
 
                                                                         
                                                          Postulate 1 
Abstract: Modern fundamental physics theories such as the Standard Model (SM) contain many 
assumptions. So where do all these assumptions come from? This is not real understanding. It is curve 
fitting. So why bother? 
This theory in contrast has only one simple postulate:  
 Postulate 1.  
So there is reason to be excited. The 1 in the postulate of 1 generates the 1È1º1+1 list-define algebra 
(eg.,eq.3.6) underpinning of the rational numbers. 1 is a real number so we can now:  
define the real number 1 from a Cauchy sequence of rational numbers (Cantor) using iteration 
zN+1=zNzN+C (eq.1a), dC=0 (eq.1b).  In that regard solve 1a for noise C in dC=0 (eq.1b) and get d(zN+1-
zNzN) =0 implying zN is finite since ¥-¥ cannot equal 0. So as N®¥, C®0 then zN+1 (defined to be z then) 
has to approach 1 so eq.1a zN+1=zNzN+C turns uniquely into z=zz+C (eq.1) (eg.,1=1X1+0) thereby 
 defining real#1 in the postulate of 1. 
Solve 1a,1b for C and z(eigenvalues,eq.3.6): So plug eq.1 into eq.1b getting Special Relativity(SR) and a 
unbroken degeneracy Clifford algebra (sect.2). Equation1a explicitly defines the Mandelbrot set CM(since 
zN+1 finite) with a fractal (¼)NMandlebulbs and (1040)NXcosmology. CM turns SR into GR and breaks that 
2D degeneracy into 4D Clifford algebra of Mandlebulbleptons(eq.9) and associated Boson composites in 
the SM(sect.4). 
Summary: So given the fractalness, astronomers are observing from the inside of what particle physicists 
are studying from the outside, that ONE thing (eq.9) we postulated. So by knowing essentially nothing 
(i.e.,ONE) you know everything!  We finally do understand. 
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Introduction     
. We postulate 1. The 1 in the postulate of 1 generates the 1È1º 1+1 list-define natural 
number algebra(eq.3.6) underpinning of rational numbers.  Everybody knows 1 is a real 
number so we define the real number 1 in the postulate of 1 from a Cauchy sequence 
of these rational numbers (Cantor) defined from iteration zN+1=zNzN+C (eq.1a), dC=0 
(eq.1b).  In that regard solve eq.1a for noise C and substitute it in dC=0 (eq.1b) and get 
d(zN+1-zNzN)=0 implying zN is finite since ¥-¥ cannot equal 0. So as N®¥, C®0 then 



zN+1 (defined to be z then) has to approach 1 and so eq.1a zN+1=zNzN+C turns uniquely 
into z=zz+C (eq.1),(eg.,1=1X1+0) defining 1 as a real number in the postulate of 
1! This “circular reasoning” (1®rational numbers®real numbers®1) keeps us down to 
just one postulate here. Also we have derived both theoretical physics and real number 
mathematics at the same time. 
 
So just postulate 1 (Everyone knows 1 is a real number.). 
 Then use Gaussian elimination on eq.1 and 1b to solve for z and C.  
Notice we have derived both (rel#) mathematics and theoretical physics from the 
postulate of 1.  
z=zz+C (eq.1) 
 
  The mundane context for this 1 in the postulate1 is that of an averaged observed signal 
X in X±DX, DX=Standard Deviation= SDºÖvariance. So observation (sensor defined 
noise) plays a math role here, were X is a function of {observerÈsignal} with random 
error DX. Then normalize X/X±DX/Xº1±(D1)’ º1±(d1)’ ºGeneric Signal(GS)ºz’.  
   So then how do you easily remember this entire theory?  Just Postulate 1.  That’s the 
whole theory!  Ah, you say, that can’t be all there is to it since “ONE” has algebraic 
properties too (eg.,1=1*1+0).  My response to that statement is that this merely means 
you then have an equation for algebraic properties, equation 1. 
 Note this still means “Postulate 1”.  
 
Note the only way to include C noise in that 1=1*1 algebraic definition of 1 is to simply 
add it so as is usual zº1+dz:                        GS+C=GS*GS          or     z-zzºC     (eq.1).   
for limit C®0. Also a “postulate” is trivial unless what you postulated exists. Note noise 
dz’ºC (z’=1) cannot be infinity given dC=0 since ¥-¥¹0 and given the normalization 1 
X cannot be zero since 0/0 is undefined. So signal exists (i.e., is not 0 and is not drowned 
out by noise) if dC=0 (eq.1b).                                                                                                                                
with “existence”, and so dC=0 thereby is required for eigenvalues in eq.3.6.  The 1 in 
postulate 1 itself provides the starting point for a positive integer list-define algebra 
(sect.3) underpinning of eq.1 without any new postulates (axioms) making this a self-
contained theory. 
Note this still means “Postulate 1”.  
 
Everybody knows 1 is a real number so eq.1a,1b hold.  
String theory is not the only game in town  
 
Postulate 1 
Solve eq.1a,1b for the physics 
 
Use the 1 in the postulate 1 to define the list-define natural number algebra 1U1º1+1 
underpinnings of eq.1a,1b. 
So we have a self contained theory based only on the postulate of 1. 
We then have a first principles derivation of both math and physics. 
 



Theory:   Small C 
                 If C®0 and eq.1b implies eq.1a reduces to    z=zz+C (equation1)  
                 Eigenvalues of this z defined from eq.3.6. Appendix B. 
 
Gaussian elimination: Thus solve eq.1 for C, plug into eq.1b and note we need to factor 
the result to solve for z and its eigenvalues.  
 
Section 1 Rewrite equation 1 in z=1+dz form                                                          
(Define zºz’+dz, z’º1, dzºC)                   So first rewrite eq.1:                        
                                                               z’+dz=(z’+dz)(z’+dz)+C,     
                                                          So  1+dz=(1+dz)(1+dz)+C     and rearranging 
                                                                1+dz=1+2dz+dzdz +C      and canceling 
                                                                  dzdz+dz+C=0                                           (1.1) 
Equation 1.1 is a quadratic equation with in-general complex 2D solution (eg., if large 
noise C)                                                        
                                                                     dz=dr+idt                                              (1.2)                                                                                   
or dz=dr-idt for all orthogonal (90°, ^) dr and dt and so arbitrary dx^dy (eg., dz=dx+idy) 
(1.3)  
with speed coefficient c in cdtºdt explicitly a constant here given variation only over t      
(1.4)   
Equation 1.2 from 1.1 constitutes the derivation of space and time (in the context of eq. 
2A). 
 
Section 2  Small C. Solve for z 
Solve eq.1 for C, plug into eq.1b and factor the result to solve for z. By plugging the 
small C in equation 1 back into dC=0 (eq.1b) we get   0=dC=d(dz+dzdz)                  and 
we have                             
                                              d(dzdz)=d[(dr+idt)(dr+idt)]=0                                            (2)    
the equivalent of eq. 1a,1b. Note to ‘solve for z (=1+dz) we must solve for the (linear 
dr±dt) factors. 
2.1  Factoring Eq. 2  ‘solves for z’  
                              d(dzdz) =d[(dr+idt)(dr+idt)]=d(dr2+i(drdt+dtdr)-dt2)=0               (2)              
The Imaginary part of eq.2 is from the (eq.2) generic            d(drdt+dtdr)=0             (2B)  
If the dr,dt are +integers (see sect.4.2) then drdt+dtdr=0 is a minimum. Alternatively if dr 
is negative then drdt+dtdr=0 is again a maximum for dr-dt solutions. So all dr,dt cases 
imply invariant                                                  drdt+dtdr=0                                  (2B1)     
Note in general if dr¹dt then 2B1 holds. Next factor the real part of eq.2 to get                            
d(dr2-dt2)=d[(dr+dt)(dr-dt)]=ds2=[[d(dr+dt)](dr - dt))] +[(dr +dt)[d(dr – dt)]]=0.  (2A) 
So dr2-(1)2dt2=ds2 is invariant along with 1=c from eq.1.4. So we have	derived special 
relativity.	(The later sect.4 second solution CM just rotates dr®dr’ºdr-CM, 
dt®dt’ºdt+CM making the form of 2A unchanged and giving GR). So after factoring 
eq.2A then eq.2A is satisfied by:  
2AI d(dr+dt)=0; d(dr-dt)=0. +e,-e  two simultaneous objects, 2DÅ2D,  1È1, eq.9  
2A11A d(dr+dt)=0, dr+dt=0               pinned to the dr2=dt2 light cone. n 



2AIIB d(dr-dt)=0, dr-dt=0                           “             “ (note also dichotomic with 2AI) 
anti n 
2AIII dr-dt=0, dr+dt=0 so dt=0,dr=0, no ds so eigenvalues=0, vacuum:the default CM=0 
solution	
So if the variation(dx+dy)=0 i.e., d(dx+dy)=0, then dx+dy=ds=invariant. So for invariant 
ds: 
2AIA  dr2+dt2 =ds2 (so dz=dseiq) ds2 is a min at 45° (so extremum dz=dseiq/2) and drdt is a 
max since 2AI dr+dt is invariant.    
2AIIA dr+dt=ds, dr+dt=0 
2AIIB dr-dt=ds,  dr-dt =0 
2AI dr+dt=ds,  dr-dt=ds; So there are two simultaneous 2AIs for every eq.1.1 for 2AI. 
So we must write eq.1.1 as an average in the case of eq.2AI.  For our positive dr&dt need 
1st and 4th quadrants (given 2AIA;45°) so dr»dr1»dr2, dt»dt1»-dt2. So for average eq.1.1  
dz=dr+idt» (dr1+dr2)/2 + i(dt1-(-dt2))/2º(dx1+dx2)2AI +i(dx3+dx4)2AI)ºdsrt+idstr .  So given 
eqs.1.2 and 2AI we have then the 2D unbroken degeneracy 
dz=dr’+dt’=dsrt+dstrº(dx1+dx2 +dx3+dx4)=ds.    (2C)  
and the dr+dt solutions for dz and so z. 
 
Section 3 Eigenvalues of z formalism from equation 1b and 2AIA 
Note also some invariant C exists from eq.1b (introduction). Note also C is a uncertainty 
so all numbers are finite precision here so can be multiplied by a large enough number 
(appendix A) to become integers so will then not require new axioms (postulates). Recall 
also from eq.1: zz=z-C = z+zdz=z-C.  So      dzz=C                            (3.1)                                 
Also eq.1 zz+C=z and from equation 2AIA rotation at qo=45° implies dz=dsei45°+Dq°. In 
eq.3.1 dzz=C we then move the ei45° from the dz to z and then redefine z»1(ºs’) as z” so 
the equality                                                    dzz=CºdzMz”                                                                                                                   
(3.2)  
remains. So for this new z”, dzMz”=C. dzM is a constant in eq. 3.2 so z” rotates with noise 
C  dichotomically in the complex plane as     z”º1ei(45°+Dq)=1ei(qo+Dq)                                   (3.3)   
From 2AIA ds2=dr2+dt2 and so we have a circle: dz=dseiq.  q=kr+wt.    
dz'z'=C.  So dsz'=C.  Can multiply by both sides by ds and eq.2AIA implies ds2z'=Cds 
and the ds2 are still diagonalized as (dr2+dt2)dz' . Cross terms drdt let us say are not 
allowed or the invariance ds fails with this new eq.3.1 method.  So ds3z'=C is not 
allowed. All we are allowed then is dsz'=C and ds2z'=C were s’» 1>ds given 2AIA. So 
we can substitute 1(cosq)ºt, 1(sinq)ºr>>dr into:                               
                             z” º 1eiqº ei(qo+Dq)ºs’ei((cosqdt+sinqdr)/s))+qo)ºs’ei(wt+kr+qo)                       (3.4)    
In the exponent of eq.3.4 1sinq=r, kºdr/s so ikz”=¶z”/¶r so  
                                                        kz”=-i¶z”/¶r=(dr/s)z”=prz”                                (3.5)                                   
defines our ‘operator’ and is the reason for factoring in sect.1. So for simultaneous 
2AI+2AI coming out of our eigenvalue generator dC=0 (gave 2AI) and 2AIA (gave 
eq.3.5) we define the number  2 from  operator 2z”º 
(1È1)z”º(2AI+2AI)z”º((dr+dt)+(dr-dt)/s))z”º-i2¶z”/¶r  (3.6) 
=(integer)k)z” (or alternatively subtract to get (integer)wz”). Also eq.3.6 implies 
((dr+dt)2/ds2))z” º ¶2z”/¶r2+¶2z”/¶t2) given 2B1 gets rid of the drdt cross terms. But ds3 



does not give integer eigenvalues needed for list-define math. So from eq.3.6 we 
obtain the eigenvalue of z=0,1 (3.7                       
and 1+1.  So eq.3.6 defines the finite +integer list(i.e.,1È1º1+1º2)--define(i.e.,A+B=C) 
math required for the algebraic rules underpinning eq.1 without any added postulates 
(axioms). That Clifford algebra cross term generation (with CM<0) requires we define 
larger numbers than 2 with this math and also implies a 130° dichotomic rotation, 
sect.4.3).  
The integer k and w integer changes KDw are due to Frobenius series termination jumps 
in the eq.9 solutions (Ch.9) of finite countable N without resorting to ad hoc SHM. So DE 

ºKDwºhNDw (rename Dw®w) and thereby subdivide all of physical reality: 
Euniverse=Sihwi. Also 2AI 45° diagonal (large noise C so ‘wide slit’) is a particle eg.,2AI. 
On dr axis (small C, so ‘narrow slit’) the 2AIA wave equations dominate implying wave-
particle duality. So given eigenvalue generators eq.2AIA, or equivalently eq.3.6 
operator formalism and eq.9 (sect.3)  
we have derived quantum mechanics from first principles. 
 
2.2 Goemetrical Representation Of  2AI factor:  Solution 1 
Since the only (ground state) solution is positive integer constant =dr+dt (2AI) first 
quadrant we can represent our (eq.2) solution as a square within a square of fig.1 below.     
Note if  sides dr+dt are invariant then so is the hypotenus ds and corner areas drdt+dtdr. 
The corner is interpreted as the comutative ansatz drdt coefficient of  section 4.3 
 
 
 
          
                    
 
 
Solution 1 Eq.2                  
d(dr+dt)=0, d(drdt+dtdr)=0        dds2=0 at 45° given on the complex plane:   
                                                                ds2=dr2+dt2 so at around 45°:   dz=dseiq (2A1A)  
Section 4. Large C 
Instead of solving eq.1 and eq.1b ds=Ö2ds=dr±dt (eq.2AI, 2AII,2AIA) as in section 2 we 
solve the general case of eq.1a, 1b which thereby imply the Mandelbrot set {CM} on the -
dr axis with   -dr=drdr+CM. On the next smaller (1040X) fractal scale (our baseline 
subatomic scale) drdr<<dr and so -dr≈CM. So that to preserve the ds invariance Ö2ds 
=(dr-CM)+(dt+CM)ºdr'+dt'    (4.1) 
Here C®±CM (dichotomic 130° rotation in eq.1 with C=CM=Fiegenbaum point 
1.40115..) instead of 0 in eq.4.1 and we fill in the gaps with that C. This ±CM rotation 
results in composites.  
4.2  Rotation of dz by CM Creates Curved Space Two Body Eigenvalue 
Physics 
So from 2AIA at 45°and 2AI and eq.3.6 q can change by e/2ºCM: 
                                            Ö2ds=(dr-e/2)+(dt+e/2)ºdr'+dt'  (4.1) 

dr ds 

q 

dt 
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t 

q=45° 

 
drdt/2 2A1: d(dr+dt)=0 so the length of the side dr+dt 

of the large square is a constant. Thus from 
figure 1 ds in the inscribed small square is  
shortest at q=45°. Thus d(dr2+dt2)= d(ds2)=0 at 
45°. So ds2=dr2+dt2 and dr+dt=Ö2=dsºdzM   
given d(ds2)=0 at 45°. 
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Dq»e/ds of eq.2AI dr+dt at 45° (dr’,dt’)Î{degenerate solutions eq.2C}) that here break 
those 2D degeneracies giving 4D. Define rºdr and  krrº(dr/dr’)2=(dr/(dr-e/2))2 =1/(1-
rH/r)+rn     (4.2) 
Putting the kµns in eq.2A1A we obtain for both of these spherical symmetry krr metric 
coefficients:                                                                ds2= krrdr’2 +koodt’2               (4.3) 
Note from 2AIA drdt is invariant (at 45°) and so dr’dt’=ÖkrrdrÖkoodt=drdt so krr=1/koo         
(4.4) i.e., the old Schwarzschild-rn result outside rH. Use tensor dyadics to derive the 
other GR metrics 
 So we derived General Relativity by (the CM=e) rotation of special relativity (eqs 2A, 
2AI)    
    Also from 2AIA and eq.4.1:              ds2=dr’2+dt’2=dr2+dt2+dre/2-dte/2-e2/4        (4.5) 
2AII: From eq.2AII and equation 3.5 the neutrino is defined as the particle for which  -
dr’=dt (so can now be in 2nd quadrant dr’, dt’ can be negative) so dre/2-dte/2 has to be 
zero and so e has to be zero therefore e2/4 is 0 and so is pinned as in eq.2AII 
(neutrino).dzºy. So CM=e=mdr Is uncharged and also massless in this flat space. 
2A1: Recall eq.2AI electron is defined as the particle for which dr»dt so dre/2-dte/2 
cancels so e (=CM) in eq.4.5 can be small but nonzero so that the d(dr+dt)=0. Thus dr,dt 
in eq. 2AI  are  automatically both positive  and so can be in the first quadrant as positive 
integers.  2A1 is not pinned to the diagonal so e2/4 (and so CM) in eq.4.5 is not 
necessarily 0. So the electronischarged  
If that ±CM rotation covers 2AI or 2AII the charge on these objects (eg., charge on 2AII is 
0) becomes the charge on the composite. This added intermediate white noise is not 
charged. 
4.3 Eq.2AI Eigenvalues in equation 3.6 incorporating CM 
To remain within the set of eq.1 solutions set (allowing infinitesimal rotation within the 
noise) we note that the 2D degeneracy of eq.2C is broken by the solution2 rotation 
(eq.4.1) were we use ansatz dxµ®gµdxµ where gµ may be a 4X4 matrix and commutative 
ansatz dxµdxn =dxndxµ so that gµgndxµdxv+gngµdxndxµ = (gµgn+gngµ )dxµdxv  (µ,n=1,2,3,4; 
µ¹n). So from eq.2AI and resulting eq.(2C) then ds2 = (g1dx1+g2dx2+g3dx3+g4dx4)2 

=(g1)2dx12+(g2)2dx22+(g3)2dx32+(g4)2dx42+ Sµn(gµgndxµdxv+gngµdxndxµ). But 
gµgndxµdxv+gngµdxndxµ = (gµgn+gngµ )dxµdxv implying gµgn+gngµ =0 from 2B1 and also 
(gµ)2=1 from 2AIA. So the two 2AI results and 2B1 imply the defining relation for a 4D 
Clifford algebra: we have derived our 4Dimensons) with the time component defined to 
be g4dx4. So with kµn in eq.3.2 we have   
                              ds=(g1Ök11dx1+g2Ök22dx2+g3Ök33dx3+g4Ök44dx4)                        (4.6)                 
   Eq.4.6 also implies we can convert the 2AI (dr+dt)z” and the 2AIA (dr2+dt2)z” to first 
and second derivatives of z” terms (z”ºy). For example using 4.6:                                                 
 Eq.2AI ®ds=(g1Ök11dx1+g2Ök22dx2+g3Ök33dx3+g4Ök44dx4)z”®gµÖ(kµµ)¶y/¶xµ=(w/c)y   
(9)                                           
(eq.9) which is our new pde, adds the CM to equation 3.5 (electron observables).  It also 
becomes 2AII (n pinned to the light cone where CM=rH=e=0 (sect.4.1)). The 6 Clifford 
algebra cross term requirements imply many multiple lepton contributions giving us 
Boson fields around them. Note the w/c in E=hw implies we have found the actual 
eq.2AI lepton eigenvalues.  



