from existence. You then generate the W and the Z bosons (since above
sect.4.11 nonweak field k'kku,=Proca equation term) .

4.19 Eq.1 661=0=6C=0 Implies Invariance of The Variance

From equation eq.1 C is invariant. We can postulate anything we want. In that regard
recall (our postulate of) the concept of 1 can represent anything at all (one rock, one
house, etc.,) from appendix A. Algebraically we then write 1 as z=zz with our small real
error C (for C<1/4 z is real quadratic formula solution of z=zz+C). z=zzz is more
complex, is not the simplest way to write 1 and gives -1 also. Also the concept of error at
a minimum requires variance. But for it to be a well defined single variance, as eq.1
dC=0 implies, we also require invariance of the variance so that commoving observers



agree on a given value of the variance. Without the invariance even in the proper
commoving frame of reference the variance has no set value. So the simplest rigorous
definition of error is the “invariance of the variance”. So for the greatest generality for
real error C then we have by definition the usual real variance 6*=%i="(dz?)/n=|dz|?
typified by the central limit (theorem) normal curve data. So the invariant (proper)
variance is given by 862 = 8(Zi=1"(dzi?)/n) =8|dz|*=0, i.c., the invariance of the invariance.
So we have postulated (in 1+error) the most general error we can by just stating that the
variance is also a (proper) invariant as in 36°=0. This means we really do have a first
principles derivation of theoretical physics.
As a quantum mechanical (QM) analogy to invariant proper time ds in ds? (=dr’+dt?) the
o can be the Vvariance in the Schrodinger equation expanding minimal uncertainty
Gaussian wave packet with o=V(a>+(ht/2m)>?). Please note the proper time t and its
relation to o for small a.. Thus in the case of the minimal uncertainty wavepacket c really
does increase with proper time ds (=t) so we really do have invariance of the variance!
Another QM analogy is that 8|dz>=0 (eq.4)just says that there is a peak in the central
limit theorem normal distribution curve with dz thereby representing the number
measurement electrons filling consecutive 1D degenerate states. There are other such QM
analogies with 8|dz/>=0. In any case our error definition is consistent with QM. Also
recall that the simplest starting point is a real positive 1 (ie., Relz=1) algebraically
defined by z=zz. This is then what we define to be this “real” error. This invariance of the
variance is the most general error (there just has to be a peak in P(z) somewhere) with the
fewest possible artificial constraints on C

making this (z=zz+C—eq.2) a first principles derivation of theoretical physics.
So a realistic error C is a measurement error in addition to being a real number and comes
from the most general probability distribution that peaks (possibly even around a
systematic error value), such as for a bell shaped curve P(dz) as is implied by the central
limit theorem. This systematic error might be due to a slit, as in single slit diffraction for
a narrow slit, where the uncertainty-error C is then a measure of the slit width in a
diffraction experiment (see section 10C). Note from equation 2 that the ds’ uncertainty
(call it 8) is along the radius and the ds? uncertainty ¢ is along the circumference. ¢,5
(symbols also used in defining the limit in calculus) here then define regions of the 2D
plane of nonzero probability (eg.,of our picking the given § for which [x-X,|<0) in our
application. So € more likely is in the variance oval along the circle (for ds?, other € s
have near zero probability) whereas o is more likely in the variance oval along the radius
for the orthogonal ds’ (section 1). Given that the average ds’ distance must be to the
circle we can only say then that “most probably” ds?=ds’%. So the peak C can in general
be taken to be a real constant error bound given the possibility of these types of
systematic error. This is what we mean by realistic error C. Even in the below
Mandelbrot set application (and that http simulation in fig 5) we actually only use the real
z line results at -\2 so the end result C we use is s/l a real number!
C is the most general real error possible which is a necessity here if we are to have a
single succinct postulate, without qualifiers which would themselves amount to new
postulates Also there are other ways of introducing this error C such as z-C=(z-C1)(z-
C2)+C;s for real Cs. But they all lead to a quadratic equation which in general has a
complex solution which is the main result coming out of equation 1. The general result is
Az>+Bz+C=0 where the A can be canceled out with B then determining the size of the z



plane and C being a free floating uncertainty scaled with B allowing us to set B=1. So we
can always scale (i.e., rename) the coordinates to some smaller value and not change any
physics result. Thus z=zz+C always holds allowing us to maintain consistency with that
zn+1=znzN +C (quasi) Markov chain analysis (e.g., fig.5). Also even z=zx+C (as a
substitution into z=zz+C), where N is an arbitrary integer, leads to an equation with a
complex plane solution z.

Note for a given fractal manifold A? (possibly the area of Mandelbrot set), the curvature
scalar (R=2/ry?) metric density (1/R)/A? =constant. Note by allowing C to be on a Julia
set (and not just the one value at ds) we still have those uncorrelated random variances as
in the Markov chain application below.

Chapter S Second Solution Cv Contribution To kyy Due To Object B
Note we are within the Compton wavelength of the next higher fractal scale new pde (we
are inside of ru). Also our new pde does not exhibit the Klein paradox within the
Compton wavelength (because of the «j s) or anywhere else so our new pde is valid there
also. Note for r<ru then E=ho=E=1/coc=1/(1-rs/r) and therefore this square root is
imaginary and so i® — in the Heisenberg equations of motion. Therefore r=roe'*
becomes instead r=r,e®' (that accelerating cosmological expansion) which is observable
zitterbewegung motion since mt does not cancel out in y*y in that case and again we are
within the Compton wavelength and so even according to the Bjorken&Drell PP.39
criteria the zitterbewegung therefore exists.

Also note in the above kn=1/x« we have derived GR from our theory.

5.1 The Ry Is Also A Quantum Mechanical Operator.

Recall section 1.5 implies General relativity (recall eq.3.3 and the Schwarzschild metric
derivation there). Note also in Ch.10 we defined the quantum mechanical
[A,H]la,t>=(0A/0t)|a,t> Heisenberg equations of motion in Ch.10 with |a,t> a eq.9 (4Al)
eigenstate. Note the commutation relation and so second derivatives (H relativistic eq.9
(4Al) Dirac eq. iteration 2nd derivative) taken twice and subtracted. (0A/ot)|a,t>. For
example if ‘A’ is momentum px= -10/0x. H= 0/0t then [A, so we must use the equations of
motion for a curved space. In this ordinary QM case I found for r<ry that
r=r,e™ H]a,t>=(0A/dt)|a,t>=(/t)(0/0x)-(0/0x)(6/6t)=pdot. But Vi is in the kinetic
term in in the new pde with merely perturbative t’=tVioo. But using the C2 of properties
of operator A (C? means continuous first and second derivatives and is implied in
sect.1.5) in a curved space time we can generalize the Heisenberg equations of motion to
curved space nonperturbatively with: (Ajj-Aikj)la,t> =(R™jjkAm )|a,t> where R%.q is the
Riemann Christofell Tensor of the Second Kind and «a—>gab. Note all we have done
here is to identify Ak as a quantum vector operator here, which it should be. Note again
the second derivatives are taken twice and subtracted looking a lot like a generalization of
the above Heisenberg equations of motion commutation relations. Note also R™jx could
even be taken as an eigenvalue of pdot since it is zero when the space is flat, where force
is zero. These generalized Heisenberg equations of motion reduce to the above QM form
in the limit ®—0, outside the region where angular velocity is very high in the expansion
(now it is only one part in 10°).



5.2 Solution To The Problem Of General Relativity Having 10 Unknowns But 6
Independent Equations

From Chapter 4 this zitterbewegung (de Donder harmonic motion (2) ) plays a much
more important role in general relativity(GR) The reason is that General Relativity has
ten equations (e.g., Ryw=0) and 10 unknowns g,v. But the Bianchi identities (i.e.,
RopuviatRopruvTRopva;=0) drop the number of independent equations to 6. Therefore
the four equations (ie., (K“V\/-K),H =0) of the (zitterbewegung) harmonic condition fill
in the four degrees of freedom needed to make GR 10 equations R,,=0 and 10
unknown g,v. We thereby do not allow the gauge formulations that give us wormholes or
other such arbitrary, nonexistent phenomena. In that regard this de

Donder harmonic gauge (equivalent condition) is what is used to give us the historically
successful theoretical predictions of General Relativity such as the apsidal motion of
Mercury and light bending angle around the sun seen in solar eclipses. So the harmonic
‘gauge’ is not an arbitrary choice of “gauge”. It is not a gauge at all actually since it is a
physically real set of coordinates: the zitterbewegung oscillation harmonic coordinates.
(3) John Stewart (1991), “Advanced General Relativity”, Cambridge University Press,
ISBN 0-521-44946-4

Fractalness Implications: Effect Of Object B on Object A

6.1 How Many Objects Are There On the M+1th Fractal Scale?

Recall section 4.2 and the 6 cross terms requires yet another electron coming out of eq.2a,
then anothera. This procedure carries with it the two neutrinos (so E&M electrons) and
more applications of 1b and so it generates a sequence of electrons up until 1082, Thus if
we one electron we then must have 1032 electrons.

So there could be a second object near to our own object A in this fractal universe. . In
fact in our fractal universe there is a 75% probability our object A is one of three objects
in a proton. We will call the central eq.2A1 object in this proton object B and the third
object, object C.

Note object B is responsible for those € and Ae metric quantization states. So where does
object B itself come from? Again recall section 3.1 and the origin of the other objects on
a given fractal scale. The horizons ru have the property that the amount of information
inside (also the entropy) is equal to the area of the outside. So given 10>’m~10"' LY= rpp
10 "Bm =rus An/Ans=(1027)2/(10 1°)> =10°*/ 10-3° =10%* =number of pieces of
information.=number of fractal objects inside ru. In the context of the 10*°X fractal jump
result the space time radius is subdivided by10* so alternatively there are 4m(10%°)>=108!
pieces of information inside ru which is the actual first principles method of getting the
10 32.given the 10* explicitly comes from that fig.5 Mandelbrot set analysis which comes
from our equation 12.0bject B is just one of those 10%? objects. So in that limit the
number of maximum density incompressible ru radius objects at the ry surface must be
equal to the sphere surface area 4m(ry)*= 4n(2.2813X10%)? = 6.54X 108! of (fundamental)
objects with nonzero rest mass in our universe. Intuitively we are simply saying that the
density of all ry even horizons is the same since we created the larger horizon 4nry? area
by patching together the smaller horizon 4nry? areas. This result is consistent with (solar
mass)X(suns per galaxy)X(number of galaxies)/(proton mass)
=6X103X10'2X100X10%1.67X10%’= 7.1856X107° objects.