Review: Recall eq.9 gives half integer spherical harmonics with Clebsch Gordon two 
body m=m1+m2, mi=±½. m=0 singlet (S state) result of the Pauli exclusion principle. See 
appendix B. 
4.4  Eq. 2A1A Boson Eigenvalues   m1+m2                                                                         
Start by plugging eq.1 into eq.1b. Get 2AI,2AII. Include the CM of eq.1b. To preserve the 
ds invariance then Ö2ds =(dr-CM)+(dt+CM)ºdr'+dt' in eq.4.1. We repeat the m1+m2 Pauli 
principe addition of sect.4.3. Here C®±CM (dichotomic 130° rotation) instead of 0 in 
eq.4.1 and we fill in the gaps with that C. So we have large CM dichotomic 130° rotation 
to the next Reimann surface of 2AIA (dr2+dt2)z’’ from some initial angle q.  Eq.1a 
solutions imply complex 2D plane Stern Gerlach dichotomic rotations using noise z”µC 
(4.2) using Pauli matrices si algebra, which maps one-to-one to the quaternionA algebra. 
From sect.4.2, eq.4.11 we start at some initial angle q and rotate by 130°  the noise 
rotations are: C=z”= [eL,vL]T ºz’(­)+z’(¯) ºy(­)+y(¯) has a eq.4.5 infinitesimal unitary 
generator z”ºU=1-(i/2)en*s), nºq/e in ds2=UtU. But in the limit n®¥ we find, using 
elementary calculus, the result exp(-(i/2)q*s) =z”.(dr+dt)z’’in eq.4.11 can then be 
replaced by (dr2+dt2 +..)z”=(dr2+dt2+..)equaternionABosons because of eq.2AIA. Rotate: z”: 
2AB:  2A1IA+2AIIB Dichotomic variables®Pauli matrix rotations®z’=equaternion A 

®Maxwell g  
=Noise C blob. See Appendix A for the derivation of the eq.2AIA 2ndderivatives of 
equaternion A.      
2AC: 2AI+2AI Dichotomic variables®Pauli matrix rotations®z”=equaternion A®KG 
Mesons. 
2AD:  2A1+2A1+2A1at r=rH ºCM (also stable but at high energy, including Z,W.) 
2AE:  2AI+2A1+2AII Dichotomic variables®Pauli matrix rotations®z”=equaternionA, 
Proca Z,W 
Ch.8,9 on baryon strong force with Nth fractal scale rH =2e2/mec2. Equation 2AE is a 
current loop implying that the Paschen Back effect with B flux quantization F=Nh/2e 
gives very high particle mass-energy eigenvalues. So we solved the hierarchy problem. 
Frobenius series solution from eq.9 gave lower hadron energies. All are singlet or triplet 
noise C blobs(2). See davidmaker.com, part II. 
We have thereby found the eq.2A1A Boson eigenvalue solutions. 
Summary: Solved eq.1 for z. Then we found the eigenvalues of z (eg., 2AI)                             
Note in equation 9 the koo=1-rH/r.  Given the 1040XCM fractalness in the CM=rH of 
equation 9 “Astronomers are observing from the inside of what particle physicists are 
studying from the outside, ONE object, the new pde (2AI) electron”, the same ‘ONE’ we 
postulated. Think about that as you look up at the star filled sky some night! Also 
postulating 1 gives no more and no less than the physical world. That makes this theory 
remarkably comprehensive (all of theoretical physics and rel# math) and the origin of this 
theory remarkably simple: “one”.  
So given the fractal self-similarity, by essentially knowing nothing (i.e., ONE) you know 
everything!      We finally do understand. 
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Appendix A  2AB (dr2+dt2+..)equaternion A Derivation From Sect.4.3 and operator in 
eq.4.6 
180° rotation from 90° 
A is the 4 potential. From 3.4 we find after taking logs of both sides that Ao=1/Ar  (A1)                                                                                         
Pretending we have a only two i,j quaternions but still use the quaternion rules we first do 
the r derivative:  dr2dz =(¶2/¶r2)(exp(iAr+jAo))=(¶/¶r[(i¶Ar¶r+¶Ao/¶r)(exp(iAr+jAo)] 
=¶/¶r[(¶/¶r)iAr+(¶/¶r)jAo)(exp(iAr+jAo)+[i¶Ar/¶r+j¶Ao/¶r]¶/¶r(iAr+jAo)(exp(iAr+jAo)+ 
(i¶2Ar/¶r2 +j¶2Ao/¶r2)(exp(iAr+jAo)+[i¶Ar/¶r+j¶Ao/¶r][i¶Ar/¶r+j¶/¶r(Ao)] exp(iAr+jAo)   
(A2) 
Then do the time derivative second derivative ¶2/¶t2(exp(iAr+jAo) =(¶/¶t[(i¶Ar¶t+¶Ao/¶t) 
(exp(iAr+jAo)]=¶/¶t[(¶/¶t)iAr+(¶/¶t)jAo)(exp(iAr+jAo)+ 
[i¶Ar/¶r+j¶Ao/¶t]¶/¶r(iAr+jAo)(exp(iAr+jAo)+(i¶2Ar/¶t2 +j¶2Ao/¶t2)(exp(iAr+jAo) 
+[i¶Ar/¶t+j¶Ao/¶t][i¶Ar/¶t+j¶/¶t(Ao)]exp(iAr+jAo)   (A3) 
Adding eq. A2 to eq. A3 to obtain the total D’Alambertian    A2+A3= 
 [i¶2Ar/¶r2+i¶2Ar/¶t2]+ [j¶2Ao/¶r2+j¶2Ao/¶t2]+ii(¶Ar/¶r)2+ ij(¶Ar/¶r)(¶Ao/¶r) 
+ji(¶Ao/¶r)(¶Ar/¶r)+jj(¶Ao/¶r)2 
++ii(¶Ar/¶t)2+ij(¶Ar/¶t)(¶Ao/¶t)+ji(¶Ao/¶t)(¶Ar/¶t)+jj(¶Ao/¶t)2  .   Since ii=-1, jj=-1,  ij=-
ji the middle terms cancel leaving [i¶2Ar/¶r2+i¶2Ar/¶t2]+  
[j¶2Ao/¶r2+j¶2Ao/¶t2]+ii(¶Ar/¶r)2+jj(¶Ao/¶r)2 +ii(¶Ar/¶t)2+jj(¶Ao/¶t)2   
Plugging in A1 and A3 gives us cross terms  jj(¶Ao/¶r)2+ii(¶Ar/¶t)2 = jj(¶(-
Ar)/¶r)2+ii(¶Ar/¶t)2  =0. So  jj(¶Ar/¶r)2  =- jj(¶Ao/¶t)2  or taking the square root:   ¶Ar/¶r + 
¶Ao/¶t=0      (A4 ) i[¶2Ar/¶r2+i¶2Ar/¶t2]=0,   j[¶2Ao/¶r2+i¶2Ao/¶t2]=0  or 
¶2Aµ/¶r2+¶2Aµ/¶t2+..=1  (A5)  
A3 and A4 are Maxwell’s equations (Lorentz gauge formulation) in free space, if 
µ=1,2,3,4.                      
                                          �2Aµ=1, �•Aµ=0                                                                           
(A6)  
Analogously from 2AC we get with the eq.4.1 doublet e±e  the Proca equ (3). We have 
thereby derived the field equations of the Standard electroweak Model.   
 



 
 
Appendix B   Mathematical Considerations 
1st type of Fractalness (1040)N Mandelbrot Set Repeat Of The Universe   
Go to the Utube HTTP with the 275 in the title to explore the Mandelbrot set. The splits 
are in 3 directions from the orbs. There appear to be about 2.5 splits going by each 
second and the next Mandelbrot set comes up in about 62 seconds. So  
32.7X62 =10N so 172log3=N=82. So there are 1082 splits.  
So there are about 1082splits per initial split. But each of these Mandelbrot set 
Fiegenbaum points is a rH in eq.9. So for each larger electron there are 1082 constituent 
electrons. At the bifurcation point, which is also the Fiegenbaum point, the curve is a 
straight line and so dCM=0. Also the scale difference between Mandelbrot sets as seen in 
the zoom is about 1040, the scale change between the classical electron radius and 1011ly 
giving us our fractal universe.  
 
2nd type of Fractalness (1/4)N Repeat Of The Mandlebulbs Correction 
For 1.4167=S(¼)N.5+1.25  And Eq.9 Singlet m1+m2 Limitation 
We start at dz=-1 Mandlebulb2 since that is the vacuum z=0. Also eq.1.1 -dz=dzdz+C 
implies C<¼ if dz is a real number in  𝛿𝑧 = !"±√"!%&

'
 . Note the lack of a set scale makes 

the Mandlebulbs (figure below) get smaller by a approximate factor of ¼ each time on a 
different smaller Mandelbrot set. This is equivalent to a different Riemann surface so 
satisfying eq.1 again so implying one 2AI and 2AII doublet for each of the 3 surfaces: the 
3 lepton families. Note also these CM Mandlebulbs get into equation 9 through their 
associated equation 4.1 y=z”s eigenfunctions. So eq.4.1 and Eq.9 implies these 
Mandlebulbs are states analogous to atomic orbital states for both spin and also for 
charge doublets(isospin). It makes S states into singlets that act like Bosons. 
m=m1+m2=½-½=0 for two such spin states (spin) and two charge states (isospin). So this 
is all simply a Pauli principle application! 



So when Mandlebulb2 and Mandlebulb4 fill up with spin up or spin down or charge + 
and charge minus- the state is full, no more charges are allowed (as in spin-isospin). So 
we must stop with Mandlebulb5 unless charge=0 from then on. Mandlebulb6 would then 
be the neutrino mass. This perturbation noise (field) squared C2 is energy. 
In the context of equation 9 start at z=0 mµ»¼2 is m1; Next 0=m1+m2=singlet, 
Mandlebulb2(C2)+Mandlebulb3(C3) =[(1/4)2(1+1/4)]=.0791=p±. 
m1=Mandlebulb4=[(1/64)2]»me. Also dz=-1, the t. Mandlebulb4 is also near the 
Fiegenbaum point fractal X1040and stable since dC=0 there, so it is the ground state, with 
mass me. The fieldMandlebulb5 (1+1/4) coefficient fills the isospin state. 

 
All this seems nice and simple (eg.,¼2»mu, (1/64)2(1+¼)»me, etc.,) but some subtle 
properties of the Mandlebrot set complicate matters. For example the Mandlebulb circle 
sum=1.4167=S(1/4)N.5+1.25 is not quite at the Feigenbaum point 1.40115. So (1.4167-
1.40115)/1.40115 =.011098 is not zero. 5.2X.011098 =.05772=D which acts both as a 
mere energy unit definition here and compensation for this difference. Also the filled 
ground state contains the field m2 so add ¼ as in (1/64)2(1+ ¼) and the excited states 
contain this same field.  So we take into account the Pauli principle (where 1+¼ adds 
field as m2) and compensate completely for this unphysical 1+D expansion and with 
these (1-D) coefficients in:           
me= (1/64)2(1+¼)1777(1-D)=0.510996Mev= ground state. 0.0004%diff. 1+¼ adds that 
m2 field. 
mµ=(1/4)21777(1-D)+2(.511)=105.67Mev. 0.01%dif. Added the 2X0.511Mevground 
state values 
mt=(1)1777Mev;  0% diff.  
These residual discrepancies appear to be D2 sized roundoff errors so we are getting 
precision answers here. These are the 3 lepton masses inserted into the eq.9 lepton 
equation in eq.4.1. Essentially by measuring the widths (squared) of these fractal 
Mandlebulbs we get the masses of the tauon, muon and electron in the proper context of 
Dirac eq.9 as 3 Riemann surface 2AI&2AII families. (me=.510999895..,  
mµ=105.65837..) 
 
Origin Of Mathematics 
      Single Postulate Of 1 
eq.3.6 defines the finite +integer list(i.e.,1È1º1+1º2)--define(i.e.,A+B=C) math required 
for the algebraic rules underpinning eq.1 without any added postulates (axioms). Also 
list 2*1=2, 1*1=1 defines A*B=C. Division and rational numbers defined from B=C/A. 
We repeat with the list 3*1=3, etc., with the Clifford algebra terms satisfaction keeping 
this going all the way up to 1082 and start over given the above fractal result given the rH 
horizons of eq.4.2. 



Note the noise C guarantees limited precision so we can multiply any number in our list 
with the above integer 1082 to obtain the integers in eq.3.6 which gives us quantization of 
the Boson fields  
    Real Numbers Defined from Our Rational Numbers 
Real numbers are the core of mathematics (Try balancing your checkbook or measuring a 
length without them!) and physics. 1 is a real number. The key thing is that we are 
postulating 1, not 1 and a bunch of other stuff. 
 
There are several equivalent ways of defining the real numbers.   
One way is through Dedekind cuts. Another method is to define a number as a "real" 
number by defining a Cauchy sequence of rational numbers (Cantor's method) for which 
it is a limit. 
For example it is easy to define p as a real number.  You can use the Cauchy sequence              
4(-1)N/(2N+1) resulting in the series sum 4(1-1/3+1/5-1/7+...)=p. 
Note this is a sequence of rational numbers adding up to an irrational number sum 
('summability' in the parlance of 'real analysis').  The union of the set of irrational and 
rational numbers is the "real " numbers by the way. Note this real number 
definition required that Cauchy sequence of rational numbers.  
In contrast the rational number sequence defined by the iteration 
zN+1=zNzN+C  (eq.1a);  dC=0 (eq.1b);  N®¥, noise C®0  defines 1 (and not p) as a real 
number. Solve for C in eq.1a and plug that into eq.1b and get d(zN+1-zNzN)=0. Note the 
variation of ¥-¥ cannot be zero so zN+1 has to be a finite number. So the resulting series 
has to be summable. Thus given C®0 and N®¥ we cannot start the sequence with a 
number that ends up with a divergent sequence. We are thereby finally left with a 
sequence beginning with z0=1 or 0 (N=0) as C®0 and N®¥. Defining zN+1=z for N®¥ 
eq.1a then becomes z=zz+C (eq.1) (Recall 1=1X1+0), our algebraic definition of 1. 
You need an infinite series of rational numbers that do this: so you have to plug zN+1 

=zNzN+C back into zN in eq.1a and keep doing this as N®¥. Also take C®0 and you see 
this simple iteration formula expand (as N®¥) into a series of rational numbers with a 
sumability analogous to what we found for p (We have also thereby imbedded the eq.1a 
fractalness into the definition of the real numbers!) 
So you have defined 1 in terms of a Cauchy sequence of rational numbers in the context 
of this C®0 so you have defined 1 as a real number. This is a unique method (just 
giving us 1,0) given the existence of noise C since we required equation 1a to generate 
equation 1 in that case, which gave us our algebraic definition of 1 in the end. Note we 
have also defined set theory and also arithmetic in operator equation 3.6 with 
simultaneous eq.(2AI+2AI) and its 1È1º1+1 eigenvalues. In that regard note also on this 
fundamental ‘set theoretical’ level (1U1) zero behaves like the null set Æ and we all 
know the null set is an element of every set anyway. So we really have just postulated 1 
with the 0 merely coming along for the ride. 
 
With that 'uniqueness' there are no other equations besides 1a, 1b (at least not ones that 
give us 1,0 since requiring that Cauchy sequence of rational numbers limit of 1 severely 
restricts our choices) that do this. Everybody knows 1 is a real number so it obeys eq.1a, 
1b.  
 



 Postulate 1 
So get all of physics from eq. 1a,1b. 
Use the 1 in the postulate of 1 to define the list-define algebra 1È1º1+1 underpinnings of 
eq.1a 
 
. 
 
 
 
Fig.1            
                        Solution 1 Eq.2                 Dq=CM rotation of Solution1: called solution 2 
d(dr+dt)=0, d(drdt+dtdr)=0                  dr®dr-C

M
ºdr’; dt® dt+C

M
ºdt’                      

2AIA dds2=0, ds2=dr2+dt2                    krrº(dr/dr’)2,     ds2=krrdr’2+koodt’2
            

 
 e/2 is still integer  
4.6  Rotation of dz by CM Creates Curved Space Two Body Eigenvalue 
Physics 
So from 2AIA at 45°and 2AI and eq.3.6 q can change by e/2ºCM: 
Ö2ds=(dr-e/2)+(dt+e/2)ºdr'+dt'  (4.1) 
Dq»e/ds of eq.2AI dr+dt at 45° (dr’,dt’)Î{degenerate solutions eq.2C}) that here break 
those 2D degeneracies. Define rºdr and   krrº(dr/dr’)2=(dr/(dr-e/2))2 =1/(1-rH/r)+rn (4.2) 
Putting the kµns in eq.2A1A we obtain for both of these spherical symmetry krr metric 
coefficients:                                                               ds2= krrdr’2 +koodt’2               (4.3) 
Note from 2AIA drdt is invariant (at 45°) and so dr’dt’=ÖkrrdrÖkoodt=drdt so krr=1/koo         
(4.4) i.e., the old Schwarzschild-rn result outside rH. Use tensor dyadics to derive the 
other GR metrics 
 So we derived General Relativity by (the CM=e) rotation of special relativity (eqs 2A, 
2AI)    
    Also from 2AIA and eq.4.1:              ds2=dr’2+dt’2=dr2+dt2+dre/2-dte/2-e2/4      (4.5) 
2AII: From eq.2AII and equation 3.5 the neutrino is defined as the particle for which  -
dr’=dt (so can now be in 2nd quadrant dr’, dt’ can be negative) so dre/2-dte/2 has to be 
zero and so e has to be zero therefore e2/4 is 0 and so is pinned as in eq.2AII 
(neutrino).dzºy. So CM=e=mdr Is uncharged and also massless in this flat space. 
2A1: Recall eq.2AI electron is defined as the particle for which dr»dt so dre/2-dte/2 
cancels so e (=CM) in eq.4.5 can be small but nonzero so that the d(dr+dt)=0. Thus dr,dt 
in eq. 2AI  are  automatically both positive  and so can be in the first quadrant as positive 
integers.  2A1 is not pinned to the diagonal so e2/4 (and so CM) in eq.4.5 is not 
necessarily 0. So the electronischarged  
 
4.9 Alternative xdr=e Ansatz In 4.5 On Nth Fractal Scale: x=mass Definition 
If you substitute dt for dr instead you get nothing new at (eq. 2AI) q=45°since dr»dt 
there.  Clearly xdr (xºe/dr, dr= DeBroglie l because of 2AIA) also works in the same 
way as e on the diagonals in changing the angle (see sect. 4.1). Note this 4A1 electron has 
the only nonzero mass CM in free space making it the only fractal solution. In that regard 
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exactly on the diagonals (light cone) x=0 in 2AII. So we then identify the x with mass 
(see also sect.6.3,6.4 for derivation of the magnitude of x from distance of object B). 
Since me =x is the only nonzero proper mass here we can define rH=CMº2e2/mec2 then 
mec2rH=xdr=e=ke2=e as well, merely redefing our length units again. So set me=1 and 
then CM=1dr=(1)CM.  Also in the time domain: energy=h/dt  (eq.4.6) thereby defining h. 
Note the CM distance units are arbitrary, we have only single mass me, which is a mere 
constant unit multiplier redefining distance units with ke2/r then initializing the arbitrary 
energy units with h merely transforming 1/time to some energy or the other. So we 
avoided any free parameters here in this mass definition. See sect.7.12 for implications. 
4.10 Bra-ket Notation  
Note ei(45°+Dq) went from dz over to z” in eq. 4.1 (see  eq.4.2)  so  equation 2A1A also 
implies òz”*z”dV=1 with 1/s’2 normalization. So from eq.4.6 òz”*dzMz”dV=<dzM> 
=<dzM>òz”*z”dV=<dzM> equivalent to bra-ket <a|dzM|a> with ’a’ the eigenstates of 
eq.9,eg., half integer spherical harmonics (given 2AI is the only solution). 
 
4.11  Uniqueness Of These Operator Solutions: Note the invariant operator Ö2=ds here. 
So the eq.2AIA operator invariant ds2 and eq. 2AI, 2AII Ö2dsºdzM =dr±dt is the 
operator (eq.4.6) solution dzM (so not others such as ds3 ,ds4, etc.,which would then 
imply higher derivatives, hence a functionally different operator.). 
 
4.12   Cq<45° Boundary Conditions On E=Nhw  Note finite energy E=Nhw (N=1) can 
be a spread out with low energy density or a localized at high energy density thereby 
implying equation 2AI and 2AII (and entangled states) are indeed equations for a  particle 
Also for 45°, 135°, 225° and 315° the ds is invariant (sect.2) and so therefore dr and dt 
are constants with these integer values, particles. But as C®0, in z”=s’eiwt , s’®0  so 
amplitude s’ in s’eiwt flattens it out with also the ds then no longer invariant (for q<45°) 
making the dr and dt non constant introducing some ambiguity into their characterization 
as the integer N=1, (i.e., it’s not a  particle.). We then have a wave (eq.7 &eq.1.1.4) with 
unknown N. So we have only low energy density plane waves for C®0. So for a wide 
single slit with large uncertainty C we have particles and for a narrow slit with small 
uncertainty C we have waves, thus proving wave particle duality from first principles. 

 
C®0 implies we are in the neighborhood of the real axis so Rel CM is what we must use. 
So RelCM=Rel(zn+1-znzn)=-1 being an element of both the Mandelbrot set and satisfying 
equation 2 all at once. Thus at 135°  then ds=Ö2.  So e is imaginary since e2 thereby 
moves the Ö2 solution inward to the Fiegenbaum point radius and provides the added 
noise C needed to do that.  
Summary: Solved eq.1 for z. Then we found the eigenvalues of z (eg., 2AI)                             
Note in equation 9 the koo=1-rH/r.  Given the 1040XCM fractalness in the CM=rH of 



equation 9 “Astronomers are observing from the inside of what particle physicists are 
studying from the outside, ONE object, the new pde (2AI) electron”, the same ‘ONE’ we 
postulated. Think about that as you look up at the star filled sky some night! Also 
postulating 1 gives no more and no less than the physical world. That makes this theory 
remarkably comprehensive (all of theoretical physics and rel# math) and the origin of this 
theory remarkably simple: “one”.  
So given the fractal self-similarity, by essentially knowing nothing (i.e., ONE) you know 
everything!      We finally do understand. 
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Appendix D List-define, List-Define,  1082 Derivation Of Mathematics Without Extra 
Postulates 

 
These added cross term eq.9 objects (2AI) extend eigenvalue equation 4.6 from merely 
saying 1+1=2 all the way to the number1082.  Recall our first principles derivation means 
we postulate 1 as two definitions and we solve these two equation (1) for their two 
unknowns: that is the whole shebang.     
From section 4.4 we generate 6 cross terms directly from one application of eq,1a that 
may or may not be the ones required for our 4D Clifford algebra. To get precisely the 6 
cross terms of a 4D Clifford algebra we had to repeatedly plug into eq.2a the associated 
dr,dt of the required cross term drdt+dtdr. But in this process we thereby create other 4AI 
terms for other electrons and so build other 4D electrons and so a sequence of electrons 
We thereby generate the universe! Thus we have derived the below progressive 
generation of list- define microcosms. We then plug that into 4.11 as sequence of 
electrons. This allows us to use 4.11 to go beyond 1U1, beyond 2 to 3 let’s say. So we 
can then define 1È1 from equation 4.11 dzM just like postulate 1 was defined from eq.1 



and eq.2. So consistent with 4.11 and eq.1b we can then develop +integer mathematics 
from 1U1 beyond 2 because of these repeated substitutions into eq.1b using a list-define 
method so as not to require other postulates. So by deriving the 6 crossterms of one 4D 
electron we get all 1082 of them! So just multiply any number (given our limited preicion) 
by 1082 and it becomes an integer implying all integers here. Given the ys of equation 9 
for r<rc (So a allowed zitterbewegung oscillation thus SHM analogy) we can then 
redefine this integer N-1 also as an eigenvalue of a coherent state Fock space |a> for 
which a|a>=(N-1)|a>. Also recall eigenvalue 1È1 is defined from equation 4.6. Note 
1082 limit from section 6.1. Any larger and it’s back to one again. 

 
 We use 3 number math to progressively develop the 4 number math etc., eg.,2+2º4., so 
yet another list. Go on to define division from A*BºC then AºB/C. So the method is  
List-define, list-define, list-define, etc., as we proceed into larger and larger microcosms. 
There are no new postulates (axioms) in doing that. It follows from our generation of 
those 6 Clifford algebra cross terms one after the other and that sequence of 4D electrons, 
the objects we are counting.  We require integers and so no new axoms. Note C implies 
finite precision and we can always multiply a finite precision number by a large enough 
integer to make a finite precision number an integer in any case. So we also have our 
required integers here. So we don’t need any more axioms such as Peano’s mathematical 
induction or ring and field axioms. We generate each microsm number and algebra with 
this list define method until we reach 1082 (sect.4.1). 
 
Everybody knows that 1 is a real number so obeys eq.1a,1b which also imply fractalness. 
String theory isn’t the only game in town. 
 
Postulate 1 
Solve 1a, 1b for the physics. 
 
Use the 1 in the postulate of 1 to define the list define mathematics 1È1º1+1 underlying 
eq..1a,1b. You have come full circle here and so do not require any more postulates. 
 
You then have a ‘first principles’ derivation of both real number mathematics and 
physics. 



 
Part I   
Ch.1 1 is a real number so it obeys eq.1a, eq.1b.  So postulate 1 and solve eq.1a and eq.1b. Use 
the 1 in the postulate of 1 to define the list define mathematics 1È1º1+1 underlying eq..1a,1b. 
You have come full circle here and so do not require any more postulates. You then have a ‘first 
principles’ derivation of both real number mathematics and physics.  
We note that in the neighborhood of z=1,0 that the real z constraint (given noise C) implies our solution set 
(to eq.1,2) is the Mandelbrot set{CM}(sect.3, 1040X fractal cosmology).  
Plug the C in eq.1 into the eigenvalue definition(see introduction) dC=0 and you get special relativity 
(eq.2A) and a unbroken 2Ddegeneracy (eq.2C) and Clifford algebra and dr+dt=Ö2ds invariance. {CM} 
implies we must then rotate ds=(dr-CM)+(dt+CM)=dr'+dt'(eq.3.1) giving general relativity and broken 
degeneracy 4D Clifford algebra SM leptons (eq.9). This same rotation (sect.4.3) also generates the SM 
Bosons(g,W,Z) and with eq.2AIA their eigenvalue operators eq.4.11.               
Ch.2 Details of Fractalness 1040X cosmological fractal scale CM jumps 
Ch.3 Eq.2 2D isotropic-homogenus Space-Time gives 0 vacuum energy density Goo. 
Ch.4 Solution2 breaks eq.1a 2D degeneracy generating 4D Clifford Algebra for eq.4AI 
Ch.5 Nearby object B fractal object (and Object C) creating the proton we are inside  
Ch.6 Particle mass from object B and A separation. U=eiHt used to derive metric quantizat 
Ch.7 Comoving coordinate transformation with object A: Cosmological observables, G 
Part II 
Ch.8  2AI+2AI+2AI at r=rH.Paschen Back, F=2e/h,high mass particles Separation Of  
          Variables Of Eq.9 
Ch.9 Frobenius Solution To New PDE Getting Hyperons 
Part III 
Ch.10 Metric Quantization from U=eiHt, replacing need for dark matter 
 
Ch.1 Postulate 1 (as z’=z’z’+C) The rest is trivial math  
Trivial math: solve for z’ and get eigenvaluesº(dC=0, Don’t assume preferred scale) 
Trivial Math: Solve for C in eq.1. Plug 2 into eq.1 to get eq.4, first solution. Split  
 C in eq.1, get fractalness from the Mandelbrot set given limitations on CM in eq.1, our 
2nd solution. CM rotates SR int GR and breaks 2D degeneracy, creating 4D new pde. 
Definitions SRºSpecial relativity, GRºGeneral relativity, SMºStandard model, FP=Fiegenbaum point.    
                   QM=Quantum Mechanics, PDE=Generally covariant generalization of Dirac eq.4AI, eq.9, z=1  
        Note DzºC=random noise=SD error in z so variation(z)ºdzºDz. See introduction for explanation 
Section 1 Solve eq.1. To get eq.2 d(dzdz)=0 So rewrite eq.1 as eq.1a. Plug eq.1a into eq.1 (our 1st 
GE step) to get eq.2  d(dzdz)=0,.  Factor eq.4 to get eq.4A SR, 4AI (dr+dt=ds) degenerate 2D, 4AIA 
45°dz=dseiq, 4AII & 4B1.  
Section 2 Solve eq.1 to get constant CM. So rewrite eq. 1a dz=dzdz+C as 
dz+C1=dzdz+CMºdz1=dzdz+CM. Eq.1 restricts C and so dz1<¥ & gives us a rHºCM FP subset of the 
Mandelbrot set (our 2nd GE step),1040rH fractal cosmology 
Section 3   A rotation of SR into GR) (dr-CM)+(dt+CM)=dsºdr’+dt’is rotation at 45°of (dr&dt) SR to 
GR krrº(dr/dr’)2in 2AIA ds2=krrdr’2+koodt’2 . Breaks the 2D degeneracy to get 4D Clifford algebra (using 
2B1) PDE, SM leptons & dichotomic Bosons.  
Section 4 Use the postu1ated ONE to derive the list-define algebra required by eq.1.  
Also generates QM from that eq.4AIA operator. Our list-define1È1º1+1º2 numbers then are eigenvalues. 
 
Ch.2 Details Of The Fractalness   
2.1   The Mandelbrot Set Along The -dr Axis As Required By C®0 



Recall section 1.2.1 on the Mandelbrot set. Note equation 2 appears to imply that only the 
-dr axis objects come out of the postulate since C®0 there. On smaller and smaller scales 
separated by 1040X however this general Mandelbrot set structure is duplicated and 
rotated by 45° through that branch cut at r<0 line. Thus our complex plane 2AI and 2AII. 
45° particles are then on the new –dr line and thereby also come out of the postulate. We 
then have a whole new Reimann surface “universe” in this complex plane but oriented 
diagonally.  See youtube HTTP http://www.youtube.com/watch?v=0jGaio87u3A     

 
 
 
 

 
Fig.5 
Note also dt’2=(1-rH/r)dt2.  So r=rH implies dt’=0 so that C=0 (in eq.1) and therefore we 
are again on the –dr axis making the entangled state 2AI+2AI+2AI also come out of our 
postulate. (See Chapter 8,9,10).  The rest of the Mandelbrot set is completely irrelevant.  



 
So astronomers are observing from the inside of what particle physicists are studying 
from the outside, the ONE solution to ground state eq.2AI, equation 9, new pde object. 
Go to the Utube HTTP with the 275 in the title. The splits are in 3 directions from the 
orbs. There appear to be about 2.5 splits going by each second and the next Mandelbrot 
set comes up in about 62seconds. So  
32.5X62 =10N so 172log3=N=82. So there are 1082 splits.  
So there are about 1082splits per initial split. But each of these Mandelbrot set 
Fiegenbaum points is a rH in eq.9. So for each electron there are 1082 constituent 
electrons. At the the bifurcation point, which is also the Fiegenbaum point, the curve is a 
straight line and so dCM=0. But the maximum noise C that still keeps z from being 
complex is .25 so that thermal noise energy is ¼ mass energy which is about what a core  
20MK of a average star is. So we have explained the stars.   
 
2.2 Fractal Invariants 
Speed of light c is a fractal invariant, stays the same in going from one fractal scale to 
another since dr and dt (in c=dr/dt) change the same as you go through rH branch cut . e is 
a constant at a single fractal scale so rH=2e2/mec2 =e.  But going through the horizon rH 
makes e 1040X larger =2GM/c2 so that GM is also constant on a given scale. So if G is 
increasing M is decreasing (Sect.1.7.3). The Bg fractal dipole is responsibke for the fine 
structure constant diple (See Webb..Electron has a dipole moment then so does object A 
 
2.3   CM  Fractal Consequences  
Recall our two sect.I.1 equation i.e.,(eq.1) and two unknowns derivation of second 
unknown CM, our Mandelbrot set along the –dr axis branch cut horizon.  Note also 
measurements are confined inside time-like geodesics inside rH event horizon boundaries 
in eq.9 so the measured dd1=0 can then be postulated all over again, given branch cut 
horizon rH, for r<rH. So on the next higher fractal scale (Ch.2) a second e can then be 
rewritten as a 1040 X larger source. Recall the xdr mass term in section 1.2.12. Also for 
the (sect.II just below) fractal Dr=1040X scale jump in eDr2=(k/Dr)Dr2=kDr (recall 
eº2e2/mec2) implying a new mass term kDr (instead of xdr). So e goes up by Dr2 
=(1040)2=1080.  Dr2 becomes the contravariant tensor dyadic Z multiplier in sect 7.4. Note 
GM then is invariant (constant) as well since e is. It is well known that information is 
stored as horizon rH surface area=4prH2=4p(1040)2 »1081 thus giving us our appendix A 
counting limit. So for single source ((2GM/c2)/1081) =(1040/1081)e»(1/1040)e is an added 
source term of inverse square law force on each electron(2), hence the gravity in fig.3. 
Ch.7. So the radial rate of change of electric field on our own fractal (expanding) scale is 
the gravity on the next larger fractal scale (fig.3), one unified field!  Note also we derived 
the standard model (eq.2AI) gets the strong force section 2A1+2AI+2AI of Ch.9). See 
note reference 4 below for the underlying theory. The fractal metric quantization (due to 
object B) also gives a e,De  (fractal) metric quantization entanglement that replaces the 
need of dark matter (Ch.6,11).   
Alternatively Noise C Generates A New dz Which Generates New Noise C, etc., 
So another way of using equation 1 is instead to define noise: -dz-dzdzºC1 



Let Bo=1 in -Bodz=dzdz with Co=0. New noise C generates new dz in:	𝛿𝑧 = !"±√"!%&
'

.  
for dz not imaginary so C1=¼ in sect.6.13:  C2=1=t         quadratic equation C scaled: 
-Bodz=dzdz+C1.  ¼=C1=B1=noise.   C12=Eµ=1/16 ºe                                        ¼ 
 head                             
-B1dz=dzdz+C2.  1/64=C2=B2=noise.   C22=Ee=1/4096 ºDe                             1/16 hat 
-B2dz=dzdz+C3.  1/4096=C3=B3=noise. C32=En=1/1677216                       1/64 beanie 
The first column gets us the lepton masses and the last column derives the individual 
pieces of the Mandelbrot set along the -dr axis showing we actually did derive it. 
Note the electron me is right over the Fiegenbaum point period doubling where dC=0 so 
there is both stability and the fractalness so it has the i in front of the mass below. 
Note from Ch.9 that Energy= 1/Ökoo= e-

i(e+iDe)-e=1-e-iDe+(e-iDe)2/2+..=1-(e- e2/2) +(i(De+eDe+e3/6)+.. =mt+mµ+me 
Note when C gets large the z crosses the branch cut on the baseline fractal Nth fractal 
scale and we have our same 2D complex plane and so electron and electron neutrino 
family.  Next C rotation the muon and muon neutrino family thereby explaining the 3 
Lepton families.  
2.3 {{neighborhoodCM}Ç{-r axis}} –dr Fractal Branch Cut 
Recall section 1.2 and the derivation of the fractal space time. So there is more to these 
2D complex number solutions to eq.2a  than just irrational and rational numbers, there is 
also this underlying space-time  fractal structure                             
{neighborhood{CM}Ç{-r axis}} that contains even fewer elements than the rational 
numbers and which only “exists“ when the “fog“ is not thick, i.e. when  C goes to 0. It 
permeates all of space and yet has zero density. It is a very mysterious subset of the 
complex plane indeed. 
Note to be a part of what is postulated (eq.2) C®0 we must be in the neighborhood of the 
horizontal Mandelbrot set dr axis. But from the perspective (scale) of this N+1 th scale 
observer one of the 1040X smaller (Nth fractal scale) 45° rotated Mandelbrot sets (fig5)  
is still near his own dr axis putting it within the e, d limit neighborhoods of C®0 of eq.2. 
Thus in this narrow context we are allowed the 45° rotations to the extremum directions 
of the solutions of equation 2. Our C increases (eg., C®0) discussed later sections are 
also all in this Nth fractal scale context. For example eq. 2AI is then reachable on the Nth 
fractal scale (r>rH) as a noise object (C>0).  
So 2AII at 135° must then also result from noise (C>0) introduction and so from that first 
fractal jump rotation in the 2D plane. Later we even note a limit on C (sect.4.3.1). 
 