In ho=E, ® goes down by 10*°X in going up to the next fractal scale. So h Planck's
constant increases by 10*°X in going from Nth fractal scale to the N+1th fractal

scale. Also the force between the two large universes goes up by 10% but between two
electron's goes down by 10%°X, gravity.

6.2 r<ruy Observational Evidence For Object B

Recall there are two metrics in section 3.1 and outside Schwarzschild and inside De
Sitter. But because of eq.2Al (and so eq.9 modified Dirac equation) we are in a rapidly
rotating object, the electron rotating at rate c (in the fractal theory at least. It is the
solution to the Dirac equation eq.9). But because of inertial frame dragging in object A
observed spin is extremely small except for a small contribution to reducing inertial
frame dragging of object B (section 4.1.2). So the geodesics are parallel (flat space
holonomy) just like the cylinder. Inertial frame dragging should not destroy the
holonomy, just rotate the cylinder but it stays a cylinder. We can realize that for a
spherical metric by maintaining the parallel transport which means the expansion is
needed to maintain the cylinder. From our perspective we see a sphere with a flat space.
Recall the mainstream guy also said this space is in fact that of a 3D cylinder, which it is.
This 'seeing ourselves' is also predicted by the mainstream stuff too given the
observations of the flat space and the requirement of the cylinder topology. But seeing
ourselves is so weird to the mainstream that they have postulated a pretzel space instead
at large distances.

So the universe is fractal with the (Dirac spinor) the Kerr metric high angular momentum
local cylinder near ry dominates and creates the flat space time associated with a cylinder
so that two parallel lines do remain parallel within the time like interval at least. When
we look out at the edge of the universe in some specific direction, beyond that space like
interval (that we cannot see beyond) we are very nearly (just over the space- like edge)
looking at ourselves as we were over 12by years ago. We are looking back in time at
ourselves! (in this fractal model).

The hydra-centaurus supercluster of galaxies is about 150MLY away. We would find it
by looking in the opposite direction of the sky from where we see it now, it would be a
smudge at submillimeter wave lengths.

So create a map of the giant galaxy clusters within 2By of the Milky Way galaxy and
invert each object by 180° to find the map of the oldest redshift galaxy clusters

Given 2D piece of paper, you can connect the ends a few different ways by folding it.
Connect one of the dimensions normally and you have a cylinder. Flip one edge over
>before connecting and you've made a Mobius strip. Connect two dimensions, the top to
the bottom and one side to the other, and you have a torus (aka a donut). In our 3D
universe, there are lots of options — 18 known ones, to be precise. Mobius strips, Klein
bottles and Hantzsche-Wendt space manifolds are all non-trivial topologies that share
something in common: if you travel far enough in one direction, you come back to where
you started. Bg gravimagnetic dipole from the new pde provides the spherical torus shape
for this.

In this fractal universe we do this. In fact there is only one way to do it: in the ru cylinder
region of the Kerr metric near c rotation rate, so the topology is a given.

6.3 The Distance Of Object B From Object A Determines Particle Mass



Recall section 4.1; 4.1.3 and the derivation of the 103! X electron mass there. That
implies that our universe is not the only object on the N+1 fractal scale. Since we are at
the Fiegenbaum point the fractalness is exact so that there is a 75% chance our object A
is one of three such “electrons” inside a proton. Note in sect.2.1 the equilibrium
established after the initial slow expansion so that energy density is uniform so that
k(4/3)nr’. We are located in a huge (rotating) electron Kerr metric object. But if there
was no nearby object there would be complete inertial frame dragging. But recalling the
large rotating shell approximation of GR (Mach’s principle implication) we see that a
nearby large object B will reduce the inertial frame dragging and so make the metric a
Kerr metric:
Section 3.1 implies a Schwarzschild metric for the outside observer r>ry for an isolated
object (eg., no object B nearby) since that was the assumption made in the derivation. But
equation 2A1 (solution to equation 4) leads to equation 9 and the new pde. In that
equation the object 2A1 electron has spin S, is rotating and can be seen as such if there is
a object B nearby (see below). Thus for no nearby object we have the Schwarzschild
metric but in general with a nearby object the internal r>ry sees a rotational (Kerr) metric
(so from section 4.1.2 assumed to be a quantum operator) which is given by:

2
ds® = p° {dLmer +(r* +a’)sin’ 0dg” - dr’ +2—”§r(asin2 9dt9—cdt)2 :
A p

where o (r,0)=r" +a*cos’0;  A(r)=r* —2mr+a’, Note the oblation term a’cos?0.
To find the perturbative contribution of Eq.3.2 in sect.3.1 to the Schwarzschild metric we
note that for near zero rotational speed we can take d6/ds=0, or just d6=0. Also for
0=90° then c0s90°=0, p? =r%. So the above equation becomes

ds?= dr?/(1-2m/r+(a/r)?)+r2d0*+(r>+a?)sin?0(vdt/r?)*+ 2asin0dOcdt+(2m/r-1)dt?

ds?= dr?/(1-2m/r+(a/r)?)+r2d0*+(r*+a?)sin’0d >+ 2asin’0dOcdt+(2m/r-1)dt?
~ds?= dr?/(1-2m/r+(a/r)?) +(2m/r-1)dt? (6.1.1)
The (a/r)? is the energy € angular momentum term which also turns out to be the muon
mass. The fractal ground state Ag (is part of the background mass) is added to this.

That ry in the old GR metric is ru=2GM/c? (the fractal M+1) scale ru. The Mth scale ru
is that 2e*/mec’=ry and gives those QED results without the renormalization.
dr?/(1-2m/r+(a/r)?) —c2dt*(1-2m/r) (6.1.2)
with (a/r)? =¢ being the ambient metric of section 6.4. Thus the ambient metric is caused
by the reduced inertial dragging associated with a nearby object B. Note in equation 7 we
are again subtracting ¢ but this time possibly in the form of {dr=(a/r)* where {=¢/dr. This
is the mass energy term {dr=(a/r)* of equation 3.2, sect.1.1.5. The (a/r)? in €q.6.1.1 is the
energy € angular momentum term (and also Ag), which turns out to be the muon mass..
6.4 This Added (a/r)? term Is Then The Source Of The Ambient Metric And Mass
Tensor Geometry Consequences of C?
Recall section 3 implies General relativity (recall eq.3.2and the Schwarzschild metric
derivation there). In that regard given a (observable) vector operator A that explicitly
operates on the y of equation 9) we then construct the Riemann Christofell Tensor of the
Second Kind R%.q (from section 4.2.1 we can assume it is a quantum operator) from the
Kab=gab using the C? of A given by (Aij-Aixj)|a,t> =(R™ijkAm )|a,t>. We can then contract
this R™jkAml|a,t>= tensor to get the Ricci tensor Rjj (here Rij =R™jjm).



Note here A is the Quantum Operator and the coefficient R,y is a (geometry) tensor.
Define the scalar R = «*YR,,, We then define conserved quantity Z,, from

Ruv-YowR=Z,0 (6.4.3)
after substituting in equations 3.2, 4.1 we see for example that ~ Zoo=4nry  (6.4.4)
where from equation 4.4.3 we have ry =2¢?/mec’.

In free space we can see from equation 4.2 that: RuvAvja,t>=0
From section 1.5 solving the geometry components R20=0 and Ri1 =0 using 3.2-3.5 for
spherical symmetry gives us respectively l/kn=1-rn/r, and xn=1/K00 (6.4.5)

showing that equation 6.4.2 is equivalent to equations 3.2 and 3.3 if there is no nontrivial
background metric contribution (i.e.,&=0). The (a/r)? in eq.6.1.1 is the energy ¢
contribution of the energy angular momentum term, which turns out to be the muon mass
in: 1Nkoo=(12e£Ae/2)e/Ae (6.4.6)
Use metric a ansatz: ds’>=-e*(dr)?>-r?d0%-r’sin0d¢*+eHdt? so that geo=e*, gr=e". From
equation 4.2 for spherical symmetry in free space

Rii= Vo= Val '+ Va(u’)?-A’/r =0 (6.4.7)
Rox=e M 1+V2 r(p’-1)]-1=0 (6.4.8)
R33=sin?0 {e[1+Yar(n’-1")]-1}=0 (6.4.9)
Roo=eMM-Vapu ™+ M -Ya(w’)*- w/irl= 0 (6.4.10)
R;j=0 if i#]

(eq. 6.4.7 -6.4.10 from pp.303 Sokolnikof): Equation 6.4.8 is a mere repetition of
equation 6.4.7. We thus have only three equations on A and p to consider. From
equations 6.4.7; 6.4.10 we deduce that

A’=-w’ so that radial A=-p+constant =-p+C for our nonzero free space metric of section
4.4 normalizing to one real dimension as in the postulate. So e**“=e*. Note C can be
imaginary or real. Then 6.4.8 can be written as:

e et (1+rp)=1 (6.4.11)
Set e*=y. So e =ye'* and so integrating this first order equation (equation.4.4.9) we get:
y=-2m/r +e* =e* and e”=(-2m/r +¢%)e (6.4.12)

From equation 6.4.3 we can identify radial e“~1+2¢ with also rotational oblateness
perturbation Ag already a component here (section 6.4).

In general write the resulting asymmetry in 1/x:r and Koo by resetting the proper time
(squared) clock ds? (details in section 6.4.13) by multiplying by the pure radial e“~1+2¢
coefficient allowing here for both (relative) positive and negative ¢ in the background
metric:

mzzﬂig{ﬂig+Asz— ! )mﬂ} (6.4.13)

(1fe+Ae
Note for the 1+¢ choice in equation 4.1.2 we have goo=1+2e+Ag, g2o=1/(1+A¢g) (used
below in equation 18.3 for real metric coefficient case) or for imaginary C as above

Goo= €1(25749) (6.4.14)
used in 4.4.16 for background metric case. €=.060406.
Note the (a/r)?in 6.4.2 is then the e+Ag in the denominator on the right side of eq.6.4.13,
the main reason we went to so much trouble to derive 6.4.13. Thus we have shown how a
nearby object B creates mass in object A.
Note(r,t)X(¢,0) is a Cartesian product of two 2D spaces here.