2.4 Fourier Series Interpretation Of CM Solution 
Recall from equation 2 that on the diagonals we have particles (and waves) and on the dr 
axis where C=0 only waves, see 2AIA. Recall 2AC solution dr=dt, dr=-dt   gives 0 as a 
solution and so C=0. But in equation 2 for C®0 dz=0,-1. So 2AC implies the two points 
dz=0,-1. So for waves to give points implies a Fourier superposition of an infinite number 
of sine waves and so wave lengths. In terms of eq.2AI these are solutions to the Dirac 
equation and so represent fractalness, smaller wave lengths inside smaller wavelengths. 
So it is fractal. 
2.5 Observer < rH Interpretation Of CM Solution 



Since equation 9 is essentially all there is there is then also anthropomorphic (i.e., 
observer) based derivation of that fractalness using equation 9 there is even a powerful 
ethics lesson that comes out of this result in partV). Recall that eq.2AI has two solution 
planes and associated two points one of which we define as the observer.  In the new pde: 
Ökµµgµ¶y/¶xµ=(w/c)y 2AI, (given that it requires these two points), we allow the 
observer to be anywhere. So just put the observer at r<rH and you have derived your 
fractal universe in one step.  In that regard the new pde metric  
Note from equations 3.4 we have the Schwarzschild metric event horizon of radius 
Rº2Gm/c2 in the M+1 fractal scale where m is the mass of a point source. Also define the 
null geodesic tangent vector Km to be the vector tangent to geodesic curves for light rays. 
Let R be the Schwarzschild radius or event horizon for rH=2e2/mec2. Thus (Hawking, 
pp.200) in the case that equation applies we have: RmnKmKn>0 for r<R in the 
Raychaudhuri (Kn=null geodesic tangent vector) (3.3) equation. Then if there is small 
vorticity and shear there is a closed trapped surface (at horizon distance “R” from x) for 
null geodesics. No observation can be made through such a closed trapped surface. Also 
from S.Hawking, Large Scale Structure of Space Time, pp.309...instead he will see O’s 
watch apparently slow down and asymptotically (during collapse) approach 1 o’clock...”. 
So grr=1/(1-rH/r) in practical terms never quite becomes singular and so we cannot 
observe through rH either from the inside or the outside (space like interval, not time 
like). Note we live in between fractal scale horizon rH=rM+1 (cosmological) and rH=rM 
(electron). Thus we can list only two observable (Dirac) vacuum Hamiltonian sources 
(also see section 1.1).                                                                           HM+1 and HM    
But we are still entitled to say that we are made of only ONE “observable” source i.e., 
HM of equation 9 (which we can also view from the inside (cosmology) and the outside 
(particle physics).  Thus this is a Ockam’s razor optimized unified field theory using:  
ONE “observable” source                                 
of nonzero proper mass which is equivalent to our fundamental postulate of equation 1. 
Metric coefficient krr=1/(1-rH/r) near r=rH (given dr'2=krrdr2) makes these tiny dr 
observers just as big as us viewed from their frame of reference dr'. Then as observers 
they must have their own rHs, etc. . You might also say that the fundamental Riemann 
surface, and Fourier superposition are therefore the source of the “observer”. See end of 
PART III (of davidmaker.com) for the powerful ethics implication of that result 
(eg.,negation of solipsism since two “observers” are implied by the eq.4AI two 
simultaneous solutions).  
 Illustration Of The fractalness: Recall our mantra implied by this fractal space time 
that “Astronomers are observing from the inside of what particle physicsts are studying 
from the outside, ONE thing: the new pde (rotated 2AI = eq.9) electron.”; Think about 
that as you gaze up into a star filled sky some evening! 
Below is an illustration: 



 
 
Ch.3  Equation 1b, 2D Isotropic and Homogenous Space-Time vs A 
NONhomogeneous and NONisotropic Space-Time 
From equation 1a solution 1b we note that this  theory is fundamentally 2D. So what 
consequences does a 2D theory have?  
We break the 2D  degeneracy of  eq. (2C) at the end by rotating by CM (3.5) and get a 4D 
Clifford algebra.  
Recall 2AI and 2AII are dichotomic variables with the noise rotation C going from 4AI at 
45° to 2AII at 135°. 
 Recall eq.2AI implies simultaneous eq.2AI+2AI are 2DÅ2D=4D. But single 2AI plus 
single 2AII are not simultaneous so are still 2D. So this theory is still 2D complex Z then.   
Recall the  kµn, gµn metrics (and so Rij and R) were generated in section 341.  
In that regard for 2D for a homogenous and isotropic gij we have identically Rµµ-½gµµR= 
0 º source =Goo since in 2D Rµµ=½gµµR identically (Weinberg, pp.394) with µ=0, 1... 
Note the 0 (=Etotal the energy density source) and we have thereby proven the existence of 
a net zero energy density vacuum. Thus our 2D theory implies the vacuum is really a 
vacuum! It is then the result of the fractal and 2D nature of space time!  
 A ultrarelativistic electron is essentially a tranverse wave 2D object (eg., the 2P3/2 
electron in the neutron).  Also a non isotropic homogenous N+1 th fractal scale space 
time makes the above source nonzero so gives this particle a small imaginary mass since 
r<rH in that square root. From sect.2 and Clifford algebrathe  cross term appendixA  the 
electron and 2 neutrinos are part of the same object so  2A1+2AII is Goo=Ee+s•pr=0 so 
Ee=-s•pr 



So given the negative sign in the above relation the neutrino chirality is left handed.  
Recall dz=dseiq circle from eq.6 and the resulting trivially fractal Riemann surfaces 
making the fractalness of this theory ideal. Note from that eq.9 and neutrino equations 
coming out of that square in a square analysis waves apply at the r axis (recall wave 
particle duality argument). Here the circle also intersects the nonzero part of the 
Mandelbrot at  -Ö2.  But the Fiegenbaum point is close to this value so we must slightly 
inflate the Mandelbrot set by some  e as in: 
ds2=(dr-e/2)2+dt2=dr2-edr+dt2. But dr2=edt (waves, sect.4.1) so edt-edr=ds2=(-Ö2)2=2 
which is a eq.4 spin ½ solution, neutrino and electron (fig5, lowest energy). Thus the 2D 
vacuum ambient metric is chiral and contains the electron and neutrino. 
Thus the zero energy vacuum and left handedness of the neutrino in the weak interaction 
are only possible in this 2D equation 1  Z plane. If the space-time is not isotropic and 
homogenous the neutrino must then gain mass mo (see section 3.3.4 for what happens to 
this mass) and it becomes an electron at the horizon rH if it had enough kinetic energy to 
begin with. It changes to an electron by scattering off a neutron with at W- and e- 
resulting along with a proton. So the neutrino transformed into an electron with other 
decay products. Recall that the electron and the neutrino are dichotomic variables (one 
can transform into the other,sect.4.3) and can share the same spinor as we assumed in 
section 4.3. The neutrino in this situation is left handed. g5 is the parity operator part of 
the Cabibbo angle calculation.  
3.2 Helicity Implications 2D Isotropic And Homogenous State 
From Ch.10 pxy = -ih¶y/¶x. We multiply equation   pxy = -ih¶y/¶x in section 4.2 by 
normalized y* and integrate over the volume to define the expectation value of operator 
px for this observer representation:                                                  
                                                 

(implies Hilbert space if y is normalizable). Or for any given operator ‘A’ we write in 
general as a definition of the expectation value:                   (3.2.1) 
The time development of equation 9 is given by the Heisenberg equations of motion (for 
equation 9. We can even define the expectation value of the (charge) chirality in terms of 
a generalization of eq.9 for ye spin ½ particle creation ye from a spin 0 vacuum ce. In 
that regard let ce be the spin0 Klein Gordon vacuum state in zero ambient field and so ½

. Thus the overlap integral of a spin ½ and spin zero field is: 

    <vacuum helicity of charge>º =                            (3.2.2)                                       

So =helicity creation operator for spin ½ Dirac particle: This helicity is the 
origin of charge as well for a spin ½ Dirac particle. See additional discussion of the 
nature of charge near the end of 3.1 Alternatively, in a second quantization context, 
equation 3.3.2 is the equivalent to the helicity coming out of the spin 0 vacuum ce and 
becoming spin½ source charge with ½(1±g5)ºat being the charge helicity creation 
operator. 
The expectation value of g5 is also the velocity. Also gi (i=x,y,z) is the charge conjugation 
operator. 3.1.3  Note from section 3.1.1 the field and the wavefunction of the entangled 
state are related through eifield=y=wavefunction. grÖ(krr)¶/¶r(grÖ(krr)¶c/¶r =0 where y= 
(grÖ(krr)¶c/¶r and ½(1±g5)y=c.    <g5> =v=<c/2>=c/4 So 1±g5 =cos13.04±sin13.04,  
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q=13.04=Cabbibo angle. 
Here we can then normalize the Cabibbo angle 1+g5 term on that 100km/sec object B 
component of the metric quantization. We then add that CP violating object C  1km/sec 
as a  g5Xgi component. 
You then get a normalized value of .01 for  CKM(1,3) and CKM(3,1). 
The measured value is .008. 
Vacuum 
 Recall eq.2AIII gives us a vacuum solution as well. Also recall eq.1abis 2D. Recall the  
kµn, gµn metrics (and so Rij and R) were generated in above section 1.2.5. In that regard 
for 2D for a homogenous and isotropic gij we have identically Rµµ-½gµµR= 0 º source 
=Goo since in 2D Rµµ=½gµµR identically (Weinberg, pp.394) with µ=0,... Note the 0 
(Goo=Etotal the energy density source) and we have thereby proven the existence of a net 
zero energy density eq.2AIII  vacuum. Thus our 2D theory implies the vacuum is really 
a vacuum.    
  
 Left handedness                                                                                                                
From sect.1.1.4 2AI and 2AIIA and 2AIIB are combined. Note also from section 4.3  C 
rotation in a homogenous isotropic space-time. So 2A1+2AII = Goo=Ee+s•pr=0 so      
Ee=-s•pr. So given a positive Ee (AppendixB) and the negative sign in the above relation 
implies the neutrino chirality s•p is negative and therefore is left handed.  
 
3.3 Nonhomogenous NonIsotropic Mass Increase For 4AII 
But a free falling coordinate system in a large scale gravity field is equivalent to a 
isotropic and homogenous space-time and so even in a spatially large scale field the 
neutrino has negligible mass if it is free falling.  
To examine the effect of all three ambient metric states 1, e, De we again start out with a 
set of initial condition lines on our figure 4. In this case recall that in the presence of a 
nonisotropic non homogenous space time we can raise the neutrino energy to the e and 
repeat and get the muon neutrino with mass mon=(3km/1AU)me=.01eV (for solar metric 
inhomogeneity. See Ch.3 section on homogenous isotropic space time).  So start with eq. 
2AII singlet filled 135°  state 1S½. In that well known case 
E=Ö(p2c2+mo2c4)=E=E(1+(mo2c4/2E’)).  E’»E»pc>>moc2; y=ei(wt-kx)  with k=p/h=E/(hc). 
Set h=1,c=1 so y=ei(wt-kx)eixmo^2/2E’. So we transition through the given yen,yen, y1n 
masses (fig.6,section 6.7) as we move into a stronger and stronger metric gradient. 
(strong gravitational field) =y  electron neutrinos can then transform into muon 
neutrinos. Starting with a isotropic homogenous space time in the ground state we then 
we go into steeper metric gradients in a inertial frame as seen from at constant metric 
gradient and higher energies thereby the rest of the states fill consecutively. We apply 
this result to the derivation of the 2AI+2AI+2AI proton in section 8.1, starting out with 
infinitismal 2AII+2AII+42II mass and going into the region of high nonisotropy, non 
homogeneity close to object B, thereby gaining mass in the above way. This process is 
equivalent to adding noise C to 4AII. 
 
Chapter 4 Simultaneous (union) Broken 2D Degeneracy CM rotation of 
eq. 2AI Implies 2DÅ2D=4D 



4.1   2DÅ2D formulation of 2AI+2AI 
To stay within the solutions 1 we note that the 2D degeneracy of eq.2C is broken by the 2 
rotation (eq.3.1) were we use ansatz dxµ®gµdxµ where gµ may be a 4X4 matrix and 
commutative ansatz dxµdxn =dxndxµ so that gµgndxµdxv+gngµdxndxµ = (gµgn+gngµ )dxµdxv  
(µ,n=1,2,3,4; µ¹n). So from eq.(2C) ds2 =  
(g1dx1+g2dx2+g3dx3+g4dx4)2=(g1)2dx12+(g2)2dx22+(g3)2dx32+(g4)2dx42+Sµn(gµgndxµdxv+gngµ
dxndxµ). But gµgndxµdxv+gngµdxndxµ = (gµgn+gngµ )dxµdxv implying gµgn+gngµ =0 from 
2B1 and also (gµ)2=1 from 2AIA. So the two 2AI results and 2B1 imply the defining 
rolation for a 4D Clifford algebra. 
So the solution 2 rotation by CM at 45° (eq.2AIA) causes the two simultaneous 2AI 
electron terms to have different dr,dt.since the random C can be different in each case. 
These 2new degrees of freedom for the only particle with nonzero proper mass in this 
theory are what create the 4D we observe. 
The two 2D plane simultaneous solutions of eq.2AI then imply 2D+2D=4D thereby 
allowing for a imbedded 3D spherical symmetry. So we can without loss of generality 
use the Cartesian product (dr,dt)X(dr’,dt’)=(dr,dt)X(df,dq) to replace  rsinqdf with dy, 
rdq with dz, cdt with dt”as in ds2=-dr2-r2sin2qd2f-r2d2q+c2dt2º-dx2-dy2-dz2+dt”2. Note the 
two r,t and q,f, sets of coordinates are written self consistently as a Cartesian product 
(AXB)= (r,t,f,q) space.where r,tÎA and f,qÎB. Note the orthogonal space of q,f with 
the f=wt’ carrying the second time dependence (note there are two time dependent 
parameters in (dr,dt)X(dr’,dt’)). Given the intrinsic 2D applied twice in the Cartesian 
product the covariant derivative is equal to the ordinary derivative in the operator 
formalism. Thus here [Ö(krr)dr]y=-i[Ö(krr)(dy/dr)] replaces the old operator formalism 
result (dr)y=-idy/dr in the old Dirac equation allowing us to then multiply by the same g  
in gr[Ö(krr)dr]y=-igr[Ö(krr)(dy/dr)]. So using this substitution we can use the same Dirac 
gx,gy, gz,gt s that are in the old Dirac equation.  
 
4.2 ds2=kxxdx2+kyydy2+kzzdz2+kttdt2     For spherical Symmetry    From Eq.3.3                                         
Here we easily show that our new pde(eq.9) is generally covariant since it comes out of 
this 4D Pythagorean Theorem equation 83.3 
kxx=kyy=kzz=-1,ktt=1 in Minkowski flat space, Next divide by ds2, define pxºdx/ds, so get                
                                                   kxxp’x2+kyyp’y2+kzzp’z2+kttp’t2=1                                                                                                                   
To get eq.2.1.3 we can then linearize like Dirac did (however we leave the kij in. He 
dropped it). So:   
                (gxÖkxxpx+gyÖkyypy+gzÖkzzpz+igtÖkttpt)2 =kxxpx2 +kyypy2+kzzpz2+kttpt2      (4.2.1)    
So just pull the term out of between the two  ( ) lines in equation 2.1.3  and setit  equal to 
1 (given 1*1=1 in eq.1)  to get eq.9 in 4D and divide by ds 
  gxÖkxxpx+gyÖkyypy+gz Ökzzpz+igtÖkttpt =1 
and multiply both sides of that result by the y and write this linear form of  equation 
1.1.3 as its own equation:                        gxÖkxxpxy+gyÖkyypyy+gzÖkzzpzy+igtÖkttpty=y 
Then use eq.4.6. This proves that the new pde (eq.9) is covariant since it comes out of the 
Minkowski metric for the case of r®¥. 
 
4.3    2 Simultaneous Equations 2AI: 2DÅ2D Cartesian Product, Spherical  
Coordinates and Second Solution Ökµn                                                                                                                        



Note from eq.2AI the (dr,dt;dr’dt’) has two times in it so can be rewritten as 
(dr,rdq,rsinqwdt,cdt)º (dr,rdq,rsinqdf,cdt) 
dr=dr            gives    gr[Ö(krr)dr]y   =-igr[Ö(krr)(dy/dr)]=       -igx[Ö(krr)(dy/dr)]                                 
rdq=dy         gives    gq[Ö(kqq)dy]y =-igq[Ö(kqq)(dy/dy)]=     -igy[Ö(kqq)(dy/dy)]                     
rsinqdf=dz  gives    gf[Ö(kff)dz]y  =-igf[Ö(kff)(dy/dz)]=     -igz[Ö(kff)(dy/dz)]                              
cdt=dt”        gives    gt[Ö(ktt)dt”]y   =-igt[Ö(ktt)(dy/dt”)] =     -igt[Ö(ktt)(dy/dt”)]   (4.3.1) 
For example for the old method (without the Ökii for a spherically symmetric 
diagonalizable metric):  
ds2={gxdx+gydy+gzdz+gtcdt}2=dx2+dy2+dz2+c2dt2 then goes to  
ds2={gx[Ö(kxx)dx]+gy[Ö(kyy)dy]+gz[Ö(kzz)dz]+gt[Ö(ktt)dt]}2=kxxdx2+kyydy2+kzzdz2+c2kttdt2 
and so we can then derive the same Clifford algebra (of the g s) as for the old Dirac 
equation with the terms in the square brackets (eg.,[Ö(kxx)dx]ºp’x) replacing the old dx in 
that derivation. 
Also here there is a spherical symmetry so there is no loss in generality in picking the x 
direction to be r at any given time since there is no q or f dependence on the metrics like 
there is for r.  
If the two body equation 9 is solved at r»rH (i.e.,our  –dr axis, C®0  of eq.1) using the 
separation of variables and the Frobenius series solution method  we get the hyperon 
energy-charge eigenvalues but here from first principles (i.e.,our postulate) and not from 
assuming those usual adhoc  qcd gauges, gluons, colors, etc. See Ch.8-10 for this 
Frobenius series method and also see Ch.9. Also En=Rel(1/Ögoo)=Rel(ei(2e+De))=1-4e2/4+..  
=1-2e2/2º1- ½a. Multiply both sides by !c/r (for 2 body S state l=r, sec.16.2), use 
reduced mass (two body m/2) to get E=  !c/r +(a!c/(2r))= !c/r +(ke2/2r)= QM(r=l/2, 2 
body S state)+E&M where we have then derived the fine structure constant a. 
 
4.4 Single 3AI Source Implies Equivalence Principle And So Allows You To Use 
Metric kµn Formalism   
Recall that the electrostatic force Eq=F=ma so E(q/m)=a. Thus there are different 
accelerations ‘a’ for different charges ‘q’ in an ambient electrostatic field ‘E’. In contrast 
with gravity there is a single acceleration for two different masses as Galileo discovered 
in his tower of Pisa experiment. Thus gravity (mass) obeys the equivalence principle and 
so (in the standard result) the metric formalism gij (eq.7) can apply to gravity.  
Note that E&M can also obey the equivalence principle but in only one case: if there is a 
single e and Dirac particle me in Eq=ma and therefore (to get the correct geodesics,):  
Given an equivalence principle we can the write E&M metrics such as rewriting 3.2:                                      
                                    koo =   goo=1-2e2/rmec2 =1-rH/r                                  (4.4.1) 
(with krr=1/koo, in section 1.2.5) and so then trivially all charges will have the same 
acceleration in the same E field. This then allows us to insert this metric gij formalism 
into the standard Dirac equation derivation instead of the usual Minkowski flat space-
time gij s(below).  Thus by noting E&M obeys the equivalence principle you force it to 
have ONE nonzero mass with charge. Thus you force a unified field theory on theoretical 
physics! 
 
4.5 Implications of  goo =1-2e2/rmec2 =1-eAo/mc2vo) In Low Temperature Limit  
Recall equation 4.3.  goo =1-2e2/rmec2 º1-eAo/mc2vo). We determined Ao,(andA1,A2,A3) 



in section 4.1   We plug this Ai into the geodesics    

                                                                                       (4.5.1) 

where Gmijº(gkm/2)(¶gik/¶xj+¶gjk/¶xi-¶gij/¶xk) 
    

So in general                               , ,                 (4.5.2)                   

 ,  , and define , ( ) and 

 for large and near constant v,,see eq. 4.2 also .  In the weak field gii »1. 
Note e=0 for the photon so it is not deflected by these geodesics whereas a gravity field 
does deflect them. The photon moves in a straight line through a electric or magnetic 

field. Also use the total differential  so that using the chain rule gives us: 

. 

gives a new A(1/v2)dv/dt force term added to the first order Lorentz force result in these 
geodesic equations (Sokolnikoff,  pp.304). So plugging equation 4.5.2 into equation 
4.5.1, the geodesic equations gives:  

+ +

+ =

+ 

+ +

= + +

+ +

 . Thus we have the 

Lorentz force equation form plus the derivatives of 1/v which 

are of the form:  Ai(dv/dr)av/v2.This new term A(1/v2)dv/dr is the pairing interaction (4.5.3).       
This approximation holds well for nonrelativistic and nearly constant velocities and low B 
fields but fails at extremely low velocities so it works when v>>(dv/dA)A. This constraint also 
applies to this ansatz if it is put into our Maxwell equations in the next section. Recall at the 
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beginning of the BCS paper abstract the authors say that superconductivity results if the 
phonon attraction interaction is larger than the electrical repulsion interaction 
Given a stiff crystal lattice structure (so dv/dr is large also implying that lattice harmonic 
oscillation isotope effect in which the period varies with the (isotopic) mass.) this makes the 
pairing interaction force Ai(dv/dr)av/v2. The relative velocity “v” will then be small in the 
denominator in some of the above perturbative spatial derivatives of the metric gaa (e.g., the 
1/v derivative of H2 (A/v2)(dv/dr)av. This fact is highly suggestive for the velocity component 
“v” because it implies that at cryogenic temperatures (extremely low relative velocities in 
normal mode antisymmetric motion) new forces (pairing interactions?) arise from the above 
general relativity and its spin 0 (BCS) and spin 2 statesi (D states for CuO4 structure). For 
example the mass of 4 oxygens (4X16=64) is nearly the same as the mass of a Cu (64) so that 
the SHM dynamics symmetric mode (at the same or commensurate frequencies) would allow 
the conduction electrons to oscillate in neighboring lattices at a relative velocity of near zero 
(e.g.,v »0 in (A/v2)(dv/dr)av  making a large contribution to the force), thus creating a large 
BCS (or D state) type pairing interaction using the above mechanism. Note from the dv/dt 
there must be accelerated motion (here centripetal acceleration in BCS or linear SHM as in the 
D states) as in pair rotation but it must be of very high frequency for (dv/dr)av  (lattice 
vibration) to be large in the numerator also so that v, the velocity, remain small in the 
denominator with the phase of “A” such that A(dv/dr)av remain the same sign so the polarity 
giving the A is changing rapidly as well. This explains the requirement of the high frequency 
lattice vibrations (and also the sensitivity to valence values giving the polarity) in creating that 
pairing interaction force. Note there should be very few surrounding CuO4 complexes, just the 
ones forming a line of such complexes since their own motion will disrupt a given CuO4 
resonance, these waves come in at a filamentary isolated sequence of CuO4 complexes passing 
the electrons from one complex to another would be most efficient. Chern Simons developed a 
similar looking formula to Ai(dv/dr)av/v2  by trial and error.   This pairing interaction force 
A(dv/dt)/v2 drops the flat horizontal energy band (with very tiny variation in energy).saddle 
point (normally at high energy) associated with a particular layer down to the Fermi level 
making these energies (band gaps) accellible and so allowing superconducitivity to occur. 

Twisted Graphene 
   Monolayer graphene is not superconductor by the way. 
 But what about two layers?  For example a graphene bilayer twisted by 1.1deg rotation 
creates a quasi Moire' pattern with periodic hexagonal lattice.  
It is amazing that in this Moire pattern for each hexagonal structure there are carbons far 
apart inside the hexagon and carbons close together around the edge of the hexagon making 
these two groups of carbon atoms distinguishable in terms of their bonding lengths.   
So how many high density carbons are in the less dense region of the hexagon? 
3+4+5+6+5+4+3=30.  How many carbons are in the more dense region of the Moire 
pattern hexagon boundary? 5*6=30 again. So these two groups have the same aggregate 
mass  (but are distinguishable) just like the 4 Os and one Cu  in the cuprates.  
So if you twist one layer of graphene that is on top of another layer by 1.1deg it should 
become a superconductor. And it is.      
This pairing interaction force also lowers the energy gap to near the Fermi level.    
dz=[-1±Ö(1-4C)]/2. If C<1/4 there is no time and the and so dt/ds=0 and so the scattering 
Hamiltonian is 0. Thus there is no scattering and so no electrical resistance. 
This is the true source of superconductivity. 



 
   4.6 Summary of Consequences of the Uncertainty In Distance (separation) C In        
-dz=dzdz+C      eq.1                    

 1) C as width of a slit determines uncertainty in photon location and resulting wave 
particle duality (see above section 4.3.8).                                                                                                                                                  
2) C is uncertainty in separation of particles which is large at high temperatures.  Note 
degeneracy repulsion (two spin ½ can't be in a single state) is not necessarily time 
dependent and is zero only for bosons. Also given the already extremely small Brillioun 
zone bosonization separation (see equation 4.3 for pairing interaction source) then C is 
small so not much more is needed for C to drop below ¼ to the r axis for Bosons. Thus 
time axis Dt=0 so Dv=aDt =0. (note relative v is big here. Therefore there is no Dv and so 
no force (F=ma) associated with the time dependent acceleration ‘a’ for this Boson 
flowing through a wire with the stationary atoms in the wire. So there is no electrical 
resistance to the flow of the Bosons in this circuit and we have therefore derived 
superconductivity from first principles. But there is a force between electrons in a pairing 
interaction (that creates the Boson) because v between them is so small. Use pairing 
interaction force mv^2/r between  leptons from sect.4.8:   Fpair =A(dv/dt)/v2. is large. 
Recall that a superfluid has no viscosity. But doesn't viscosity constitute a force F as well 
(F/m=a in dv=adt) and isn't helium 4 already a boson so that when C drops below ¼ then 
dt drops to zero as well? So superfluidity for helium 4 is also a natural outcome of a small 
C.      

3) C is separation between particle-antiparticle pair (pair creation).  For C<1/4 we leave the 
135° and 45° diagonals jump to the r axis and simple ds2 wave equation dependence 
(Ch1,section 2).  Thus we have derived pair creation and annihilation.  The dt is zero giving 
no time dependence thus stable states.  On the superconductivity we derived the pairing 
interaction (eq.4.5.3) and superfluidity (sect.4.6). So for two paired leptons (via the pairing 
interaction) the Hamiltonian of each one is then a function of both wavefuctions:  
h¶y1¶/t=u1y1 v2y2 and h¶y2/¶t=u2y1 +v2y2 which gives the superconducitivity. See 
Feynman lectures on superconductivity.                                                                                             

Alternative Method Of Doing QM: Markov Chains (eg.,Implying Path Integral) 
4.7 Markov Chain Zitterbewegung For r>Compton Wavelength Is A Blob 
Recall that the mainstream says that working in the Schrodinger representation and  
starting with  the average current (from Dirac eq. (p-mc)y(x)=0) assumption and so 
equation 9 gives J(+)=òy(+)tcay(+)d3x  . Then using Gordon decomposition of the currents 
and the Fourier superposition of the  b(p,s)u(p,s)e-ipuxu/h solutions (b(p,s) is a 
normalization constant of òytyd3x.) to the free particle Dirac equation(9) we get for the 
observed current (u and v have tildas): 
Jk=òd3p{S±s [|b(p,s)|2+|d(p,s)|2]pkc2/E +iS±s,±s’b*(-p,s’)d*(p,s)e2ixqpq/h u(-p,s’)sk0v(p,s) 
iS±s,±s’b(p,s’)d(p,s)e2ixqpq/h v(p,s’)sk0u(p,s).                                                          (4.11.4)                                                                
 (2)   E.Schrodinger, Sitzber.Preuss.Akad.Wiss.Physik-Math.,24,418 (1930) 
Thus we can either set the positive energy v(p,s) or the negative energy u(p,s) equal to 
zero and so we no longer have a e2ixqpq/h  zitterbewegung contribution to Ju, the 
zitterbewegung  no longer can be seen. Thus we have derived the mainstream idea that 
the zitterbewegung does not exist. 
But if we continue on with this derivation we can also show that the zitterbewegung does 
exist if the electron is in a confined space of about a Compton wavelength in width, so 



that a nearby confining wall exists then.                                                                                                         
(3)   Bjorken and Drell,  Relativistic Quantum Mechanics, PP.39, eq.3.32, (1964) 

Derivation Of Eq.9 From (uncertainty) Blob   (reference 1)                                                                      
Recall from section 3.4.4 that we can derive the zitterbewegung blob (within the Compton 
Wavelength) from the equation 9.(see reference 2.) Also recall from section 1 that we 
postulated a blob that was nonzero, non infinite and with constant standard deviation (i.e., 
we postulated dd1=0). But that is the same thing as Schrodinger’s zitterbewegung blob 
mentioned above. So we postulated the electron and derived the electron rotated 2AI 
(i.e.,eq.9)  from that postulate. We therefore have created a mere trivial tautology.                                                                                                               
4.13 The Most General Uncertainty C In Eq.1 Contains Markov Chains                            
This final variation wiggling around inside dr= error region near the Fiegenbaum point  
also implies a dz that is the sum of the total number of all possible individual dz as in a 
Markov chain  (In that regard recall that the Schrodinger equation free particle Green’s 
function propagator mathematically resembles Brownian motion, Bjorken and Drell) where 
we in general let dt and dr  be either positive or negative allowing several dz to even 
coexist at the same time (as in Everett’s theory and all possible paths integration path 
integral theories below). Recall dt can get both a  Ö(1-v2/c2) Lorentz boost (with the 
nonrelativistic limit being 1-v2/2c2 +…) and a 1-rH/r=koo contraction time dilation effects 
here. In section 2.2.6 we note that for a flat space Dirac equation Hamiltonian the potentials 
are infinite implying below an unconstrained Markov chain and so unconstrained phase in 
the action So dt®dtÖ(1-v2/c2)Ökoo.  rH=2e2/(mec2). We also note the alternative (doing all 
the physics at the point ds at 45°) of allowing C>C1 to wiggle around instead between ds 
limits mentioned above results in a Markov chain. dZ=yºòdz=òeidqdc=òeidt/sodc= òeidt/Ö(1-

v^2/c^2)Ökoo/sods’ds.. In the nonrelativistic limit this result thereby equals                                                                                                
òekeikdt(v^2-k/r)=  òeiòkò(T-V)dtds’ds… =òeiSds’ds ºdz1+dz2+.. ºy1+y2+.    (4.13.1)many more ys 
(note S is the classical action) and so integration over all possible paths ds not only 
deriving the Feynman path integral but also Everett’s alternative (to Copenhagen) 
many worlds (i.e., those above many Markov chain  dzi=ys in òdz = ysºy1+y2+.) 
interpretation of quantum mechanics where the possibility of –dt allows a pileup of dzs at a 
given time just as in Everett’s many worlds hypothesis. But note equation 9 curved space 
Dirac equation does not require infinite energies and so unconstrained Markov chains 
making the need for the path integral and Everett’s many worlds mute.: We don’t need 
them anymore.   Thus we have derived both the Many Worlds (Everett 1957) and 
Copenhagen interpretations (Just below) of quantum mechanics (why they both work) and 
also have derived the Feynman path integral.                                                                                                                                     
In regard to the Copenhagen interpretation if we stop our J.S.Bell analysis of the EPR 
correlations at the quantum mechanical -cosq polarization result we will not get the 
nonlocality (But if instead we continue on and (ad hoc and wrong) try to incorporate hidden 
variable theory (eg.,Bohm’s) we get the nonlocality, have transitioned to classical physics 
two different ways. We then have built a straw man for nothing. Just stick with the h®0, 
Poisson bracket way. So just leave hidden variables alone. The Copenhagen interpretation 
thereby does not contain these EPR problems. And any lingering problems come from that 
fact that the Schrodinger equation is parabolic and so with these noncausal instantaneous 
boundary conditions.  But the Dirac equation is hyperbolic and so has a retarded causal 
Green’s function. Since the Schrodinger equation is a special nonrelativistic case of the 
Dirac equation we can then ignore these nonlocality problems all together.  



 
4.14 2DÅ2D 
 Also with eq.2AI first 2D solution there is no new pde and so no wave function. The 
other solution to 2AI adds the other 2D (observer) and so we get the eq.9 new pde and 
thereby its wave function. So we needed the observer to “collapse” the wave function. 
This is the proof of the core part of the Copenhagen interpretation. Eq.42IA gives the 
probability density dz*dz (another component of the Copenhagen interpretation so we 
have a complete proof of the Copenhagen interpretation of quantum mechanics here. 
 
4.15 Mixed State 2AI+2AI Implies There Is No Need For A Dirac Sea 
The 1928 solution to the Dirac equation has for the positron and electron simultaneous 
x,y,z coordinates (bottom of p.94 Bjorken and Drell derivation of the free particle 
propagator) creating the need for the Dirac sea of filled states so the electron will not 
annihilate immediately with a collocated negative energy positron which is also a 
solution to the same Dirac equation. Recall y(+) and y(-) are separate but (Hermitian) 
orthogonal eigenstates and so <y(+)|y(-)>=0 without a perturbation so we can  introduce 
a displacement y(x)®y(x+Dx) for just one of these eigenfunctions. But the mixed state 
positron and electron separated by a substantial distance Dx will not necessarily 
annihilate. Note in the 2AI (i.e.,Ökµµgµ¶y/¶xµ=(w/c)y) equation  the electron is at 45°  -
dr,dt and the positron is at 135° dr’,-dt’ which means formally they are not in the same 
location in this formulation of the Dirac equation.  In that regard note that dr/Ö(1-
rH/r)=dr’, rH=2e’e/mec2=e so that different e leads in general to different dr’ spatial 
dependence for the y(x) in the general representation of the 4X4 Dirac  matrices. So in 
the multiplication of 4 ys the antiparticle y will be given a rH displacement Dr (dr®dr’ 
here) by the±e term in the associated kµn  So the y(+)and y(-) in the Dirac equation 
column matrix will have different (x,y,z,t) values for the y(+) than for the y(-). As an 
analogy an electron in a given atomic state of a given atom can’t decay into a empty state 
of a completely different atom located somewhere else.  Thus perturbation theory 
(eg.,Fermi’s golden rule) cannot lead to the electron spontaneously dropping into a 
negative energy state since such 2AI states are not collocated for a given solutions to a 
single Dirac equation (other positrons from other Dirac equation solutions can always 
wonder in from the outside in the usual positron-electron pair annihilation calculation 
case but that is not the same thing). Thus the Dirac sea does not have to exist to explain 
why the electron does not decay into negative energy. 

4.16 No Need for a Running Coupling Constant 
 If the Coulomb V= a/r is used for the coupling instead of a/(kH-r)  then we must multiply 
a in the Coulomb term by a floating constant (K) to make the coulomb V give the correct 
potential energy. Thus if an isolated electron source is used in Z00 we have that (-
Ka/r)=a/(kH-r) to define the running coupling constant multiplier “K”. The distance kH 
corresponds to about d=10-18m=ke2/mtc2, with an interaction energy of approximately 
hc/d=2.48X10–8joules= 1.55TeV. For 80 GeV, r»20 (»1.55Tev/80Gev) times this distance 
in colliding electron beam experiments, so (-Ka/r)= a/(rH-r) =a/(r(1/20)-r) )= -
a/(r(19/20))=(20/19)a/r =1.05a/r so K=1.05 which corresponds to a 1/Kaº1/a’»130 also 
found by QED (renormalization group) calculations of (Halzen, Quarks).  Therefore we 



can dispense with the running coupling constants, higher order diagrams, the 
renormalization group, adding infinities to get finite quantities; all we need is the correct 
potential incorporating Ökoo. 
 
  Note that the a’=a/(1-[a/3p(lnc)] running coupling constant formula  (Faddeev, 1981)] 
doesn’t work near the singularity (i.e., c»e3p/a)  because the constant is assumed small over 
all scales (therefore there really is no formula to compare a/(r-rH) to over all scales) but 
this formula works well near a~1/137.036 which is where we used it just above.  
 
4.17 Rotated 4AI  Implies k00=1-rH/r »1/krr So No Klein Paradox  As Is In The 
Original 1928 Dirac Equation                                                                                                                                                                       
Recall that krr=1/(1-rH/r) in the new pde eq.2AI.  Recall that for the ordinary Dirac 
equation that the reflection (Rs)  and transmission (Ts)  coefficients at an abrupt potential 
rise are:                           Rs= ((1-k)/1+k))2 and Ts=4k/(1+k)2 where 
k=p(E+mc2)/k2(E+mc2-V) assuming k2 (ie.,momentum on right side of barrier) 
momentum is finite.. Note in section1 dr’2=krrdr2 and pr=mdr/ds in the 2AI+2AI mixed 
state new pde so  pr=(Ökrr)p=(1/Ö(1-rH/r))p and so pr®¥ so k®¥ the huge values of the 
rest of the numerator and denominator cancel out with some left over finite number.  
Therefore for the actual abrupt potential rise at r=rH we find that pr goes to infinity so  
Rs=1 and Ts=0.as expected.  Thus nothing makes it through the huge barrier at rH thereby 
resolving the Klein paradox: there is no paradox anymore with the new pde. No 
potentials that have infinite slope. Therefore the new pde applies to the region inside the 
Compton wavelength just as much as anywhere else.  So if you drop the Ökrr  in the new 
pde  all kinds of problems occur inside the Compton wavelength such as more particles 
moving to the right of the barrier than as were coming in from the left, hence the Klein 
paradox(4).                       
  (4) O.Klein, Z. Physik, 53,157 (1929)                                                                                                
So by adopting the new pde (eq.9 ) instead of the old 1928 Dirac equation you make the 
Dirac equation selfconsistent at all scales and so find no more paradoxes. 
 