Thus the (a/r)? term in Eq.6.4.13 thus provides a background metric and this ambient
metric then provides the mass of the fundamental leptons. Tauon (1), muon(g) and
electron€. Object B and object A area two body object on the next fractal scale(with
wg=Wwa at the ry boundary due to causality) effect of causing a drop in inertial frame
dragging and a increase in the mass of the particles through the mass degeneracy
provided by quantum mechanical vibrational t tauon and rotational € muon and ground
state Ag electron metric quantization eigenstates of object A and B together. In
Koo=1+et+Age-ru/r. (6.4.1)
6.5 Sum Of All These Effects: Stair Step Metric Expansion
Given the inertial frame dragging reduction effects of nearby object B (sect.6.4.3) the €
(muon) and Ag (electron) have their own zitterbewegung frequencies from the new pde. It
is at r<rc so it exists (sect.4.1). Also from the object A new pde locally r=r.e*' for
expansion. Also the underlying object A space-time is Minkowski, flat space-time as we
see in equation 5.1.1 since the time spent in the later parts of the expansion the eq 4
Gauss’s law Gaussian Pillbox is nearly empty since most of the material is most of the
time next to the horizon ru So classicaly the interior of ry has no gravitational force
associated with it and thus is a flat Minkowski metric. These two object A criteria are not
perturbations (6.11.1). Recall the outside observer sees a zitterbewegung independent of
location inside: it all happens at once. So for the r=r.e*' expansion to work simultaneously
with the Minkowski metric it all must happen simultaneously within ru. The whole thing
rises at once from the outside observer’s point of view. The two object A and two object
B criteria are satisfied everywhere if we have a stair step Minkowski space time, where
the space-time is Minkowski at the flat part of the steps with the vertical part being
infinitesimal in both time and space. So over the entire interior of object Awe have the
step function geo=2ssin((2n+1)mt)/(2n+1) with ® being both separately the € and Ag
omegas giving a square wave which is (locally) flat if the sum is to n=oo. The separate
sums also exhibit the required perturbation frequencies € and Ae. Both € and Ag are
smaller than 1/k=r. so they can be actual oscillations (sect.6.11). So the jumps in the
larger € square wave function X,(sin((2n+1)wt)/(2n+1)) functions must be to the
envelope of the exterior observer r=r.eX! nonpertutbative function turning the notional
space-time rubber sheet into a stair step function. The whole thing still rises at once. But
the € and Ae object B transmissions are local and so get dispersive frequency cut-offs at
galaxy scattering cut-offs at 1/100kLY so have 100kLy wide Gibbs jumps. Thus the
space time (and so Gamow factor) briefly jumps up and down every € (So every 270My,
the mass extinctions, the last one being at 248My.) and to a much weaker 1/100
amplitude for Ag every 2.5My. The whole thing rising at once gives rise to some
interesting phenomenology. For example a metric quantization event is seen to happen
localy at first and then spread out from the observer at speed c. So for example the
previous 248My metric jump event can be seen still happening at 248My from us, where
in general we then see “rings” of these cyclic events.
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Rayleigh Taylor Instability M1

Rayleigh Taylor Instability for universe. Object B zitterbewegung
resonances for rotational bands.

270My apart thick radii (red lines) as in this right figure along with remnants of the
Rayleigh Taylor instability (4.3.3) of the original big bang. Note from rings in image
nonrelativistically Az=.02=x/13.7, x~270My.

The researchers looked at 800 galaxy clusters across the universe, measuring the
temperature of each cluster's hot gas. They then compared the data with how bright the
clusters appeared in the sky.

If the universe was in fact isotropic, then galaxy clusters of similar temperatures, located
at similar distances, would have similar levels of luminosity. But that was not the case.
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A map showing the rate of the expansion of the Universe in different directions across the
sky.K. Migkas et al. 2020, CC BY-SA 3.0 IGO



In my theory the universe is fractal (note Mandelbrot set discussion below) with 10"40X
fractal scale separation. Postulate 1 implies eq.1 and eq.2 and they in turn imply eq.2Al
and that Clifford algebra. so they imply leptons, eq.2Al (eq.9) is the electron which has
spin so is dipole which also thereby is fractal. So we are inside of the next largest
"electron" and it is a dipole, as in that image below. Thus an interior cosmological
dipole is the most blatant manifestation of the fractalness

From the mainstream:

"The researchers looked at 800 galaxy clusters across the universe, measuring the
temperature of each cluster's hot gas. They then compared the data with how bright the
clusters appeared in the sky.

If the universe was in fact isotropic, then galaxy clusters of similar temperatures, located
at similar distances, would have similar levels of luminosity. But that was not the case. "
Note this dipole has the same orientation as the axis of evil (for the CBR).

6.6 Origin Of Mass
Section 3.3 (object B implications sect.4.1.3; 4.1.4) then give us the origin of the mass of
2AlI. For example object B is close to object A (so smaller inertial frame dragging and
larger (a/r)?) and larger mass term & in 4.1.2 and so in 4.1.3. Also 2AI is off the diagonal
so £dr>0 so Cu=Edr=¢ so ¢/E=A=De Broglie and so &./ru=Ag=4Al is larger than if object
B was farther away.

In that regard recall that object B is outside the big 10!'LY horizon so its state is still
oscillatory in the eq.9 Heisenberg QM formulation for p for example T(t)|p>=p(t)> where
T(t)=e'""*, Recall alternatively inside ry the i—>1 so the time evolution is purely
exponential, hence the r=r.e" accelerating universe expansion discovered by Perlmutter et
al in 1998. We did a radial coordinate transformation (sect.7.8) to the comoving observer
frame and got In(rm+1/mob)+2=[1/(e*-1)-In[e*-1]]2 which is locally still r=r.e** but jumping
by € and Ae and entangled state values (sect.4.2.4). The dyadic radial coordinate
transformation of Too=¢? dyadic divided by m. to that local coordinate system comoving
with r=r.e" gives “constant” gravity G (see Ch.12). So what the N+1th fractal scale
observer sees as the electric field the Nth fractal scale observer sees as gravity. The
dyadic angular transformation at our present r=ry gives coefficient 1/(1+¢)? (from 4.7.3).
Mass is also time since 2GM/c’*=invariant in sect.7.4 with G changing with time. So mass
is also our clock time.

Section 6.7 N+1 Fractal Scale Object B and C Rotation, Vibrational, Entangled
State Transitions For r<ry

In section 7.4 we do the radial coordinate transformation. In this section we do the
transformation to the rotating frame allowed by object B. With object B close by there are
two quantum states rotation € and ground chiral state Ae just as you see in Raman spectra
for a diatomic molecule and the entangled states. These are the lepton states 4Al 4All of
section 1). So ®1—>®>. and ®, gets through at the cosmological rg boundary (i.e., rope
not broke). So what was outside (object A cosmological object) as ordinary "diatomic"
quantum states (t vibration E=hw,(N+1/2) and rotation & E=ho'.V(L(L+1)), @e>>0') is
the metric quantization inside and also the entangled states. The single unentangled level
metric quantization gets you the particle masses, the entangled states (classical analog:
grand canonical ensemble with nonzero chemical potential) are those metric quantization



states (PartlIl). Note with metric quantization you can just copy the well known equations
associated with the quantum physics of a diatomic molecule to determine what goes on in
those metric quantum jumps (the ®, and H is obviously different from these book
values). There is the also the rotational state €.

From the Kerr metric there is the Ag electron nondiagonal term if object B was not
moving. The nearby Fiegenbaum metric point generates spin 2 =s background. But
object B also rotates around object A (actually vice versa) so € (s’=L-s) also exists. Note
in Chapter 9 we derived energy eigenvalues for perturbative r in ru+r thereby perturbing
the B flux quantization h/2e. The ambient metric is a cosmological global phenomena for
the N+1th fractal scale so we use g,y instead of kv and so have ru/r cosmological
contribution in that case. Below fig5 we also noted that
Zoo=(dr/dr’)*=(dr/(dr+£))*=1/(1+£)*~(0x0/0x o )* Where goo component also acts as a
dyadic for ds components for the transformation from a nonrotating flat space time. So
we can also use a nonperturbative derivation of the P state (solution to the new pde)
oblate rotation states in the above section (on object B rotational € eigenstate
implications) to obtain mass eigenvalues since the € eigenvalue is already known. The
new state is then defined by the 0x./0x’=y=1/(1+¢) kinematic transformation term

in the dyadic 0-0 term whenever Ko is used implying the rg. So we have done a
rotational coordinate transformation of g, to the coordinate system commoving with the
rotating system (analogous to the radial commoving transformation of sections 7.2, 7.3 )
and getting a new source € in goop’. Section 7.4).

6.8 3 Metric Quantization Levels From Object B

Recall there are 3 main levels of metric quantization coming out of object B, the Ag,g, 1
levels (i.e., electron, muon, tauon) arising from the QM ground state, rotation and
vibration levels of object A with B that get through the ru boundary and also become GR
metrics inside. This means that instead of that single GR single ambient metric rubber
sheet there are 3 gjj. So ®i1—m2. across the rg boundary so rotation and oscillation ko
eigenstates are passed inside as metric quantization provided by object B as r—0: Metric
disturbances cross the metric boundary and curved space unscattered just as light moves
through magnetic and electric fields unscattered.

Alternatively, you could also say that object B gives the metric quantized energy levels
Ag, €, T analogous to carbon monoxide vibrational T and rotational € and ground state
electron mass Ae energy levels. Also there is that 2D complex plane solution of equation
2a and this plane contains both equation 2AI and 2All, eg., the electron and the anti
neutrino 2AIIB which share the same 4D 6 cross term Clifford algebra eq.4A1 terms. So
with these 3 complex planes we have then for the first plane an electron and electron anti
neutrino, for the second plane a muon and muon anti neutrino and for the 3rd plane a
tauon and tauon anti neutrino. So in the decay channels these fundamental leptons and
neutrino are always associated (i.e., associated production). So neutrinos are associated
with their respective leptons (WetWev) HWetWe ) H(Wtyiv)=y.

Each o oscillation at the horizon whether it be from oscillatory, rotational, eigenstates
brings in an associated ®., o, though the object A horizon ry as a seperate g,v implying
a separate 2D metric from equation 1 and equation 2 for each gy. Thus we have three 2D



space-times the neutrino, electron neutrino multiplets.
Casimir Effect
Also for two nearby conducting plates the low energy neutrinos can leave (since their
cross—section is so low) but the E&M (E. standing waves) has to remain with some
modes not existing due to not satisfying boundary conditions, because of outside Ag
ground state oscillations implying less energy between the plates and so a attractive force
between them (We have thereby derived the Casimir effect).

Pure States
eide > 1/[V(1-Ae-ru/r)](1/(12e)y=(1/NAe)(1/(14e) W,Z. L Paschen Back E=Buy(0+0+1+1)
et > 1/[N(1-e-rn/r)](1/(12e))=(1/\e)(1/(1£e) nt, n°.|| Paschen Back E=Buy(0+0+1+1)
See section 6.12 and PartIII for mixed metric quantization states e!¢*4¢),

Multiple Applications Of The Time Development Operator U=e''* In y(t) =U[y(t,)]
6.9 Ultrarelativistic Object B Also Source Of The Mexican Hat Potential

Recall y(t) =U[y(to)] with U=e'Ht, t=t,+dt.