 
 
4.18 Mixed State 2AI+2AI  C>1/4 and C<1/4 Implications For Pair Creation And 
Annihilation                                                                                                                              
Note that if C<1/4 in equation 1 (dz=(-B±Ö(B2-4AC))/2A, A=1, B=1) the two points are 
close together and time disappears since dz is then real for the neighborhood of the origin 
where opposite charges can exist along the 135° line. So we are off the 45° diagonal and 
therefore the equation 2 extrema does not apply.  So the eq.2AII fermions disappear and 
we have only that original second boson derivative dds2=0 circle (�2Aµ=0, �•A=0) 
Maxwell equations. So when two fundamental fermions are too near the origin and so get 
too close together (ie., dr=dr’, dt=dt’) you only have a boson and the fermions disappear.  
So we have explained particle-antiparticle annihilation from first principles.  In contrast 
two fermions of equal charge require energies on the order of 100GeV to get this close 
together in which case they also generate bosons in the same way and again the fermions 
do disappear from existence. You then generate the W and the Z bosons (since above 
sect.4.11 nonweak field knknkµµ=Proca equation term) .                                                 
 
4.19 Eq.1 dd1=0=dC=0 Implies Invariance of The Variance  
From equation eq.1 C is invariant.  We can postulate anything we want. In that regard 
recall (our postulate of) the concept of 1 can represent anything at all (one rock, one 
house, etc.,) from appendix A. Algebraically we then write 1 as z=zz with our small real 
error C (for C<1/4 z is real quadratic formula solution of  z=zz+C). z=zzz is more 
complex, is not the simplest way to write 1 and gives -1 also. Also the concept of error at 
a minimum requires variance. But for it to be a well defined single variance, as eq.1 
dC=0 implies, we also require invariance of the variance so that commoving observers 



agree on a given value of the variance. Without the invariance even in the proper 
commoving frame of reference the variance has no set value. So the simplest rigorous 
definition of error is the “invariance of the variance”. So for the greatest generality for 
real error C then we have by definition the usual real variance s2=Si=1n(dzi2)/nº|dz|2 
typified by the central limit (theorem) normal curve data. So the invariant (proper) 
variance is given by ds2 = d(Si=1n(dzi2)/n) ºd|dz|2=0, i.e., the invariance of the invariance.  
So we have postulated (in 1+error) the most general error we can by just stating that the 
variance is also a (proper) invariant as in ds2=0. This means we really do have a first 
principles derivation of theoretical physics. 
As a quantum mechanical (QM) analogy to invariant proper time ds in ds2 (=dr2+dt2) the 
s can be the Övariance in the Schrodinger equation expanding minimal uncertainty 
Gaussian wave packet with s=Ö(a2+(ht/2m)2). Please note the proper time t and its 
relation to s for small a. Thus in the case of the minimal uncertainty wavepacket s really 
does increase with proper time ds (=t) so we really do have invariance of the variance! 
Another QM analogy is that d|dz|2=0 (eq.4)just says that there is a peak in the central 
limit theorem normal distribution curve with dz thereby representing the number 
measurement electrons filling consecutive 1D degenerate states. There are other such QM 
analogies with d|dz|2=0. In any case our error definition is consistent with QM. Also 
recall that the simplest starting point is a real positive 1 (ie., Relz=1) algebraically 
defined by z=zz. This is then what we define to be this “real” error. This invariance of the 
variance is the most general error (there just has to be a peak in P(z) somewhere) with the 
fewest possible artificial constraints on C 
             making this (z=zz+C®eq.2) a first principles derivation of theoretical physics.              
So a realistic error C is a measurement error in addition to being a real number and comes 
from the most general probability distribution that peaks (possibly even around a 
systematic error value), such as for a bell shaped curve P(dz) as is implied by the central 
limit theorem. This systematic error might be due to a slit, as in single slit diffraction for 
a narrow slit, where the uncertainty-error C is then a measure of the slit width in a 
diffraction experiment (see section 10C).  Note from equation 2 that the ds’ uncertainty 
(call it d) is along the radius and the ds2 uncertainty e is along the circumference.  e,d  
(symbols also used in defining the limit in calculus) here then define regions of the 2D 
plane of nonzero probability (eg.,of our picking the given d for which  |x-xo|<d) in our 
application. So e more likely is in the variance oval along the circle (for ds2, other e s 
have near zero probability) whereas d is more likely in the variance oval along the radius 
for the orthogonal ds’ (section 1). Given that the average ds’ distance must be to the 
circle we can only say then that “most probably” ds2=ds’2.  So the peak C can in general 
be taken to be a real constant error bound given the possibility of these types of 
systematic error. This is what we mean by realistic error C.  Even in the below 
Mandelbrot set application (and that http simulation in fig 5) we actually only use the real 
z line results at -Ö2 so the end result C we use is still a real number! 
C is the most general real error possible which is a necessity here if we are to have a 
single succinct postulate, without qualifiers which would themselves amount to new 
postulates  Also there are other ways of introducing this error C such as z-C=(z-C1)(z-
C2)+C3 for real Cs. But they all lead to a quadratic equation which in general has a 
complex solution which is the main result coming out of equation 1. The general result is 
Az2+Bz+C=0 where the A can be canceled out with B then determining the size of the z 



plane and C being a free floating uncertainty scaled with B allowing us to set B=1. So we 
can always scale (i.e., rename) the coordinates to some smaller value and not change any 
physics result. Thus z=zz+C always holds allowing us to maintain consistency with that 
zN+1=zNzN +C (quasi) Markov chain analysis (e.g., fig.5). Also even z=zN+C (as a 
substitution into z=zz+C), where N is an arbitrary integer, leads to an equation with a 
complex plane solution z.  
  Note for a given fractal manifold D2 (possibly the area of Mandelbrot set), the curvature 
scalar (R=2/rH2) metric density (1/R)/D2 =constant.  Note by allowing C to be on a Julia 
set (and not just the one value at ds) we still have those uncorrelated random variances as 
in the Markov chain application below. 
 
Chapter 5 Second Solution CM Contribution To kµn  Due To Object B                                                                            
Note we are within the Compton wavelength of the next higher fractal scale new pde (we 
are inside of rH). Also our new pde does not exhibit the Klein paradox within the 
Compton wavelength (because of the kij s) or anywhere else so our new pde is valid there 
also. Note for r<rH then E=hw=E=1/Ökoo=1/Ö(1-rH/r) and therefore this square root is 
imaginary and so  iw ®w in the Heisenberg equations of motion.  Therefore r=roeiwt 

becomes instead r=roewt (that accelerating cosmological expansion) which is observable 
zitterbewegung motion since wt does not cancel out in y*y in that case and again we are 
within the Compton wavelength and so even according to the Bjorken&Drell PP.39 
criteria the zitterbewegung therefore exists.  
Also note in the above krr=1/ktt we have derived GR from our theory.  
 
5.1 The Rµn Is Also A Quantum Mechanical Operator. 
  Recall section 1.5 implies General relativity (recall eq.3.3 and the Schwarzschild metric 
derivation there).   Note also in Ch.10 we defined the quantum mechanical 
[A,H]|a,t>=(¶A/¶t)|a,t>  Heisenberg equations of motion in Ch.10 with |a,t> a eq.9 (4AI) 
eigenstate. Note the commutation relation and so second derivatives (H relativistic eq.9 
(4AI) Dirac eq. iteration 2nd derivative) taken twice and subtracted. (¶A/¶t)|a,t>.  For 
example if ‘A’ is momentum px= -i¶/¶x. H= ¶/¶t then [A, so we must use the equations of 
motion for a curved space. In this ordinary QM case I found for r<rH that 
r=roewt’  H]|a,t>=(¶A/¶t)|a,t>=(¶/¶t)(¶/¶x)-(¶/¶x)(¶/¶t)=pdot. But Ökrr is in the kinetic 
term in in the new pde with merely perturbative  t’=tÖkoo. But using the C2 of properties 
of operator A (C2 means continuous first and second derivatives and is implied in 
sect.1.5) in a curved space time we can generalize the Heisenberg equations of motion to 
curved space nonperturbatively with:  (Ai,jk-Ai,kj)|a,t> =(RmijkAm )|a,t>  where Rabcd is the 
Riemann Christofell Tensor of the Second Kind and  kab®gab. Note all we have done 
here is to identify Ak as a quantum vector operator here, which it should be. Note again 
the second derivatives are taken twice and subtracted looking a lot like a generalization of 
the above Heisenberg equations of motion commutation relations. Note also Rmijk  could 
even be taken as an eigenvalue of pdot since it is zero when the space is flat, where force 
is zero. These generalized Heisenberg equations of motion reduce to the above QM form 
in the limit w®0, outside the region where angular velocity is very high in the expansion 
(now it is only one part in 105). 
 



5.2 Solution To The Problem Of General Relativity Having 10 Unknowns But 6 
Independent Equations 
From Chapter 4 this zitterbewegung (de Donder harmonic motion (2) ) plays a much 
more important role in general relativity(GR)  The reason is that  General  Relativity has 
ten equations  (e.g., Rµn=0)  and 10 unknowns gµn. But the Bianchi identities (i.e., 
Rabµn;l+Rablµ;n+Rabnl;µ=0) drop the number of independent equations to 6.  Therefore 
the  four equations  (ie., (kµnÖ-k),µ =0)  of the (zitterbewegung) harmonic condition  fill 
in the four degrees of freedom needed to  make GR    10 equations Rµn=0 and 10 
unknown gµn. We thereby do not allow the gauge formulations that give us wormholes or 
other such arbitrary, nonexistent phenomena. In that regard this de 
Donder harmonic gauge (equivalent condition) is what is used to give us the historically 
successful theoretical predictions of General Relativity such as the apsidal motion of 
Mercury and light bending angle around the sun seen in solar eclipses. So the harmonic 
‘gauge’ is not an arbitrary choice of “gauge”. It is not a gauge at all actually since it is a 
physically real set of coordinates:  the zitterbewegung oscillation harmonic coordinates.                                                                
(3)    John Stewart (1991), “Advanced General Relativity”, Cambridge University Press, 
ISBN 0-521-44946-4 
                                                                                                                                                                                  
Fractalness Implications: Effect Of Object B on Object A 
6.1 How Many Objects Are There On the M+1th Fractal Scale? 
Recall section 4.2 and the 6 cross terms requires yet another electron coming out of eq.2a, 
then anothera. This procedure carries with it the two neutrinos (so E&M electrons) and 
more applications of 1b and so it generates a sequence of electrons up until 1082. Thus if 
we one electron we then must have 1082 electrons.  
So there could be a second object near to our own object A in this fractal universe. . In 
fact in our fractal universe there is a 75% probability our object A is one of three objects 
in a proton. We will call the central eq.2A1 object in this proton object B and the third 
object, object C.  
 Note object B is responsible for those e and De metric quantization states. So where does 
object B itself come from?  Again recall section 3.1 and the origin of the other objects on 
a given fractal scale. The horizons rH have the property that the amount of information 
inside (also the entropy) is equal to the area of the outside. So given 1027m»1011 LY= rHb 
10 -15m =rHs  AHb/AHs=(1027)2/(10 -15)2  =1054 / 10-30 =1084 =number of pieces of 
information.=number of fractal objects inside rH. In the context of the 1040X fractal jump 
result the space time radius is subdivided by1040 so alternatively there are 4p(1040)2=1081 
pieces of information inside rH which is the actual first principles method of getting the 
10 82.given the 1040 explicitly comes from that fig.5 Mandelbrot set analysis which comes 
from our equation 12.Object B is just one of those 1082 objects. So in that limit the 
number of maximum density incompressible rH radius objects at the ru surface must be 
equal to the sphere surface area 4p(ru)2= 4p(2.2813X1040)2 = 6.54X1081 of (fundamental) 
objects with nonzero rest mass in our universe. Intuitively we are simply saying that the 
density of all rH even horizons is the same since we created the larger horizon 4prH2 area 
by patching together the smaller horizon 4prH2 areas. This result is consistent with (solar 
mass)X(suns per galaxy)X(number of galaxies)/(proton mass) 
=6X1030X1012X100X109/1.67X10-27 = 7.1856X1079 objects.  



In hw=E, w goes down by 1040X in going up to the next fractal scale. So h Planck's 
constant increases by 1040X in going from Nth fractal scale to the N+1th fractal 
scale. Also the force between the two large universes goes up by 1040 but between two 
electron's goes down by 1040X, gravity.  
6.2 r<rH Observational Evidence For Object B  
 Recall there are two metrics in section 3.1 and outside Schwarzschild and inside De 
Sitter. But because of eq.2AI (and so eq.9 modified Dirac equation) we are in a rapidly 
rotating object, the electron rotating at rate c (in the fractal theory at least. It is the 
solution to the Dirac equation eq.9).  But because of inertial frame dragging in object A 
observed spin is extremely small except for a small contribution to reducing inertial 
frame dragging of object B (section 4.1.2).  So the geodesics are parallel (flat space 
holonomy) just like the cylinder. Inertial frame dragging should not destroy the 
holonomy, just rotate the cylinder but it stays a cylinder. We can realize that for a 
spherical metric by maintaining the parallel transport which means the expansion is 
needed to maintain the cylinder. From our perspective we see a sphere with a flat space. 
Recall the mainstream guy also said this space is in fact that of a 3D cylinder, which it is.                                                                                                   
This 'seeing ourselves' is also predicted by the mainstream stuff too given the 
observations of the flat space and the requirement of the cylinder topology. But seeing 
ourselves is so weird to the mainstream that they have postulated a pretzel space instead 
at large distances.                           
So the universe is fractal with the (Dirac spinor) the Kerr metric high angular momentum 
local cylinder near rH  dominates and creates the flat space time associated with a cylinder 
so that two parallel lines do remain parallel within the time like interval at least. When 
we look out at the edge of the universe in some specific direction, beyond that space like 
interval (that we cannot see beyond) we are very nearly (just over the space- like edge) 
looking at ourselves as we were over 12by years ago. We are looking back in time at 
ourselves!  (in this fractal model). 
The hydra-centaurus supercluster of galaxies is about 150MLY away. We would find it 
by looking in the opposite direction of the sky from where we see it now, it would be a 
smudge at submillimeter wave lengths.  
So create a map of the giant galaxy clusters within 2By of the Milky Way galaxy and 
invert each object by 180° to find the map of the oldest redshift galaxy clusters 
Given 2D piece of paper, you can connect the ends a few different ways by folding it. 
Connect one of the dimensions normally and you have a cylinder. Flip one edge over 
>before connecting and you've made a Mobius strip. Connect two dimensions, the top to 
the bottom and one side to the other, and you have a torus (aka a donut). In our 3D 
universe, there are lots of options — 18 known ones, to be precise. Mobius strips, Klein 
bottles and Hantzsche-Wendt space manifolds are all non-trivial topologies that share 
something in common: if you travel far enough in one direction, you come back to where 
you started. Bg gravimagnetic dipole from the new pde provides the spherical torus shape 
for this. 
In this fractal universe we do this.  In fact there is only one way to do it: in the rH cylinder 
region of the Kerr metric near c rotation rate, so the topology is a given.  
 
6.3 The Distance Of Object B From Object A Determines Particle Mass                                        



 Recall section 4.1; 4.1.3 and the derivation of the 1081 X electron mass there. That 
implies that our universe is not the only object on the N+1 fractal scale. Since we are at 
the Fiegenbaum point the fractalness is exact so that there is a 75% chance our object A 
is one of three such “electrons” inside a proton. Note in sect.2.1 the equilibrium 
established after the initial slow expansion so that energy density is uniform so that 
k(4/3)pr3. We are located in a huge (rotating) electron Kerr metric object. But if there 
was no nearby object there would be complete inertial frame dragging. But recalling the 
large rotating shell approximation of GR (Mach’s principle implication) we see that a 
nearby large object B will reduce the inertial frame dragging and so make the metric a 
Kerr metric:                                                            
Section 3.1 implies a Schwarzschild metric for the outside observer r>rH for an isolated 
object (eg., no object B nearby) since that was the assumption made in the derivation. But 
equation 2A1 (solution to equation 4) leads to equation 9 and the new pde. In that 
equation the object 2A1 electron has spin S, is rotating and can be seen as such if there is 
a object B nearby (see below). Thus for no nearby object we have the Schwarzschild 
metric but in general with a nearby object the internal r>rH sees a rotational (Kerr) metric 
(so from section 4.1.2 assumed to be a quantum operator) which is given by: 

                 
where , Note the oblation term a2cos2q. 
To find the perturbative contribution of Eq.3.2 in sect.3.1  to the Schwarzschild metric we 
note that for near  zero rotational speed we can take dq/ds=0,  or just dq=0. Also for 
q=90° then cos90°=0, r2 =r2. So the above equation becomes  
  ds2= dr2/(1-2m/r+(a/r)2)+r2dq2+(r2+a2)sin2q(vdt/r2)2+ 2asin2qdqcdt+(2m/r-1)dt2 
  ds2= dr2/(1-2m/r+(a/r)2)+r2dq2+(r2+a2)sin2qdf2+ 2asin2qdqcdt+(2m/r-1)dt2 
»ds2= dr2/(1-2m/r+(a/r)2) +(2m/r-1)dt2          (6.1.1)   
The (a/r)2 is the energy e angular momentum term which also turns out to be the muon 
mass.  The fractal ground state De (is part of the background mass) is added to this.                                                                  
 That rH in the old GR  metric is rH=2GM/c2 (the fractal M+1) scale rH. The Mth scale rH 
is that 2e2/mec2=rH and gives those QED results without the renormalization. 
dr2/(1-2m/r+(a/r)2) –c2dt2(1-2m/r)                                                               (6.1.2) 
with (a/r)2 =e being the ambient metric of section 6.4. Thus the ambient metric is caused 
by the reduced inertial dragging associated with a nearby object B. Note in equation 7 we 
are again subtracting e but this time possibly in the form of zdrº(a/r)2 where zºe/dr. This 
is the mass energy term zdr=(a/r)2  of equation 3.2, sect.1.1.5. The (a/r)2 in eq.6.1.1 is the 
energy e angular momentum term (and also De), which turns out to be the muon mass..                                                                     
6.4 This Added (a/r)2 term Is Then The Source Of The Ambient Metric And Mass 
Tensor Geometry Consequences of C2  
Recall section 3 implies General relativity (recall eq.3.2and the Schwarzschild metric 
derivation there).  In that regard given a (observable) vector operator A that explicitly 
operates on the y of equation 9) we then construct the Riemann Christofell Tensor of the 
Second Kind Rabcd (from  section 4.2.1 we can assume it is a quantum operator) from the 
kabºgab using the C2 of A given by  (Ai,jk-Ai,kj)|a,t> =(RmijkAm )|a,t>. We can then contract 
this RmijkAm|a,t>= tensor to get the Ricci tensor Rij  (here Rij ºRmijm). 
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Note here A is the Quantum Operator and the coefficient Rµn is a (geometry) tensor.  
Define the scalar R = kµnRµn We then define conserved quantity Zµn from  
                                                                  Rµn-½kµnRºZµn                                        (6.4.3) 
after substituting in equations 3.2, 4.1 we see for example that      Zoo=4prH    (6.4.4)  
where from equation 4.4.3 we have rH =2e2/mec2.   
In free space we can see from equation 4.2 that:                              RµnAn|a,t>= 0 
From section 1.5 solving the geometry components R22=0 and R11 =0 using 3.2-3.5 for 
spherical symmetry gives us respectively                   1/krr=1-rH/r,  and   krr=1/koo  (6.4.5) 
showing that equation 6.4.2 is equivalent to equations 3.2 and 3.3 if there is no nontrivial 
background metric contribution (i.e.,e=0).  The (a/r)2 in eq.6.1.1 is the energy e 
contribution of the energy angular momentum  term, which turns out to be the muon mass 
in:                                  1/Ökoo=(1±e±De/2)e/De                                                       (6.4.6)         
Use metric a ansatz: ds2=-el(dr)2-r2dq2-r2sinqdf2+eµdt2 so that goo=eµ, grr=el. From 
equation 4.2 for spherical symmetry in free space 
                              R11= ½µ”- ¼l’µ’+ ¼(µ’)2-l’/r =0               (6.4.7)                                                        
                              R22=e -l[1+½ r(µ’-l’)]-1=0     (6.4.8)                                                                     
                              R33=sin2q{e-l[1+½r(µ’-l’)]-1}=0                                                 (6.4.9)                                                          
                              Roo=eµ-l[-½µ”+¼ l’µ’-¼(µ’)2- µ’/r]= 0                                  (6.4.10) 
                              Rij=0 if i¹j                     
(eq. 6.4.7 -6.4.10  from pp.303 Sokolnikof): Equation 6.4.8 is a mere repetition of 
equation 6.4.7. We thus have only three equations on  and µ to consider. From 
equations 6.4.7;  6.4.10 we deduce that  
l’=-µ’ so that radial l=-µ+constant =-µ+C for our nonzero free space metric of section 
4.4 normalizing to one real dimension as in the postulate. So e-µ+C=el. Note C can be 
imaginary or real. Then 6.4.8 can be written as:                                                                            
                                                          e–Ceµ (1+rµ’)=1                                               (6.4.11)                          
Set eµ=g. So e-l =ge-C and so integrating this first order equation (equation.4.4.9) we get: 
                              g=-2m/r +eC ºeµ and e-l=(-2m/r +eC)e–C                                    (6.4.12) 
From equation 6.4.3 we can identify radial eC»1+2e with also rotational oblateness  
perturbation De already a component here (section 6.4). 
 In general write the resulting asymmetry in 1/krr and koo by resetting the proper time 
(squared) clock ds2 (details in section 6.4.13) by multiplying by the pure radial eC»1+2e 
coefficient allowing here for both (relative) positive and negative e in the background 
metric:  