You substitute in the respective t and H (in the U). U=Ukg+Usg, where Uxg=Klein
Gordon 2™ derivative component since our ¢ turns out to be a scalar.

So from the fractal theory object B has to be ultrarelativistic (y =1836) for the positrons
to have the mass of the proton. So the time behaves like mc? energy: has the same
gamma: t—to/\(1-v¥/c2)=KH since energy H=moc? has the same vy factor as time does. So
in the ¢ of object B the Ht/h=(H/\(1-v¥c?))to/Kto= KH?>=¢?. Define ¢=HVK. Note also
ultrarelativistically that p is proportional to energy: for ultrarelativistic motion
E*=p?c*+tm,’c* with m, small so E=Kp. Suppressing the inertia component of the k thus
made us add a scalar field ¢. Thus ¢ =p(t)=e""*|ps>=cos(Ht/h)=exp(iH>to/Kto)=
exp(idp?)=cos(¢p?)=¢'=1-¢*2. Thus for a Klein Gordon boson we can write the Lagrangian
as L= T-V=(d¢/dx)(d¢/dx)-¢"= (dd/dx)(dd/dx)-¢'*= (dp/dx)(dp/dx)-i(1-0*)'2. Thus we
define this Klein Gordon scalar field ¢=4 Al by itself from:

(Du)t(Dud)) - i/l(((qbtgb)z - vz))z Note in the covariant derivative

Dy = [0, +igWt +ig' 2B, |
W is from our new pde S matrix. Need the B, of the form it has to make the neutrino
charge zero. Need to put in a zero charge Z. The B component is generated from the
ru/r and the structure of the B and A=W+B =4, = cosfy/ B, + sinHWWI}is needed to
both have a zero charge neutrino and nonzero mass electron. So Define
A, = cosOy B, + sinfy, W/}
Z, = —sinby B, + cosby, W}
The left handed doublet was given by the fractal theory (eq.1.12)
l, = (VEL)

L
W is needed in W +B to bring in the epsilon ambient metric mass.
Need to add the second term to the Dirac equation to give the electron mass.

AL, = eRiy”(a# - ig’Bu)eR - fu(le¢e + eRd)le)

Recall section 4.9 ambient metric requires division by (1+e+Ag+rn/r) to create the
nontrivial ambient metric term 1+te.

6.10 Use y(t) =U[y(to)] with U=e", t=t,+dt To Derive Physics



Recall y(t) =U[y(to)] with U=e'"", t=t,+dt. U is called the time development operator.
In the Schrodinger representation. To figure out what the time reperesents we note that
2GM/c*=ru (as well as the 10*°X smaller ru=2¢?/m¢c?) is invariant from section 1.1; it is
the Fiegenbum point. So from sect.7.4 if G is going down in time then M has to go up!
Recall E=1/vkoo with koo=1-e-Ae-ru/r. Therefore mass M varies with time and so we use
M as a measure of time. So in general y(t)=Uwy(to)=eMy(to)=Koo P (ty) =

ET+Eg+Ep¢

el 72 to i(Ae+e) 1

(to) = | exp P(t,)=e"y(t,)
Vit G (1-¢) /1—g+Ag+r7H ° °

(6.10.1)

6.11 S States Are Point like Particles And P States Are Not Point Like Particles
P States At r=ru
Recall Ag is ultrarelativistic so integrating the 2AI+2AI+2AlI (Partll) Fitzgerald
contraction in the 2P state (L=1), r=ry gives (cosO=v/c=)

ra)V(1-cos20)cos0d0=ry/sinOcosOdO=rysin?0/2=rn/2=rup
so there is contraction by only a factor of 2 from the vantage point of the plane of
rotation (From the axial perspective the radius is Fitzgerald contracted to near zero.).
From part II. the ¢ P state big radius: rup=2ke?/electron~2ke?/mcc?=2.817F =ry
S States at r=ry
A S state T+u+e doesn’t rotate (note P states in contrast are L=1; S states S=0) so there is
a simple Fitzgerald contraction across ru. For r=ru S state ko0=1/k: for koo =1-ru/r in the
spherical symmetry of the Schwarzchild metric. This requires new distance and time

units be defined using
TH

(1—6—A€—r—H) a” +.E<1—“£T‘A£>dt’2+. (6.11.1)

r)1-e-As

This also gives us the magnitude of our Fitzgerald contraction. y=(4X1836)X of T and p
in ro=ru/(1+€”) =ra/(4mp(1+€)c?) Lepton . (6.11.2)
Thus the object B, S and P state metric quantization is the source of the tiny S state radius

e=rps=2ke?/2tauon~2ke?/(4mp(1+€)c?) (6.11.3)
This explains why leptons (S states) appear to be point particles and baryons aren’t!

ET+Eg+Epag)to

So used eq.6.11.1 in the time development operator koo (t,) = €' vz Y(ty) =

i(As+¢) 1

7 —| |W(t)=e"y(t,)  so
(1-¢) 1_((1—£—A8)>

T

Ee= e _ (tauon + muon + e masses) (6.11.4)

_rC
r (1+¢)

6.12 Calculate Sy, State Energy Caused By That New koo In Equation 9
Also recall the 2,0,0 state hydrogen eigenfunction y2,0,0=(1/(2a0)**(1-r/(2a,))e™?*°. Also from
eq. 4.4.1: ru=2e*/mcc?. Next find 2,00 eigenfunction average radial center of charge value of:



. 4 =
r=<r>:_|‘0 FY R, oWl dr = y Ir (1=r/2a,)e"* (1-r/2a,)e”" "> r*dr=

0

(2a,)" ¢ , Y., 8a,(6 48 120
4(2a)'([ (1 2r+r)ezdr—7—y.|.(—— E 2 dr = 5 (g—g+3—2j

6a, which is not the Bohr theory peak amplitude radius of 4a, (average and peak don’t

necessarily equal each other and we need average here.). Note 6a, is measured from the

Compton wavelength A s0 r=<r>=6a,—>6a,+Ac. 1c=2€%. Using our sect.4.8 normalization

division by 1+€”=(t+) our 1/Vkeo Taylor expansion=e contribution (r—>0) is then from

6.11.4 reads for the electron potential energy:
1+e 1+e

E, = == =(r+u+e)+ (r+,u+e)——(r(+)
\/(1+£)_r_rc \/1_ T (14¢) #

) (t+u+e).

1+¢€
—(tauon+muon+e masses). Note since we have normalized out the t+p in the metric

coefficient koo. The Sy state second term= V=2¢*(t+u+e)/[(t+u+e)2r]=electron potential
energy. From eq.4.7.2 the Taylor series new third 3/8 term is=E.=

+2(= +ﬂ)) (r+u+e)=

8(8.89x107)(1. 602X10_19)2 _27 8\2 _
8 [6(53X10 104+2.42X10712)(4(1.06)(1.67X10~ 27)(3X108)2] (4(1'06)(1'67X10 )(3X10 ) B

= hf = 6.626.X107*27,400,000 so that £=27Mhz (6.12.1)
Recall also the 1000Mhz component is due to the electron zitterbewegung cloud itself taking
up space which we get by adding the Compton wavelength directly into the Coulomb
potential radius at 6a,.

Thus we account for the entire Lamb shift without evaluating any higher order diagrams.
See Ch.9 for gyromagnetic ratio derivation. So we don’t need renormalization anymore.

See eq.8.3 for anomalistic gyromagnetic ratio which also comes out of that Voo in eq.9.

Why Does The Ordinary Dirac Equation (ic,,=constant) Require Infinite Fields?
Note from section 1.3.2 that equation 9 K. =possibly nonconstant. So it does not have to
be flat space, whereas for the standard Dirac equation g,v=constant in eq. 4.2.1. Also
eq.9 has closed form solutions (eg. section 4.9), no infinite fields required as we see in
the above eq.6.12.1. So why does the mainstream solution require infinite fields (caused
by infinite charges)? To answer that question recall the geodesics I'™;jvivi give us
accelerations, with these v¥ s limited to <c. Recall gjj also contains the potentials (of the
fields) Ai. We can then take the pathological case of [gi =]A=co in the S matrix integral
context and Ogi0x'=0 since the mainstream (circa 1928) Dirac equation formalism made
the gjj constants in eq.4.2.1. Then I'™jj=(g"™/2)(0givOxI+0gjx0x'-0giji0x¥)
=(1/0)(0)=undefined, but not zero. Take the OgikOx' to be mere 0 limit values and then
g, becomes finite then. Furthermore 9.13 (Coulomb potential) would then imply that
Ao=1/r (and U(1)) and note the higher orders of the Taylor expansion of the Energy=1/(1-
1/r) term (=1-1/r+(1/r)*-(1/r)...(geometrical series expansion) where we could then
represent these n th order 1/ terms with individual 1/r Coulomb interactions accurate if
doing alternatively Feynman vacuum polarization graphs in powers of 1/r). Also we



could subtract off the infinities using counterterms in the standard renormalization
procedure. Thus in the context of the S matrix this flat space-time could ironically give
nearly the exact answers if pathologically [A=o0 and so we have explained why QED
renormalization works! Thus instead of being a nuisance these QED infinities are a
necessity if you mistakenly choose to set ru=0 (so constant «j).

But equation 9 is not in general a flat space time (i.e.,.in general k,y#constant) so

we do not need these infinities and the renormalization and we still keep the precision
predictions of QED, where in going from the N+1th fractal scale to the Nth fractal scale
ri=2GM/c?—2e?/mcc? See sect.3.9 and Ch.9 where we calculate the Lamb shft and
anomalous gyromagnetic ratio in closed form from our eq.9 energy: E=1/"koo=1/(1-
ru/r+Ag) (Ch.3.9) and the square root in the separable eq.9 (Ch.9 and section 4.9 for
Lamb shift calculation without renormalization.).

6.13 Again Use Eq.6.3.10 U=¢""", This Time To Calculate Metric Quantization
Mixed States (eAe cross terms) That Might Not Be Spherically Symetric

From 1.1.4, 1.1.5 Ae=4Al is an operator, Ag? is not the same operator. Also 1/(1-r) can be
expanded only one way as (r<<1) 1/(1-r)= I+r+r?>+r+. .If r was an operator each term in
this expansion would itself be a unique operator. We do not assume a spherically
symmetric 2S state here as in section 6.10 so we do not normalize koo: the contributions
of object B reduction in inertial frame dragging of object A give this nonspherial metric
quantization contribution. Note since Ag and ¢ are time dependent this is just the new pde
time development operator: U=¢'", And A¢ and ¢ are also times. So again equation
6.10.1 is written as (t)=kooW(to)= Uy(to)= (M) (to)=

i(Ae+e) 1

Koo (to) = (exp [—5 =) ()
(1-¢) /1—£—AS—TH

The exp[i(Ae+e)]/A/2] term is the new pde zitterbewegung term (r<rc here).
2 merely normalizes the two metric quantization states eq.8.2a and 6.4.6:

1
/1—s—Ae—TTH
1/(1-¢) is the object B rotational component from 6.1.1. So our time development
operator is relative to the free falling flat background outside of objects A and B.
Note since Ag and ¢ are time dependent (sect.7.4) we can use them as times. This
becomes just the new pde U=¢e't!! zitterbewegung oscillation for r<rc as expected.
Note there is a square that gives cross terms in € and Ae.

(6.13.1)

is the general relativity cosmological energy H component

2
[i(A£+£) 1

V2
i(Ae+e) 1 ~1 (1‘5)«I1‘£‘A5‘TTH n
V2 (1-¢) /1—8—Ae—rTH 2

Do the square and then only use the term that cross multiplies € and Ag (i.e., 2€Ag) so that
we can find the cross rerm g€Ag contribution to Koo. Also set r=ry at the cosmological
horizon we are now near after our 370by expansion (So 1-rug/r=0.). To include cross term

[i(A£+s) 1 ]2
E “jm (6.13.2)

realU=cos

effects we note: kopo=U=1-



This adds a real mixed state term to U and therefore to ko.. We normalize out the € and
Ag just as we did with the Lamb shift derivation but this time there is no 1 and ru/r to
divide by. The mixed part of the 2" term times 2eAg goes as: [2eAe/(4(1-2¢))]/(e+Ag))=
(1/(2(1-2¢)) 1[Ae/(1+Ae/e))=1/(2(1-2¢)) ] X[Ae/(1+Ag/e))]
=[Ae+Ae?/e+.. AeNT/eN+1/(2(1-2¢)) =Ag’. (6.13.3)

Compare (Mixed States, eAe=Ht) With Our Comoving Flat Background (|Ke.|=1)
Note in the flat background limit U=¢'¢"29( )~ 1+(i(e+Ae’)+.. )toxKoo. We next find the
contribution of this mixed state 6.13.2 relative to the freefall comoving flat background
metric (like we did to find In(rv+1/1o0)+2=[1/(e#-1)-In[e*-1]]2). They should be the same
contribution in this freefalling frame of reference as well (for a distant exterior observer
to objects B&A but in a comoving frame of reference.) relative to the local flat
background. Just as in the Lamb shift case Uy(to)= xooy(to)=y(t).

But in the halo of the galaxy  Koo=goo (6.13.4)

Note 2¢eAg is H times t in the exponent so 2eAe = Ht. So we again plug Ag’ (6.1.3.2) into
the time development operator directly U=¢'™, all by itself, in a flat space-time
background. S0 6.13.2;6.13.3 realkoo =goo.=1-(2GM/c?)/r which gives us only the mixed
state contributions relative to a flat background. So that 1-Ag’%/2 =go=1-2GM/(c*r) with
mv?/r=GMm/r?. Thus the first term is 1-Ag’%/2=1-2v?/c? (6.13.5)

So cAg’/2=v. Ag’ is from 6.13.2 and 0.00058=A¢ for the electron in which the tauon mass
is set to 1, muon mass =.0608. This geometric series 6.13.2 is unique, no other nontrivial
such series can be built here. So we can put the operator contributions from 6.13.2 into
6.13.3, one at a time, in place of Ag’ in eq.6.13.4, and find get v~98.6km/sec~100km/sec
in galaxy halos. So v =100+1+.01+..= 100km/sec +1km/sec+10m/sec+..=independent
values of metric quantization (6.4.18) since each AeN/(eN!) represents a different
quantum operator. Recall Ae=4 Al is an operator (Note Ag? is not the same operator) so
each term in the 1/(1-Ag) expansion is a a unique operator. So term is a different speed v
in this unique geometrical series (see Ch.11 for many examples). These Ae™/(eN!) are
mixed (hybrid) quantum states or in the classical limit are: ‘grand canonical ensembles’
with nonzero chemical potential.

Metric quantization changes with COM energy. So for lower energies you might get
lkm/sec quantization jumps. The energy COM density and we start seeing units of
2km/sec, then 4km/sec than a large jump in energy to 100km/sec (eg., at the
chromosphere-corona boundary). For the galaxy if the ring is heavier than the hub then
the v at ring diameter v difference becomes the new quantized v.

Metric quantization (and C) As A Perturbation Of the Hamiltonian

HO\U:Ean

for normalized y.s. We introduce a strong /ocal metric perturbation H’=AG due to motion
through matter let’s say so that:

H’+H=Hiota where H =AG is due to the matter and H is the total Hamiltonian due to all
the types of neutrino in that Hy+1 of section 4.6.H’=C2. Because of this metric
perturbation

y=Xajyr=orthonormal eigenfunctions of Ho. |ai|? is the probability of being in the
neutrino state i. The nonground state a;s would be (near) zero for no perturbations with



the ground state energy a; (electron neutrino) largest at lowest energy given for ordinary
beta decay for example. Thus the passage through matter creates the nonzero higher
metric quantization states (i.e., H’ can add energy) with:

ar=(1/(hi)[H ei@kidt

ok =(Ex— Er) /h

Thus in this way motion through matter perturbs these mixed eigenstates so that one type
of neutrino might seemingly change into another (oscillations).

Pure States From 2AI+2AI+2Al Equation 6.13.2 (Also see Part II of This Book)
Instead of the (hybrid) mixed metric quantization state 1/V(Ae+¢) of sect.6.13 we find the
masses of the pure states 1/NAe and 1/Ve individually in the bound state 4AT+4AI+4 Al
(or 2AI+2AlI) at r=ry of part II so that 1-ru/r=0 in 6.13.2 (rg =Nth fractal scale, our
subatomic scale).
Note these are not the free particle pure states Ae (electron) and € (muon) giving also the
galactic halo constant stellar velocities.
eide > 1/[V(1-Ae-ru/r)](1/(12e)y=(1/NAe)(1/(1+€) =mass of W.,Z i.e., Lsame as Paschen
Back: Ez=Bug(0+1+1+1)) (fixes the value of the LS coupling coefficient)
et —>1/[N(1-g-ru/r)](1/(1£€))=(1/Ne)(1/(14e)= mass of 7%, n°. || Paschen Back

Fixes the value of the LS coupling coefficient

More Implications of The Two Metrics Of Equation 7 Of Section 1.1.6

6.14 Gaussian Pillbox Approach To General Relativity

The real component of eq. 4 8(5ze8z) is equation 4A  §(dr’+(idt)?)=8[(dr+dt)(dr-dt)=
[6[(dr+dt)](dr-dt)]+[(dr+dt)[d(dr-dt)]=0 has solutions:

d(dr+dt) and dr+dt=0, 0, (4Al) d(dr+dt)=0 and 5(dr-dt)=0 (4A1I)
in each of the 4 quadrants. Combining eq.4Al and eq.4All we have eq.4A
Reparameterization Invariant. RI) condition. See section 1.1.6 for discussion.
dr-g/2+dt+e/2=dr’+dt’=kds which applies for r>¢ since for the transition to r<e=ry ds
turns discontinuously into a complex number which also violates 6ds=0 (we noted in
section 1 the source of this problem: a Vtensor transformation hyperbolic 1—i
discontinuity at r=rn).

linvariant ds =dr-¢/2+dt+¢/2 =dr'+dt'. In my new \/kij the sign changes as you go through
rH. Essentially then dr and ep/2 switch places to keep the dt'=vkoodt=V(1-&/r)dt from
being imaginary. Note from equation Eq.1.1.6 given the above S" object for r<e=r” then
r°2-12/2+7241%/2 = r’2+t’? and t”"=r"=¢, for r<e. This condition is required because the
above S! is real for r<ru. ds is always real given its dr+dt definition is always real as
noted in eq. 2AI and 2AII above. So combining the inside (de Sitter) r<e and outside
(Schwarzschild) r>¢ cases makes ds always real in the real dr,dt plane regardless of
whether r<e or r>e=ry also implying 6ds=0 as required by case A above. This allows two
independent Gaussian pillboxes, one inside and one outside ry.

Also in the case 2 (second point) section we note that this circle contains yet another 2D
surface with origin (0, our original 0 has not changed, See appendixA on same reference
origin 0) with perhaps a different orientation (angle). See section 1.1.6 Note Cu is along
the —dr axis, not dr which is still a +integer along with dt. A large number of such points
and associated circles thereby provides the geometric structure of the 4D De Sitter



submanifold surface thereby proving that we must live on a 4D submanifold hyperspace

in this many point limit. So inside ry for empty Gaussian Pillbox (since everything is at

I‘H)

Minkowski ds?=-dx,*+Zi=1" dx;? (6.14.1)

Submanifold is —xo*+Zi=1"xi*=0?

In static coordinates r,t :  (the new pde harmonic coordinates for r<rm)

Xo=\(a2-r2)sinh(t/a): (6.14.2)

x1=V(a2-r?)cosh(t/a):

Xi= IZ; 2<i<n gz is the standard imbedding n-2 sphere. R™!

ds>=-(1-r¥/0?)dt>+(1-r*/0?) ' dr’+ dQ%2

o—ia, r—ir Outside is the Schwarzschild metric to keep ds real for r>ry since ry is

fuzzy because of objects B and C.

For torus (x2+y*+z>+R2-r?)>=4R?*(x>+y?). R=torus radius from center of torus and

r=radius of torus tube.

Let this be a spheroidal torus with inner edge at so r=R. If also x=rsin6, y=rcos6, 0=t

from the new pde

Define time from 2R=t you get the light cone for a—ia in equation 6.14.2.

x*+y?+z2-t=0 of 6.14.1 with also (x=rsin6, y=rcos0) —

(x=V(02-r?)sinh(t/ar), y=\(02-r*)cosh(t/a)), a—ic.. So to incorporate the new pde into the

Gaussian pillbox inside we end up with a spheroidal torus that has flat space geodesics.
Note on a toroid surface two parallel lines remain parallel if there was no expansion. So

you have a flat space which is what is what is observed. The expansion causes them to

converge for negative t. Note the lines go around the spheroidal toroid back to where they

started, have the effect on matter motion of a gravimagnetic dipole field.

You are looking at yourself in the sky as you if you were a baby (370by ago that is). The

sky is a baby picture of YOU!