                                                    (6.4.13) 

Note for the 1+e choice in equation 4.1.2 we have goo=1+2e+De, g22=1/(1+De) (used 
below in equation 18.3 for real metric coefficient case) or for imaginary C as above  
                                                                                              goo= ei(2e+De)               (6.4.14) 
used in 4.4.16 for background metric case. e=.060406.  
Note the (a/r)2 in 6.4.2 is then the e+De in the denominator on the right side of eq.6.4.13, 
the main reason we went to so much trouble to derive 6.4.13. Thus we have shown how a 
nearby object B creates mass in object A. 
Note(r,t)X(f,q) is a Cartesian product of two 2D spaces here. 

l

( ) ( ) ú
û

ù
ê
ë

é
D+±

-D+±±= 222

1
11)1( drdtds

ee
eee



Thus the (a/r)2 term in Eq.6.4.13 thus provides a background metric and this ambient 
metric then provides the mass of the fundamental leptons. Tauon (1), muon(e) and 
electron€. Object B and object A area  two body object on the next fractal scale(with 
wB=wA at the rH boundary due to causality) effect of causing a drop in inertial frame 
dragging and a increase in the mass of the particles through the mass degeneracy 
provided by quantum mechanical vibrational t tauon and rotational e muon and ground 
state De electron  metric quantization eigenstates of object A and B together.   In                           
                                                    k00=1+e+De-rH/r.  (6.4.1) 
6.5 Sum Of All These Effects: Stair Step Metric Expansion 
Given the inertial frame dragging reduction effects of nearby object B (sect.6.4.3) the e 
(muon) and De (electron) have their own zitterbewegung frequencies from the new pde. It 
is at r<rC so it exists (sect.4.1). Also from the object A new pde locally r=roekt for 
expansion. Also the underlying object A space-time is Minkowski, flat space-time as we 
see in equation 5.1.1 since the time spent in the later parts of the expansion the eq 4 
Gauss’s law Gaussian Pillbox is nearly empty since most of the material is most of the 
time next to the horizon rH  So classicaly the interior of rH has no gravitational force 
associated with it and thus is a flat Minkowski metric. These two object A criteria are not 
perturbations (6.11.1). Recall the outside observer sees a zitterbewegung independent of 
location inside: it all happens at once. So for the r=roekt expansion to work simultaneously 
with the Minkowski metric it all must happen simultaneously within rH. The whole thing 
rises at once from the outside observer’s point of view. The two object A and two object 
B criteria are satisfied everywhere if we have a stair step Minkowski space time, where 
the space-time is Minkowski at the flat part of the steps with the vertical part being 
infinitesimal in both time and space. So over the entire interior of object Awe have the 
step function goo=Snsin((2n+1)wt)/(2n+1) with w being both separately the e and De 
omegas giving a square wave which is (locally) flat if the sum is to n=¥. The separate 
sums also exhibit the required perturbation frequencies e and De. Both e and De are 
smaller than 1/k=rc so they can be actual oscillations (sect.6.11). So the jumps in the 
larger e square wave function  Sn(sin((2n+1)wt)/(2n+1)) functions must be to the 
envelope of the exterior observer r=roekt nonpertutbative function turning the notional 
space-time rubber sheet into a stair step function. The whole thing still rises at once.  But 
the e and De object B transmissions are local and so get dispersive frequency cut-offs at 
galaxy scattering cut-offs at 1/100kLY so have 100kLy wide Gibbs jumps. Thus the 
space time (and so Gamow factor) briefly jumps up and down every e (So every 270My, 
the mass extinctions, the last one being at 248My.) and to a much weaker 1/100 
amplitude for De every 2.5My. The whole thing rising at once gives rise to some 
interesting phenomenology. For example a metric quantization event is seen to happen 
localy at first and then spread out from the observer at speed c. So for example the 
previous 248My metric jump event can be seen still happening at 248My from us, where 
in general we then see “rings” of these cyclic events.  



 
270My apart thick radii (red lines) as in this right figure along with remnants of the 
Rayleigh Taylor instability (4.3.3) of the original big bang. Note from rings in image 
nonrelativistically Dz=.02=x/13.7, x»270My. 

The researchers looked at 800 galaxy clusters across the universe, measuring the 
temperature of each cluster's hot gas. They then compared the data with how bright the 
clusters appeared in the sky. 

If the universe was in fact isotropic, then galaxy clusters of similar temperatures, located 
at similar distances, would have similar levels of luminosity. But that was not the case. 

 
A map showing the rate of the expansion of the Universe in different directions across the 
sky.K. Migkas et al. 2020, CC BY-SA 3.0 IGO 



 
In my theory the universe is fractal (note Mandelbrot set discussion below) with 10^40X 
fractal scale separation. Postulate 1 implies eq.1 and eq.2 and they in turn  imply eq.2AI 
and that Clifford algebra. so they imply leptons, eq.2AI  (eq.9) is the electron which has 
spin so is dipole  which also thereby is fractal.  So we are inside of the next largest 
"electron" and it is a dipole, as in that image  below. Thus an interior cosmological 
dipole is the most blatant manifestation of the fractalness 
From the mainstream: 
"The researchers looked at 800 galaxy clusters across the universe, measuring the 
temperature of each cluster's hot gas. They then compared the data with how bright the 
clusters appeared in the sky. 
If the universe was in fact isotropic, then galaxy clusters of similar temperatures, located 
at similar distances, would have similar levels of luminosity. But that was not the case. " 
Note this dipole has the same orientation as the axis of evil (for the CBR). 
6.6 Origin Of Mass 
Section 3.3 (object B implications sect.4.1.3; 4.1.4) then give us the origin of the mass of 
2AI. For example object B is close to object A (so smaller inertial frame dragging and 
larger (a/r)2) and larger mass term x in 4.1.2 and so in 4.1.3. Also 2AI is off the diagonal 
so xdr>0 so CM=xdr=e so e/x=l=De Broglie and so eo/rH=De=4AI is larger than if object 
B was farther away. 
 In that regard recall that object B is outside the big 1011LY horizon so its state is still 
oscillatory in the eq.9 Heisenberg QM formulation for p for example T(t)|p>=p(t)> where 
T(t)=eiHt/h. Recall alternatively inside rH the i®1 so the time evolution is purely 
exponential, hence the r=roekt accelerating universe expansion discovered by Perlmutter et 
al in 1998. We did a radial coordinate transformation (sect.7.8) to the comoving observer 
frame and got ln(rM+1/rbb)+2=[1/(eµ-1)-ln[eµ-1]]2 which is locally still r=roekt but jumping 
by e and De and entangled state values (sect.4.2.4). The dyadic radial coordinate 
transformation of Too=e2 dyadic divided by me to that local coordinate system comoving 
with r=roekt gives “constant” gravity G (see Ch.12). So what the N+1th fractal scale 
observer sees as the electric field the Nth fractal scale observer sees as gravity. The 
dyadic angular transformation at our present r=rH gives coefficient 1/(1±e)2 (from 4.7.3). 
Mass is also time since 2GM/c2=invariant in sect.7.4 with G changing with time. So mass 
is also our clock time.   
 
Section 6.7 N+1 Fractal Scale Object B and C Rotation, Vibrational, Entangled 
State Transitions For r<rH                                                                                                                  
In section 7.4 we do the radial coordinate transformation. In this section we do the 
transformation to the rotating frame allowed by object B. With object B close by there are 
two quantum states rotation  e and ground chiral state De just as you see in Raman spectra 
for a diatomic molecule and the entangled states. These are the lepton states 4AI 4AII of 
section 1). So  w1®w2. and wo gets through at the cosmological rH boundary (i.e., rope 
not broke). So what was outside (object A cosmological object) as ordinary "diatomic" 
quantum states (t vibration E=hwo(N+1/2) and rotation e E=hw'oÖ(L(L+1)), wo>>w'o) is 
the metric quantization inside and also the entangled states.  The single unentangled level 
metric quantization gets you the particle masses, the entangled states (classical analog: 
grand canonical ensemble with nonzero chemical potential) are those metric quantization 



states (PartIII). Note with metric quantization you can just copy the well known equations 
associated with the quantum physics of a diatomic molecule to determine what goes on in 
those metric quantum jumps (the wo and H is obviously different from these book 
values). There is the also the rotational state e.  
From the Kerr metric there is the De electron nondiagonal term if object B was not 
moving. The nearby Fiegenbaum metric point generates spin ½ =s background. But 
object B also rotates around object A (actually vice versa) so e (s’=L-s) also exists. Note 
in Chapter 9 we derived energy eigenvalues for perturbative r in rH+r thereby perturbing 
the B flux quantization h/2e. The ambient metric is a cosmological global phenomena for 
the N+1th fractal scale so we use gµn instead of kµn and so have rH/r cosmological 
contribution in that case.  Below fig5 we also noted that 
goo=(dr/dr’)2=(dr/(dr±e))2=1/(1±e)2»(¶xo/¶x’o )2 where goo component also acts as a 
dyadic for ds components for the transformation from a nonrotating flat space time. So 
we can also use a nonperturbative derivation of the P state (solution to the new pde) 
oblate rotation states in the above section (on object B rotational e eigenstate 
implications) to obtain mass eigenvalues since the e eigenvalue is already known. The 
new state is then defined by the ¶xo/¶x’oºgº1/(1+e) kinematic transformation term 
 in the dyadic 0-0 term whenever  koo is used implying the rH. So we have done a 
rotational coordinate transformation of goo to the coordinate system commoving with the 
rotating system (analogous to the radial commoving transformation of sections 7.2, 7.3 ) 
and getting a new source e in gooP’. Section 7.4). 
 
6.8   3 Metric Quantization Levels From Object B 
Recall there are 3 main levels of metric quantization coming out of object B, the De,e,1 
levels (i.e., electron, muon, tauon) arising from the QM ground state, rotation and 
vibration levels of object A with B that get through the rH boundary and also become GR 
metrics inside. This means that instead of that single GR single ambient metric rubber 
sheet there are 3 gij.   So  w1®w2. across the rH boundary so rotation and oscillation hw 
eigenstates are passed inside as metric quantization provided by object B as r®0: Metric 
disturbances cross the metric boundary and curved space unscattered just as light moves 
through magnetic and electric fields unscattered. 
 Alternatively, you could also say that object B gives the metric quantized energy levels 
De, e,  t analogous to carbon monoxide vibrational t and rotational e and ground state 
electron mass De  energy levels. Also there is that 2D complex plane solution of equation 
2a and this plane contains both equation 2AI and 2AII, eg., the electron and the anti 
neutrino 2AIIB which share the same 4D 6 cross term Clifford algebra eq.4A1 terms. So 
with these 3 complex planes we have then for the first plane an electron and electron anti 
neutrino, for the second plane a muon and muon anti neutrino and for the 3rd plane a 
tauon and tauon anti neutrino. So in the decay channels these fundamental leptons and 
neutrino are always associated (i.e., associated production). So neutrinos are associated 
with their respective leptons (ye+yen)+(ye+yen)+(yt+y1n)=y.   
Each w oscillation at the horizon whether it be from oscillatory, rotational, eigenstates  
brings in an associated wt,  wµ  though the object A horizon rH as a seperate gµn implying 
a separate 2D metric from equation 1 and equation 2 for each gµn. Thus we have three 2D 



space-times the neutrino, electron neutrino multiplets.                                               
Casimir Effect 
 Also for two nearby conducting plates the low energy neutrinos can leave (since their 
cross–section is so low) but the E&M (Ee standing waves) has to remain with some 
modes not existing due to not satisfying boundary conditions, because of outside De 
ground state oscillations implying less energy between the plates and so a attractive force 
between them (We have thereby derived the Casimir effect). 
                   Pure States 
eiDe ®1/[Ö(1-De-rH/r)](1/(1±e))=(1/ÖDe)(1/(1±e)  W,Z. ^Paschen Back E=Bub(0+0+1+1) 
eie ®1/[Ö(1-e-rH/r)](1/(1±e))=(1/Öe)(1/(1±e)        p±, po.|| Paschen Back E=Bub(0+0+1+1) 
See section 6.12 and PartIII for mixed metric quantization states ei(e+De). 
 
Multiple Applications Of The Time Development Operator U=eiHt  In y(t) =U[y(to)]                                                                                                                                                                 
6.9  Ultrarelativistic Object B Also Source Of The Mexican Hat Potential  
Recall y(t) =U[y(to)] with U=eiHt. t=to+dt. 
You substitute in the respective t and H (in the U). U=UKG+UB, where UKG=Klein 
Gordon 2nd derivative component since our f turns out to be a scalar. 
So from the fractal theory object B has to be ultrarelativistic (g =1836) for the positrons 
to have the mass of the proton. So the time behaves like mc2 energy: has the same 
gamma: t®to/Ö(1-v2/c2)=KH since energy H=moc2 has the same g factor as time does. So 
in the eiHt of object B the Ht/h=(H/Ö(1-v2/c2))to/Kto= KH2=f2.   Define f=HÖK.  Note also 
ultrarelativistically that p is proportional to energy:  for ultrarelativistic motion 
E2=p2c2+mo2c4 with mo small so E=Kp. Suppressing the inertia component of the k thus 
made us add a scalar field f. Thus f’=p(t)=eiHt/h|po>=cos(Ht/h)=exp(iH2to/Kto)= 
exp(if2)=cos(f2)=f'=1-f4/2. Thus for a Klein Gordon boson we can write the Lagrangian 
as L= T-V=(df/dx)(df/dx)-f'2= (df/dx)(df/dx)-f'2= (df/dx)(df/dx)-i(1-f4)'2. Thus we 
define this Klein Gordon scalar field f=4AI by itself from: 
&𝐷((

)&𝐷(𝜙( −
"
%
𝜆&((𝜙)𝜙)' − 𝑣')(' Note in the covariant derivative 

 𝐷(𝜙 = /𝜗( + 𝑖𝑔𝑊(𝑡 + 𝑖𝑔′
"
'
𝐵(8 𝜙 

W is from our new pde S matrix. Need the Bµ of the form it has to make the neutrino 
charge zero. Need to put in a zero charge Z.  The B component is generated from the 
rH/r  and the structure of the B and A=W+B =𝐴( = 𝑐𝑜𝑠𝜃*𝐵( + 𝑠𝑖𝑛𝜃*𝑊("is needed to 
both have a zero charge neutrino and nonzero mass electron. So Define 
𝐴( = 𝑐𝑜𝑠𝜃*𝐵( + 𝑠𝑖𝑛𝜃*𝑊(" 
𝑍( = −𝑠𝑖𝑛𝜃*𝐵( + 𝑐𝑜𝑠𝜃*𝑊(" 
The left handed doublet was given by the fractal theory (eq.1.12) 
𝑙+ = A

𝑣,-
𝑒- C 

W is needed in W +B to bring in the epsilon ambient metric mass.  
Need to add the second term to the Dirac equation to give the electron mass. 

Λ𝐿+ = 𝑒.𝑖𝛾(&𝜕( − 𝑖𝑔′𝐵((𝑒. − 𝑓((𝑙+𝜙+ + 𝑒.𝜙𝑙+) 
Recall section 4.9 ambient metric requires division by (1+e+De+rH/r) to create the 
nontrivial ambient metric term 1±e.  
6.10 Use y(t) =U[y(to)] with U=eiHt. t=to+dt To Derive Physics 



Recall y(t) =U[y(to)] with U=eiHt. t=to+dt. U is called the time development operator.  
In the Schrodinger representation. To figure out what the time reperesents we note that 
2GM/c2=rH (as well as the 1040X smaller rH=2e2/mec2) is invariant from section 1.1; it is 
the Fiegenbum point. So from sect.7.4 if G is going down in time then M has to go up! 
Recall E=1/Ök00 with k00=1-e-De-rH/r. Therefore mass M varies with time and so we use 
M as a measure of time. So in general y(t)=Uy(to)=eiHty(to)=𝜅//𝜓(𝑡/) =

𝑒0
!"#!$#!%&

√(
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MN𝜓(𝑡𝑜)º𝑒iHty(𝑡𝑜)		      

                                                                                                                                                          (6.10.1) 
6.11 S States Are Point like Particles And P States Are Not Point Like Particles 
P States At r=rH 
Recall De is ultrarelativistic so integrating the 2AI+2AI+2AI (PartII) Fitzgerald 
contraction in the 2P state (L=1), r=rH gives (cosqºv/c=b)                                                                       
                             rHòÖ(1-cos2q)cosqdq=rHòsinqcosqdq=rHsin2q/2=rH/2ºrHP   
so there is contraction by only a factor of 2 from the vantage point of the plane of 
rotation (From the axial perspective the radius is Fitzgerald contracted to near zero.). 
From part II. the e P state big radius:   rHPº2ke2/electron»2ke2/mec2 =2.817F =rH     
S States at r=rH 
A S state t+µ+e doesn’t rotate (note P states in contrast are L=1;  S states S=0) so there is 
a simple Fitzgerald contraction across rH.  For r=rH  S state koo=1/krr for k00 =1-rH/r in the 
spherical symmetry of the Schwarzchild metric. This requires new distance and time 
units be defined using  

A1 − 𝜖 − ∆𝜀 − 4*
4
C 5)(

"!6!∆6
+. . ≡ U1 −

+*
,-$-∆$
4

V𝑑𝑡8' +.                                           (6.11.1) 

This also gives us the magnitude of our Fitzgerald contraction. g=(4X1836)X of t and µ 
in  rL=rH/(1+e”) =rH/(4mp(1+e)c2)                Lepton rL                                                                   (6.11.2)                                                                 
Thus the object B, S and P state metric quantization is the source of the tiny S state radius   
                                     eºrHSº2ke2/2tauon»2ke2/(4mp(1+e)c2)                              (6.11.3)   
This explains why leptons (S states) appear to be point particles and baryons aren’t! 
     