The problem is that you are redshifted out to z=infinity so all you can see of your

immediate vicinity (within 2byly that is) is the nearby galaxy super clusters such as the

Shapely concentration and Perseus Pisces with lower red shifts.

So these superclusters should have a corresponding smudge in the CBR in exactly the

opposite direction! I checked this out.

Note the sine wave has a period of 10trillion years and we are now at 370billion years,
near 0=-1/2 in r=r,sin0 where the upswing is occurring and so accelerating expansion is
occurring. This is where we start out at in the sect.7.3 derivation. Since the metric is
inside r<ry it is also a source as we see in later section 5.4

Observations Inside Of ru

The metric quantization pulses ride the metric like sound waves moving in air, including
going in straight lines in our toroidal universe. That means that when we look in the
direction of object B using nearby metric quantization effects, like galaxies falling into a
compression part of the vibration wave, which also organizes galaxy clusters as in the
Shapely and Perseus-Pisces concentration, we are looking in straight lines at least for
local superclusters (<2BLY) and so are actually looking in the direction of object B. But
the CBR E&M radiation that is bent by strong gravity follows that toroidal path and so



you really are looking at the (red shifted) light coming from yourself as you formed
370BY ago in this expanding frame of reference.

So the direction to the nearby galaxy clusters, even out to the Shapely concentration, is
metric quantization dependent so we have straight line observation, but the CBR follows
the curved space and so the galaxy superclusters we see in a given direction have CBR
concentration counterparts in exactly the opposite direction. Note distant galaxy clusters
are also not seen along straight lines, but lines on that spherical torus. So you only see
hints of the actual directions of object B, of the object A electron dipole, etc. for
relatively nearby superclusters.

The spherical torus Bg gravimagnetic dipole shape comes from the rotational motion
implied by the new pde (from eq.2AI). Recall the new pde applies to dipole Bg field and
spin motion; The electron has spin as you know. The new pde spherical torus is applied
on top of a Minkowski space-time inside rH because the Gaussian pillbox does not
(usually) contain anything if its radius is smaller than rH. So astronomers really are
observing the inside of an electron (i.e.,what comes out of the new pde) in this fractal
model!

6.15 Relevance (Of These Two Metrics Of Section 1.1.5) to Shell Model of The
Nuclear Force Just Outside ru

Note my model is a flat de Sitter a—ica inside rg and perturbed Schwarzschild (i.e.,Kerr)
just outside, the two metrics of section 3.1 and Part II (on 2AI+2AI+2AI) above. The
transition between the two is quite smooth. So at about ru we have a force that gets
stronger as r increases.

But this is what the simple harmonic oscillator does in this region. So my model gives the
simple harmonic oscillator (transition to Schwarzschild metric) and the flat part inside
that the Shell model people have to arbitrarily have to adhoc put in (they call it the
flattening of the bottom of the simple harmonic potential energy). Anyway, the above
fractal theory explains all of this.

Also the object B perturbation metric is a perturbative Kerr rotation.

7 Comoving Coordinate System: What We Observe Of The Ambient
Metric
7.1 Comoving Coordinate System
Here we multiply eq. 4.6 result py=-i0y/0x by y* and integrate over volume to define
the expectation value:
[y*papdV= <p>=<p,tipsp,t> of px. (7.1.1)

In general for any QM operator A we write <A>=<a,t|Ala,t>. Let A be a constant in

time (from Merzbacher, pp.597). Taking the time derivative then:

d d 0 0
h—<a,t|A|a,t>=ih— <V(1),AV(t) >=| V(t), Aih—¥(t) || ih—"P(t), AP (t
i <at|dlat>=ih-s <¥(@), A0 ( (0), dih— ()j (z PRl ()j

=(P(t), AHP (1)) — (P (1), HA¥ (1) )= m% < A>=< AH - HA > =[H,A]

In the above equation let A=a., from equation 9 Dirac equation Hamiltonian H, [H,a]=i A
do/dt (Merzbacher, pp.597).



The second and first integral solutions to the Heisenberg equations of motion (i.e., above
[H,o]=1 Ado/dt) is: r=r(0)+c?p/H+ (he/2iH)[eH™)-1](ou(0)-cp/H). (7.1.2)
v(t)/c=cp/H +eH¥)(q(0)-cp/H)
Note there is no Klein paradox at r<Compton wavelength in this theory and also
Schrodinger’s 1930 paper on the lack of a zitterbewegung does not apply to a region
smaller than the Compton wavelength. So the above zitterbewegung analysis does apply
in that region. The Voo = V(1-ri/r) modifies this a little in that from the source equations
for kuvyou also need a feed back since the field itself, in the most compact form, also is a
eq.4.4.1. Gy, energy density (source).

7.2 r<ry e*t -1 Coordinate transformation of Z,.,: Gravity Derived

Summary:

Fractal Scale Content Generation From Generalized Heisenberg Equations of
Motion

Specifically C in equation 1 applies to “observable” measurement error. But from the two
“observable” fractal scales (N,N+1) we can infer the existence of a 3" next smaller
fractal N-1 scale using the generalized Heisenberg equations of motion giving us
(aon)/aon+l) (aXON)/aXON+1)TOON'TOON:TOON-I (723)
which is equation 7.4.4 below. Thus we can derive the content of the rest of the fractal
scales by this process.

7.3 Derivation of The Terms in Equation 7.2.3
For free falling frame no coordinate transformation is needed of source Too. For non free
falling comoving frame with N+1fractal eq.9 motion we do need a coordinate
transformation to obtain the perturbation AT of To, caused by this motion (in the new
coordinate system we also get 5.1.2: the modified Rjj=source describing the evolution of
the universe In(rm+1/rop)+2=[1/(e"-1)-In[e"-1]]2 in our own coordinate frame).

T ; : The Expandirig Usiverse

[HE DISCOVERY INSTRUMENT Spectroscope Slit

Slipher's Spectroscope Focal Plane Used To Discover The Expanding Universe.
Tt is in the rotunda disnlav at Lowell Observatorv.

7.4 Dyadic Coordinate Transformation Of Tj; In Eq. 7.2.3

The Dirac equation object has a radial center of mass of its zitterbewegung. That radius
expands due to the ambient metric expansion of the next larger N+1th fractal scale
(Discovered by Slipher. See his above instrumentation). We define a Z,, E&M energy-
momentum tensor 00 component replacement for the Goo Einstein tensor 00 component.
The energy is associated with the Coulomb force here, not the gravitational force. The



dyadic radial coordinate transformation of Z;j associated with the expansion creates a new
Zoo. Thus transform the dyadic Z., to the coordinate system commoving with the radial
coordinate expansion and get Zoo—>ZootZoo (section 3.1). The new z,, turns out to be the
gravitational source with the G in it. The mass is that of the electron so we can then
calculate the value of the gravitational constant G. From Ch.1 the object dr as see in the
observer primed nonmoving frame is:  dr=Vkndr’= V(1/(1+2¢))dr’=dr’/(1+¢).
1N(1+.06)=1.0654. Also using Sy state of equation 2.6. £=.06006=m,+m.

From equation 11.4 and e'®* oscillation in equation 11.4. @=2¢/A so that one half of A
equals the actual Compton wavelength in the exponent of section 4.11. Divide the
Compton wavelength 2nrm by 27 to get the radius rv so that rm=Am/(2(21))= h/(2mec2n)=
6.626X10734/(9.1094X1031X2.9979X108X41)=1.9308X10!3

From the previous chapter the Heisenberg equations of motion give ' oscillation
(zitterbewegung) both for velocity and position so we use the classical harmonic
oscillator probability distribution of radial center of mass of the zitterbewegung cosine
oscillation lobe. So the COM (radial) is: Xem= (22xm)/M=
=[[[r3cosrsin8d0ddr/(J[[r2cosrsindd0ddr) =1.036. As a fraction of half a wavelength (so
nphase) rm we have 1.036/1=1/3.0334 (7.4.1)

Take H=13.74X10° years=1/2.306X107!8/s. Consistent with the old definition of the 0-0
component of the old gravity energy momentum tensor Go, we define our single S, state
particle (E&M) energy momentum tensor 0-0 component From eq.3.1 Z,, we have:

c2Zoo/8m=¢ =0.06,. e=Ys\Na=square root of charge.
Zoo/81=€?/2(1+£)mpc?=8.9875X10°(1.6X1071%)%/(2¢*(1+€)1.6726X1027)=0.065048/c?
Also from equation 9 the ambient metric expansion component Ar is:
eq.1.12 Ar=ra(e®-1) . (7.4.2)

To find the physical effects of the equation 11.4 expansion we must do a dyadic radial
coordinate transformation (equation 7.4.3) on this single charge horizon (given numerical
value of the Hubble constant H= 13.74 bLY in determining its rate) in eq.4.2. In doing
the time derivatives we take the m as a constant in the linear t limit:

ox“ ox”

ot ax T
After doing this Z’ o, calculation the resulting (small) zo, is set equal to the Einstein tensor
gravity source ansatz Go,=8tGme/c? for this single charge source m. allowing us to solve
for the value of the Newtonian gravitational constant G here as well. We have then
derived gravity for all mass since this single charged m. electron vacuum source
composes all mass on this deepest level as we noted in the section 4.2 discussion of the
equivalence principle. Note Lorentz transformation similarities in section 2.3 between

r=ro+Ar and ct=ctotcAtusing  Dy1-v* /¢ = D(1 - A)for v<<c with just a sign
difference (in 1-A, + for time) between the time interval and displacement D interval
transformations. Also the t in equation 10.2 and therefore 12.3 is for a light cone
coordinate system (we are traveling near the speed of light relative to t=0 point of origin)
so ¢2dt?>=dr? and so equation 11.4 does double duty as a r=ct time X, coordinate. Also
note we are trying to find G, (our ansatz) and we have a large Zoo. Also with Z<<Zoo
we needn’t incorporate Zr. Note from the derivative of e'-1 (from equation 11.4) we
have slope=(e®'-1)/H=we®". Also from equation 2ABwe have d(r)= d(ro(e®'-1))= (1/(e”*-

=7 'Wwith in particular Z,,—Z’ 00=ZootZoo (7.4.3)



1))d(r,). Plugging values of equation 7.4.1 2 and 7.4.2 and the resulting equation 4.7.1
into equation 7.4.3 we have in Sy, state in equation 4.3:

1 & &°
§(r):ZOO:ROO_EgooR’ %@(ﬂ

8re’
2
2(1+&)m ¢
(7.4.4)
ox° ox° 7. = ox° ox°
ﬁ[xO—AI"iI 5|:x0—Ar] 00 a|:x()_ M [e(or_ ]i| é)|:x0_ T
3.03(1+¢) 3.03(1+¢)

Zaﬂ =Zow =Lt Zo ™

7] Zoo:Z(;O =
[e(:)l‘_l]

2

2 2
: B¢ 25(1/)5(—8”6 2§(r)+87rG[m; 5(:»)}
N R 2(1+¢)m,c 2(1+&)m,c c
3.03c(1+¢)

(Recall 3.03 value from eq.7.4.1.) So setting the perturbation zo, element equal to the
ansatz and solving for G:

2[ ‘ ][ Fu Ja)e“” =
2(1+&)m, 3.03m90(1+e)
[2[2(159)% J£3.03nl;ﬁjc(1+g)J([e“f —1]/Ht)]5(r) -

_ e’ V' u o . o _
_2(2(1+8)mp](cme3.03(l+g)]([e 1]o( 0)/([8 IJHt)) Go(r,)

Make the cancellations and get:

2(.065048)[( 1.9308X1013/(3X108X9.11X101X3.0334(1+.0654))] (2.306X10718) =
=2(.065048)(2.2X108)(2.306X108) =6.674X10"' Nm*/kg’=G (7.4.5)

from plugging in all the quantities in equation 7.4.5. This new zo, term is the classical
81Gp/c*=Gy, source for the Einstein’s equations and we have then derived gravity and
incidentally also derived the value of the Newtonian gravitational constant since from our
postulate the me mass (our “single” postulated source) is the only contribution to the Zoo
term. Note Dirac equation implies +E and -E solutions for —e and +e respectively and so
in equation 7.4.5 we have e*=ee=q1Xq2 in eq.7.4.5. So when G is put into the Force law
Gmimy/r? there is an additional miXm; thus the resultant force is proportional to Gmima
=(q1Xqz)mimy which is always positive since the paired negatives always are positive
and so the gravitational force is always attractive.

However just as with the speed of light, we cannot measure a changing G since our clock
time changes proportionally due to the changing gravitational field. GM/c"2, if M is the
mass of the universe, is always 10*°X2e%/mcc? so G is invariant.

To summarize we have then just done a coordinate transformation to the moving frame to
find the contributing fields associated with the moving frame. Analogously one does a
coordinate transformation to the charge comoving frame to show that current carrying
wires have a magnetic field, also a ‘new’ force, around them. Also note that in the second




derivative of eq.7.1.2 d*r/dt?* =r,@*e®'= radial acceleration. Thus in equations 7.1.4 and
7.1.5 (originating in section 2AB) we have a simple account of the cosmological radial
acceleration expansion (discovered recently) so we don’t need any theoretical
constructs such as ‘dark energy’ to account for it.
If 1, is the radius of the universe then r,o?e®~10"1m/sec’>=ay is the acceleration of all
objects around us relative to a inertial reference frame and comprises a accelerating frame
of reference. If we make it an inertial frame by adding gravitational perturbation we still
have this accelerating expansion and so on. Thus in gravitational perturbations nam=a
where n is an integer.
Note below equation 7.4.5 above that t=13.8X10%ears and use the standard method to
translate this time into a Hubble constant. Thus in the standard method this time translates
into light years which are 13.8X10°/3.26 =4.264X10° parsecs= 4.264X10° megaparsecs
assuming speed ¢ the whole time. So 3X10°km/sec/4.264X10° megaparsecs =
70.3km/sec/megaparsec= Hubble’s constant for this theory.
7.5 Metric Quantized Hubble Constant

Metric quantization 4.2.3 means (change in speed)/distance is quantized.. Given
6billion year object B vibrational metric quantization the radius curve
In(rm+1/100)+2=[1/(e"-1)-In[e"-1]]2 is not smooth but comes in jumps.
I looked at the metric quantization for the 2.5My metric quantization jump interval using
those 3 Hubble "constants" 67, 70, 73.3 km/sec/megaparsec.
Recall that for megaparsec is 3.26Megalightyear=(2.5/.821)Megalightyear.
But 2.5 million years is the time between one of those metric quantization jumps.
So instead of the 3 detected Hubble constants 67km/sec/megaparsec and
70km/sec/megaparsec and 73.3km/sec/megaparsec we have
81.6km/sec/2.5megaly, 85.26km/sec/2.5megaly, 89.3km/sec/2.5megaly. the difference
between the contemporary one, the last and the two others then is

89.3km/sec/2.5megaly- 85.26km/sec/2.5megaly,=4km/sec/2.5megaly
and 89.3km/sec/2.5megaly- 89.3km/sec/2.5megaly=8km/sec/2.5megaly.



So the Hubble constant, with refernence to the 2.5my metric quantization jump time,
appears quantized in units of 4km/sec,8km/sec, etc. Other larger denominator ,,averages*

V1 V2 Metric quantized
I values of Hg
N *gESo SHOES
: (baryon acoustic (Type 1a + CepheiCs)
oscillations) Type la
o Dark Energy Survey
(cosmic structure + Cepheids
lensing + baryon density)
o Planck Lensed quasars
(CMB)
Gravitational waves
! 70

- -
/

) cmmm

67 Expansion rate (km/sMpc)
@ Primordial imprints

are not accurate. Hubble Constant Measurements

7.6 Cosmological Constant In This Formulation

In equation 4.6 ru/r term is small for r>>ru (far away from one of these particles) and so
is nearly flat space since € and Ag are small and nearly constant. Thus equation 6.4.5
can be redone in the form of a Robertson Walker homogenous and isotropic space time.
Given (from Sean Carroll) the approximation of a (homogenous and isotropic) Robertson
Walker form of the metric we find that:

a"  4nG A

—=—— (p+3p)+3
A=cosmological constant, p=pressure, p=density, a =1/(1+z) where z is the red shift and
‘a’ the scale factor. G the Newtonian gravitational constant and a” the second time
derivative here using cdt in the derivative numerator. We take pressure=p=0 since there is
no thermodynamic pressure on the matter in this model; the matter is commoving with
the expanding inertial frame to get the a” contribution. The usual 10 times one proton per
meter cubed density contribution for p gives it a contribution to the cosmological
constant of 4.7X10736/s2,
Since from equation 7.6.1 a=ao(e®'-1) then a” = (w?/c? )sinhwt=a(A/3)= (A/3)sinhwt and
there results:

A=3(w?/c?)
From section 12.1 above then ®=1.99X10"'® with 1 year=3.15576X107 seconds, also
c=3X10% m/s. So:
A= 3(w?/c?)=1.32X102 /m?, which is our calculated value of the cosmological constant.
Alternatively we could use 1/s? units and so multiply this result by ¢? to obtain:



1.19X10°%/s%. Add to that the above matter (i.e.,p) contributions to get A=1.658X10%/s?
contribution.

7.7
Note that we have thereby derived the Newtonian gravitational constant G by using a
radial coordinate transformation of the To, =¢* charge density component to the
coordinate system commoving with the expansion of the N+1 th fractal scale
(cosmological).

Note that our new force we derived was charge and mass independent but the old force
was charge dependent. Also note that the new force metric has universal geodesics that
even curve space for photons. The old one had a q in the kij (chap.17). If q=0 as with the
photon there would be no effect on the trajectory of the photon whereas the same photon
moving near a gravitational source would be deflected. Recall again this is all caused by
the taking of the derivative in the above coordinate transformation.

So as a result of this coordinate transformation photons are deflected by the N+1 fractal
scale metric and area not defelected by the Nth scale metric.

Also the G does not change in the commoving coordinates for the same reason as the
speed of light does not change as you enter a black hole, your watch slows down because
of GR to compensate.
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7.8 Comoving Interior Frame
Recall from solution 2 (section 1.2) that the new pde zitterbewegung E=1/coo energy
smudged out r=<r,¢'® ‘> with @—>io inside ry. so m r=sinhwt. Do a coordinate
transformation (Laplace Beltrami) to the coordinate system of the r>rH commoving
observer (us) and that equation pops right out.

In the commoving De Sitter metric reference frame inside ruy we are not in free space
anymore so the multiple of the Laplacian of the metric tensor in harmonic local
coordinates whose components satisfy Rj; =-(1/2)A(gij) where A is the Laplace-Beltrami
second derivative operator is not zero. Geometrically, the Ricci curvature is the
mathematical object that controls the growth rate of the volume of metric balls in a
manifold Note the second derivative (Laplacian) of sinot is —@?sinmt. Also recall that
inside ry so that r<ry, then sinwt—sinhwt, which is rewritten as sinhp to match with
Ro=e [1+% r(’-A’)] with p=A (spherical symmetry). So the de Sitter metric
submanifold is itself the source of this R2; which is a nontrivial effect in the very early,
extremely high density, universe. (Note that the contemporary G calculation in Ch.12
just uses the de Sitter sinhp (just as in Ch.12 coordinate transformation because this
feedback effect no longer is dominant in this era). So the usual spherically symmetric:
Ra=e [1+% r(p’-A’)]-1=0 — de Sitter metric sinhy, itself is the source, comoving
coordinate system—

Ro=e M 1+%s r(’-1")]-1=sinhu. (applies only for u~1, [sinu|=1) (A)
With p=A this can be rewritten as: etdp/(1-coshp)=dr/r (B)

The integration is from p=e=1 projection at 45° particles at r=smallest (see section
1,C=0) to the present day mass of the muon= .06 (of tauon mass, C>0). Note our
postulate of ONE is still needed to calculate the big bang Integrating equation B



from e=1 to the present € value we then get:
In(rm+1/106)+2=[1/(e#-1)-In[e*-1]]2 (7.8.1)

program FeedBack
DOUBLE PRECISION e,ex,expp,tM1,rd,rb,rbb,uu,ull,den,eul,u
DOUBLE PRECISION NN,enddd,bb,ee,rmorbb,Ne,rr
INTEGER N,endd
open(unit=10,file="FeedBack m',status='unknown')
'FeedbackEquation
le*udu/(1-coshu)=dr/r
In(rM+1/rbb)+2=[1/(e"u-1)-In[e"u-1]]2
e=2.718281828
ull=.06
endd=100
enddd=endd*1.0
uu=.06/enddd
Ne=1000.0
Do 1000 N=100,1000
Ne=Ne-1.0
rr=n/100.0
rbb=30.0*(10.0**6)*1600.0
rbb=1.0
! rd=2.65*(10**13)
u=Ne*uu
eul=(e**u)-1.0
ex=(2.0/eul)-(2.0*LOG(eul))-2.0
expp=(ex)
rM1=(e**expp)*rbb !In logarithm
rM1=e**ex
IrMorbb
'bb=log(ee)
if (ex.GT.36.0)THEN
goto 2001
endif
write(10,2000) rr,yM 1
1000 CONTINUE
2000 format(f7.2,1x,1x,1x,f60.6)
2001 end

Sin(1-u)=r gives the same functionality as the above program does for p~1 the sin(1-p)
And and the sine: sin(1-p)=sinh(1-p). For larger 1-pu we must use 1-u—i(1-p) given sect
5.2 harmonic coordinates from the new pde in the sine wave bottom.
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Recall object B is close by so we must include the small Kerr metric oblation term
ac0s80=.9602 in rop”> = r>+a’cos’0 that gives an added Ae when it is inserted.

So substituting into In (rm+1/1ep)+2=[ 1/(e"-1)-In[e"-1]]2 using the 1y, value=~30M miles to
the present rm+1= 13.7X10°LY value for the case with and without the oblation term gives
In(rm+1/105)=36.06 and current value €=.06, and Ae=.00058 from the oblation term. Thus
the present day mass of the muon gives us the size of the universe at the time of the big
bang, it was not a point! Note that (from appendix A) all the 10! baryons at ru

(~10"""m) separation were packed into this (47/3)rsp* volume and so not violating baryon
number conservation since from this fractal theory these objects originated from a
previous collapse. Thus we do not need to be concerned with baryogenesis because the
baryons survived the big bang. Equation B implies that the commoving time turns out to
be 370by. So the universe is not 13.7by old but 370by. This long of time explains the
thermalization of the CBR and the mature looking galaxies and black holes at 13by ago.
The contemporaneous tangent line intersection with the r axis for r=roe* gives the 13by.
Thus we have derived the values of the free lepton masses in our new pde and have a
curved space, non perturbative curved space generalization of the Heisenberg equations
of motion.

This would be the Schwarzschild metric (a=0) without object B. Given the incomplete
inertial fram dragging angular momentum then provides an oblation term.

Recall that the new pde for r<ru gives io— in its Heisenberg equations of
motion.(Ch.10) Thus r=r.e™" or In(r/ro)=mt=mt,\(1+&) where the sum of the free lepton
masses in the new pde is under the square root sign. Recall this equation gives our
expanding universe and the second derivative gives the acceleration in this expansion.
Note the (section 1.2.1) 10%! particles give above r=ry if edges touching can be contained
in volume of radius 1.746X10'?> m Also the present radius of the universe is
approximately 13.7X10°LY=1.27X10*"m. Given the oblation term a’cos’0 =A? from the
above rotation metric we have then

In(rme 1/ V(> +A2))=In(1.27X10%7/1.746X10'2)=34.22 if A=0. Given the muon mass =.06
((1/16.8) tauon mass) we find that A=1.641X10'?m so that
acos(1.64X10'%/1.746X10'2)=20°, our polar angle from the rotation axis.

Recall from the above nonperturbative derivation we got e=.060 without oblateness and
with oblateness . get the added rotation contribution Ae=.00058. Note here (i.e.,eq.5.1.2)
that there is no big bang from a point. Instead it is from 434million km radius object, so
with just enough volume to hold all the baryons (103!each of radius~.434Fermi) and so
this type of “big bang” event can be easily computer modeled as a core collapse
supernova like rebound (but too hot even for iron production). Note that the mass of the
electron is determined by the drop in inertial dragging (giving that oblation term) due to
nearby object B. 1, €, Ag/2 is the ratio of the tauon to muon to electron mass and so our
new Dirac pde 9 gives us the three fundamental S state lepton masses with Ag the single
ground state lepton with nonzero rest mass. Note also Ae=mcoc h from €q.9 and m. o €?
ocath since ry is an integration constant. . The main result though of this chapter is that the
present numerical value of the lepton masses imply this huge fig.2a 10%°X scale jump
(from S state classical electron radius=10"®m to the rrna cosmological radius) of equation
5.1.2 from the electron equation 9 object to the cosmological scale equation 9 object
implied by equation 5.1.2. The rebound time is 350by =very large >>14by solving the



horizon problem since temperatures could (nearly) come to equilibrium during that time
(From recent Hubble survey: "The galaxies look remarkably mature, which is not
predicted by galaxy formation models to be the case that early on in the history of the
universe." “lots of dust already in the early universe”, “CBR is the result of
thermodynamic equilibrium” requiring slow expansion then, etc.).

7.9 Summary

In the external reference frame the x,,=1-ru/r and the equation 9 (4Al) zitterbewegung
gives a smudged out blob r=<r,e**> first solution (r>ry, new pde, eq.9, 4Al) and R;j=0
from the second solution. But in the commoving frame of reference inside r<ry in the
new pde is not free space anymore and so Rjj does not equal 0 anymore and so equals the
above De Sitter dual choices sinh or cosh so the second solution requires Rj=sinhu (R22
eq.A left side does not match with cosh). A second derivative of sinh is once again a sinh
so this is a source in the Laplace-Beltrami second derivative operator-(De Sitter source).
This result also comes out of the second solution but for the commoving internal observer
frame of reference. Recall that the multiple of the Laplacian of the metric tensor in
harmonic local coordinates whose components satisfy Rij=-(1/2)A(gij) where A is the
Laplace-Beltrami second derivative operator. In that regard geometrically, the Ricci
curvature is the mathematical object that controls the growth rate of the volume of metric
balls in a manifold.

So Rjj=sinhu comes out of the new pde with the second solution! This is equal to
e"4u/(1-coshu)=dr/r whose solution is In(rm+1/rob)+2=[1/(e"-1)-In[e"-1]]2.

This equation and the metric quantization sect. 6.8 stair step give the equation of motion
stair v steps of our universe for the inside ru and so give that quantized Hubble constant.

Note here also the muon (and so the pion) were 100X times heavier at the big bang
making the nuclear force equal to the E&M force then.

7.10 Construct The Standard Model Lagrangian

Note we have derived from first principles (i.e.,from postulate 1) the new pde equation
for the electron (2Al, eq.9), pde for the neutrino (eq.2AIl) Maxwell’s equations for the
photon, the Proca equation for the Z and the W (Ch.3) and the found the mass for the Z
and the W (4.2.1). We even found the Fermi 4 point from the object C perturbations. The
distance to object B determines mass and we found that it is equivalent to a scalar field
(Higgs) source of mass in sect.4.1.5. We have no gluons or quarks or color in this model
but we can at least derive the phenomenology these concepts predict with our
2AI+2AI+2AlI at r=ry strong force model (ie., 2AI+2AI+2Al r=ry, Ch.9,10)

So from the postulate of 1 we can now construct the standard model Largrangian, or at
least predict the associated phenomenology, from all these results for the Nth fractal
scale. Here it is:
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Fig. 10

The next fractal scale N+1 coming out of our eq.1 gives the cosmology and GR gravity,
which is not included in the standard model. In fact the whole model repeats on the N+1
fractal scale. Object B provides ambient metric quantization states that have been
observed implying new physics. So there is the promise of breakthrough physics from our
new (postulate 1) model.

7.11 Summary

This is a first principles derivation of mathematics and theoretical physics. “Astronomers
are observing from the inside of what particle physicists are studying from the outside,
ONE object, the new pde (2Al) electron”. Recall the electron was the only object in the
first quadrant (so positive integer), every other object is an excited state, caused by
increasing noise C. So we started with postulate of 1 and ended with ONE after all this
derivation (solving two equations for two unknowns) derivation, we derived ONE thing,
which must be the same thing! So we really did just "postulate ONE" and nothing else, as
we claimed at the beginning. That makes this theory remarkably comprehensive (all of
theoretical physics and rel# math) and the origin of this theory remarkably simple: “one”.

So we have only ONE simple postulate here.

7.12 The Above Mainstream Model (fig.10) Has Many Free Parameters,

This Fractal Model has None

For example the Mandelbrot set {Cn}=ru in dr-Cum so we can always set Cu=2ke?/mec?.
c’medr=c’m.Cv=2ke? to define our length units. In section 1.2.7 we show that with a
single m. (nonzero proper mass) we can start with arbitrary ke?/r energy units and have
no free parameters among these values. Note this 2A1 electron has the only nonzero
proper mass me (i.e.,s0 only Cy) in free space making it the only fractal solution. In the
time domain the h in E=h(1/t) just defines energy units (equation 4.6) in terms of event
time intervals t. The gyromagnetic ratio of m is derived from the rotated 4Al, eq.9 new
pde. The muon mass comes from the distance to object B (Ch.5). The proton mass comes
from the flux quantization h/2e (Sect.8.1). The other highest energy boson masses come
from the Paschen Back effect given this proton mass (Ch.8). The strength of the strong
force arrises from the ultrarelativistic field line compression in the 2AI+2AI+2AI model



(Ch.8). The mass energies and quantum numbers of the many particles below about
1.5GeV come out of the Frobenius solution (Ch.9) which is merely a solution to eq.9
(i.e., 2AI). Recall the CP violation is due to the fractalness (selfsimilarity with a spinning
electron): we are inside a rotating object Kerr metric implying a cross term d¢dt in it. So
you can derive the CP violation magnitude that they use in the CKM matrix. Multiply
through the Fermi interaction integral (from the Standard model output and this output
from the theory) and integrate to get the Cabibbo angle eq.10.8.7). The pairing interaction
force of superconductivity is even derived by substituting the «,, in the geodesic
equations (sect.4.5). You can derive the neutrino masses for a nonhomogenous non
isotropic space time (Ch.3). We derived the exact value of the pion mass (Ch.9).

Note since quarks don’t exist in this model (they are merely those 2P/, trifolium lobes at
r=ry) those 6 quark mass free parameters vanish. The Mandelbrot set 10%°X scale change
automatically sets the universe size and the gravitational constant size (sect.7.4) in
comparison to classical electron mass and E&M force strength respectively.

If you do a tally that free parameter list has just shrunk from ~30 down to 0: so they
are all derivable parameters, not free.. In contrast setting these parameters as free
parameters is really postulating them because the parameter values are postulated. The
equations they are used in constitute many more postulates (fig.10), so the number of
potulates you get doing it that way goes out the roof, 100 or so?

But you have to ask yourself: where did all these assumptions come from? You actually
do not understand the fundamental physics at all if you require a lot of postulates, free
parameters, etc., you are merely curve fitting. In contrast here we have only one simple
postulate and get the whole shebang out all at once: that being the standard model
particles and cosmology and gravity. We finally ‘understand’ in the deepest sense of that
word!

Note this model (Ch.1) also has none of the mainstream paradoxes either (Klein paradox,
Dirac sea, 10°°grams/cm?® vacuum, infinite mass and charge,.. in Ch.4) and not a single
gauge but it still keeps the QED precission (eg., see Lamb shft calculation in 6.12).

! Weinberg, Steve, General Relativity and Cosmology, P.257