So used eq.6.11.1 in the time development operator 𝜅,,𝜓(𝑡,) ≡ 	 𝑒
-#$%#&%#'&))*

√,
			𝜓(𝑡,) =

⎝

⎜
⎛
𝑒𝑥𝑝

⎣
⎢
⎢
⎢
⎡
-(∆010)
√4

5

(560)7568
-.

(01&1'2)
- 9

⎦
⎥
⎥
⎥
⎤

⎠

⎟
⎞
𝜓(𝑡:)º𝑒;<=y(𝑡:)		  		 so      

                                                              Ee=    510

>56-3-
0

(0%&)

− (𝑡𝑎𝑢𝑜𝑛 +𝑚𝑢𝑜𝑛 + 𝑒	𝑚𝑎𝑠𝑠𝑒𝑠)    (6.11.4)                                                                                                                                    

                                                
6.12 Calculate S½ State Energy Caused By That New Ökoo In Equation 9 
Also recall the 2,0,0 state hydrogen eigenfunction y2,0,0=(1/(2ao)3/2(1-r/(2ao))e-r/2ao. Also from 
eq. 4.4.1: rH=2e2/mec2. Next find y2,0,0 eigenfunction average radial center of charge value of: 



r=<r>= = 

=

 which is not the Bohr theory peak amplitude radius of 4ao (average and peak don’t 
necessarily equal each other and we need average here.).  Note 6ao is measured from the 
Compton wavelength lc so r=<r>=6ao®6ao+lc. rc=2e2. Using our sect.4.8 normalization 
division by 1+e”=(t+µ) our 1/Ökoo Taylor expansion=e contribution (r®¥) is then from 
6.11.4 reads for the electron potential energy: 

 𝐸+ =
"96

:(,#$)-
+1
+

,#$

= "96

3"!+1+
,

(,#$)

			= (t+ µ+ 𝑒) + 42
'4(t9µ)

(t+ µ+ 𝑒) − ;
<
A 42
4(t9µ)

C
'
(t+ µ+ 𝑒).. 

–(tauon+muon+e masses). Note since we have normalized out the t+µ in the metric 
coefficient koo. The S½ state second term= V=2e2(t+µ+e)/[(t+µ+e)2r]=electron potential 
energy.  From eq.4.7.2 the Taylor series new third 3/8 term is=Ee= 
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 so that f=27Mhz                                                         (6.12.1)  
Recall also the 1000Mhz component is due to the electron zitterbewegung cloud itself taking 
up space which we get by adding the Compton wavelength directly into the Coulomb 
potential radius at 6ao. 
Thus we account for the entire Lamb shift without evaluating any higher order diagrams. 
See Ch.9 for gyromagnetic ratio derivation. So we don’t need renormalization anymore. 
See eq.8.3 for anomalistic gyromagnetic ratio which also comes out of that Ökoo in eq.9. 
 
Why Does The Ordinary Dirac Equation (kµn=constant) Require Infinite Fields? 
Note from section 1.3.2 that equation 9  kµn=possibly nonconstant. So it does not have to 
be flat space, whereas for the standard Dirac equation gµn=constant in eq. 4.2.1.   Also 
eq.9 has closed form solutions (eg. section 4.9), no infinite fields required as we see in 
the above eq.6.12.1. So why does the mainstream solution require infinite fields (caused 
by infinite charges)? To answer that question recall the geodesics Gmijvivj give us 
accelerations, with these vk s limited to <c. Recall gij also contains the potentials (of the 
fields) Ai. We can then take the pathological case of ògij =òA=¥ in the S matrix integral 
context and ¶gik/¶xj=0 since the mainstream (circa 1928) Dirac equation formalism made 
the gij constants in eq.4.2.1. Then Gmijº(gkm/2)(¶gik/¶xj+¶gjk/¶xi-¶gij/¶xk) 
=(1/0)(0)=undefined, but not zero. Take the ¶gik/¶xj to be mere 0 limit values and then 
Gabg becomes finite then. Furthermore 9.13  (Coulomb potential) would then imply that 
Ao=1/r (and U(1)) and note the higher orders of the Taylor expansion of the Energy=1/(1-
1/r) term (=1-1/r+(1/r)2-(1/r)3...(geometrical series expansion) where we could then 
represent these n th order 1/rn  terms with individual 1/r Coulomb interactions accurate if 
doing alternatively Feynman vacuum polarization graphs in powers of 1/r). Also we 
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could subtract off the infinities using counterterms in the standard renormalization 
procedure. Thus in the context of the S matrix this flat space-time could ironically give 
nearly the exact answers if pathologically òA=¥ and so we have explained why QED 
renormalization works! Thus instead of being a nuisance these QED infinities are a 
necessity if you mistakenly choose to set rH=0 (so constant kij).                                                                          
But equation 9 is not in general a flat space time (i.e.,.in general kµn¹constant) so 
 we do not need these infinities and the renormalization and we still keep the precision 
predictions of QED, where in going from the N+1th fractal scale to the Nth fractal scale  
rH=2GM/c2®2e2/mec2 See sect.3.9  and Ch.9 where we calculate the Lamb shft and 
anomalous gyromagnetic ratio in closed form from our eq.9 energy: E=1/Ökoo=1/Ö(1-
rH/r+De) (Ch.3.9) and the square root in the separable eq.9 (Ch.9 and section 4.9 for 
Lamb shift calculation without renormalization.). 
 
6.13 Again Use Eq.6.3.10  U=eiHt, This Time To Calculate Metric Quantization 
Mixed States (eDe cross terms) That Might Not Be Spherically Symetric 
From 1.1.4, 1.1.5 Deº4AI is an operator, De2 is not the same operator. Also 1/(1-r) can be 
expanded only one way as (r<<1)  1/(1-r)= 1+r+r2+r3+..If r was an operator each term in 
this expansion would itself be a unique operator. We do not assume a spherically 
symmetric 2S state here as in section 6.10 so we do not normalize koo: the contributions 
of object B reduction in inertial frame dragging of object A give this nonspherial metric 
quantization contribution. Note since De and e are time dependent this is just the new pde 
time development operator: U=eiHt. And De and e are also times. So again equation  
6.10.1 is written as  y(t)=kooy(t0)= Uy(t0)= (eiHt)y(t0)= 

𝜅//𝜓(𝑡/) = (𝑒𝑥𝑝 L0(∆696)
√'

"

("!6)3"!6!F6!+*+

M)𝜓(𝑡G)                                           (6.13.1) 

The exp[i(De+e)]/√2] term is the new pde zitterbewegung term (r<rC here).  
Ö2 merely normalizes the two metric quantization states eq.8.2a and 6.4.6: 

"

3"!6!FH!+*+

   is the general relativity cosmological energy H component  

1/(1-e) is the object B rotational component from 6.1.1. So our time development 
operator is relative to the free falling flat background outside of objects A and B. 
Note since De and e are time dependent (sect.7.4) we can use them as times.  This 
becomes just the new pde U=eiHt zitterbewegung oscillation for r<rC as expected.  
Note there is a square that gives cross terms in e and De. 
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Do the square and then only use the term that cross multiplies e and De (i.e., 2eDe) so that 
we can find the cross rerm eDe contribution to koo.  Also set r=rH at the cosmological 
horizon we are now near after our 370by expansion (So 1-rH/r=0.). To include cross term 

effects we note: k00=U=1-  
K6(∆$#$)
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 This adds a real mixed state term to U and therefore to koo. We normalize out the e and 
De just as we did with the Lamb shift derivation but this time there is no 1 and rH/r to 
divide by.  The mixed part of the 2nd term times 2eDe goes as: [2eDe/(4(1-2e))]/(e+De))= 
(1/(2(1-2e)) ][De/(1+De/e))]=1/(2(1-2e))]X[De/(1+De/e))] 
=[De+De2/e+…DeN+1/eN+.]/(2(1-2e)) ºDe’.                           (6.13.3) 
 
Compare (Mixed States, eDe=Ht) With Our Comoving Flat Background (|koo|=1) 
Note in the flat background limit U=ei(e+De)(to)»1+(i(e+De’)+.. )to»koo. We next find the 
contribution of this mixed state 6.13.2 relative to the freefall comoving flat background 
metric (like we did to find ln(rM+1/rbb)+2=[1/(eµ-1)-ln[eµ-1]]2). They should be the same 
contribution in this freefalling frame of reference as well (for a distant exterior observer 
to objects B&A but in a comoving frame of reference.) relative to the local flat 
background. Just as in the Lamb shift case Uy(to)= k00y(t0)=y(t). 
 But in the halo of the galaxy    koo=goo        (6.13.4) 
 Note 2eDe is H times t in the exponent so 2eDe = Ht.  So we again plug De’ (6.1.3.2) into 
the time development operator directly U=eiHt, all by itself, in a flat space-time 
background. So 6.13.2;6.13.3  realkoo =goo.=1-(2GM/c2)/r which gives us only the mixed 
state contributions relative to a flat background. So that 1-De’2/2 =goo=1-2GM/(c2r) with 
mv2/r=GMm/r2. Thus the first term is 1-De’2/2=1-2v2/c2                        (6.13.5) 
So cDe’/2=v. De’ is from 6.13.2 and 0.00058=De for the electron in which the tauon mass 
is set to 1, muon mass =.0608. This geometric series 6.13.2 is unique, no other nontrivial 
such series can be built here. So we can put the operator contributions from 6.13.2 into 
6.13.3, one at a time, in place of De’ in eq.6.13.4, and find get v»98.6km/sec»100km/sec 
in galaxy halos. So v =100+1+.01+..= 100km/sec +1km/sec+10m/sec+..=independent 
values of metric quantization (6.4.18) since each DeN/(eN-1) represents a different 
quantum operator. Recall Deº4AI is an operator (Note De2 is not the same operator) so 
each term in the 1/(1-De) expansion is a a unique operator. So term is a different speed v 
in this unique geometrical series (see Ch.11 for many examples). These DeN/(eN-1) are 
mixed (hybrid) quantum states or in the classical limit are: ‘grand canonical ensembles’ 
with nonzero chemical potential.  
Metric quantization changes with COM energy. So for lower energies you might get 
1km/sec quantization jumps. The energy COM density and we start seeing units of 
2km/sec, then 4km/sec than a large jump in energy to 100km/sec (eg., at the 
chromosphere-corona boundary).  For the galaxy if the ring is heavier than the hub then 
the v at ring diameter v difference becomes the new quantized v.  
  
Metric quantization (and C) As A Perturbation Of the Hamiltonian 
Hoy=Enyn 

for normalized yns. We introduce a strong local metric perturbation H’=DG due to motion 
through matter let’s say so that:   
H’+H=Htotal  where H ºDG is due to the matter and H is the total Hamiltonian due to all 
the types of neutrino in that HM+1 of section 4.6.H’=C2. Because of this metric 
perturbation  
y=SaiyIi=orthonormal eigenfunctions of Ho. |ai|2 is the probability of being in the 
neutrino state i. The nonground state ais would be (near) zero for no perturbations with 



the ground state energy ai (electron neutrino) largest at lowest energy given for ordinary 
beta decay for example. Thus the passage through matter creates the nonzero higher 
metric quantization states (i.e., H’ can add energy) with:  
ak=(1/(ħi)òH’lkeiwlktdt 
wlk =(Ek– El) /ħ 
Thus in this way motion through matter perturbs these mixed eigenstates so that one type 
of neutrino might seemingly change into another (oscillations). 
 
Pure States From 2AI+2AI+2AI Equation 6.13.2 (Also see Part II of This Book) 
Instead of the (hybrid) mixed metric quantization state 1/Ö(De+e) of sect.6.13 we find the 
masses of the pure states 1/ÖDe and 1/Öe individually in the bound state 4AI+4AI+4AI 
(or 2AI+2AI) at r=rH of part II so that 1-rH/r=0 in 6.13.2 (rH =Nth fractal scale, our 
subatomic scale). 
 Note these are not the free particle pure states De (electron) and e (muon) giving also the 
galactic halo constant stellar velocities. 
eiDe ®1/[Ö(1-De-rH/r)](1/(1±e))=(1/ÖDe)(1/(1±e) =mass of  W,Z i.e., ^same as Paschen 
Back: EZ=BuB(0+1+1+1)) (fixes the value of the LS coupling coefficient) 
eie ®1/[Ö(1-e-rH/r)](1/(1±e))=(1/Öe)(1/(1±e)= mass of         p±, po. || Paschen Back 
                 Fixes the value of the LS coupling coefficient  
 
More Implications of The Two Metrics Of Equation 7 Of Section 1.1.6  
6.14 Gaussian Pillbox Approach To General Relativity  
The real component of eq. 4  d(dz•dz) is equation 4A   d(dr2+(idt)2)=d[(dr+dt)(dr-dt)=                                                       
[d[(dr+dt)](dr-dt)]+[(dr+dt)[d(dr-dt)]=0 has solutions:                                                                        
d(dr+dt) and dr+dt=0, 0, (4AI) d(dr+dt)=0 and d(dr-dt)=0                                         (4AII) 
 in each of the 4 quadrants. Combining eq.4AI and eq.4AII we have eq.4A 
Reparameterization Invariant. RI) condition. See section 1.1.6 for discussion.  
dr-e/2+dt+e/2=dr’+dt’=kds which applies for r>e since for the transition to r<eºrH ds 
turns discontinuously into a complex number which also violates dds=0 (we noted in 
section 1 the source of this problem: a Ötensor transformation hyperbolic 1®i 
discontinuity at r=rH).  
Iinvariant ds =dr-e/2+dt+e/2 =dr'+dt'. In my new Ökij the sign changes as you go through 
rH. Essentially then dr and ep/2 switch places to keep the dt'=Ökoodt=Ö(1-e/r)dt from 
being imaginary. Note from equation Eq.1.1.6 given the above Sn object for r<e=r” then 
r”2-r2/2+t”2+r2/2 = r’2+t’2 and t”=r”=e, for r<e. This condition is required because the 
above S1 is real for r<rH. ds is always real given its dr+dt definition is always real as 
noted in eq. 2AI and 2AII above. So combining the inside (de Sitter) r<e  and outside 
(Schwarzschild) r>e  cases makes ds always real in the real dr,dt plane regardless of 
whether  r<e or r>eºrH also implying  dds=0 as required by case A above. This allows two 
independent Gaussian pillboxes, one inside and one outside rH. 
Also in the case 2 (second point) section we note that this circle contains yet another   2D 
surface with origin (0, our original 0 has not changed, See appendixA on same reference 
origin 0) with perhaps a different orientation (angle). See section 1.1.6 Note CM is along 
the –dr axis, not dr which is still a +integer along with dt. A large number of such points 
and associated circles thereby provides the geometric structure of the 4D De Sitter 



submanifold surface thereby proving that we must live on a 4D submanifold hyperspace 
in this many point limit. So inside rH for empty Gaussian Pillbox (since everything is at 
rH)                                                          
 Minkowski ds2=-dxo2+Si=1n dxi2                                                         (6.14.1)                                                     
Submanifold is –x02+Si=1nxi2=α2                                                                                                                
In static coordinates r,t :     (the new pde harmonic coordinates for r<rH)                                                                                                                    
xo=Ö(α2-r2)sinh(t/α):                                                                            (6.14.2)                                                                                                        
x1=Ö(α2-r2)cosh(t/α):                                                                                                                                          
xi= rzi        2≤i≤n       zi is the standard imbedding n-2 sphere. Rn-1                                                               
ds2=-(1-r2/α2)dt2+(1-r2/α2)-1dr2+ dW2n-2                                                                                                     
a®ia, r®ir   Outside is the Schwarzschild metric to keep ds real  for r>rH  since rH is 
fuzzy because of objects B and C. 
For torus (x2+y2+z2+R2-r2)2=4R2(x2+y2).  R=torus radius from center of torus and 
r=radius of torus tube. 
Let this be a spheroidal torus with inner edge at so r=R. If also x=rsinq, y=rcosq, q=wt 
from the new pde 
Define time from 2R=t you get the light cone for a®ia in equation 6.14.2. 
x2+y2+z2-t2=0 of 6.14.1 with also (x=rsinq, y=rcosq) ® 
(x=Ö(α2-r2)sinh(t/α), y=Ö(α2-r2)cosh(t/α)), a®ia.  So to incorporate the new pde into the 
Gaussian pillbox inside we end up with a spheroidal torus that has flat space geodesics.  
  Note on a toroid surface two parallel lines remain parallel if there was no expansion. So 
you have a flat space which is what is what is observed.  The expansion causes them to 
converge for negative t. Note the lines go around the spheroidal toroid back to where they 
started, have the effect on matter motion of a gravimagnetic dipole field. 
You are looking at yourself in the sky as you if you were a baby (370by ago that is). The 
sky is a baby picture of YOU! 
The problem is that you are redshifted out to z=infinity so all you can see of your 
immediate vicinity (within 2byly that is) is the nearby galaxy super clusters such as the 
Shapely concentration and Perseus Pisces with lower red shifts.  
So these superclusters should have a corresponding smudge in the CBR in exactly the 
opposite direction! I checked this out. 
                                                                                                                                   
Note the sine wave has a period of 10trillion years and we are now at 370billion years, 
near q=-p/2 in r=rosinq where the upswing is occurring and so accelerating expansion is 
occurring. This is where we start out at in the sect.7.3 derivation. Since the metric is 
inside r<rH it is also a source as we see in later section 5.4 
 
Observations Inside Of rH 
 The metric quantization pulses ride the metric like sound waves moving in air, including 
going in straight lines in our toroidal universe. That means that when we look in the 
direction of object B using nearby metric quantization effects, like galaxies falling into a 
compression part of the vibration wave, which also organizes galaxy clusters as in the 
Shapely and Perseus-Pisces concentration, we are looking in straight lines at least for 
local superclusters (<2BLY) and so are actually looking in the direction of object B.  But 
the CBR E&M radiation that is bent by strong gravity follows that toroidal path and so 



you really are looking at the (red shifted) light coming from yourself as you formed 
370BY ago in this expanding frame of reference.  
So the direction to the nearby galaxy clusters, even out to the Shapely concentration, is  
metric quantization dependent so we have straight line observation, but the CBR follows 
the curved space and so the galaxy superclusters we see in a given direction have CBR 
concentration counterparts in exactly the opposite direction. Note distant galaxy clusters 
are also not seen along straight lines, but lines on that spherical torus. So you only see 
hints of the actual directions of object B, of the object A electron dipole, etc. for 
relatively nearby superclusters. 
  The spherical torus Bg gravimagnetic dipole shape comes from the rotational motion 
implied by the new pde (from eq.2AI). Recall the new pde applies to dipole Bg field and 
spin motion; The electron has spin as you know. The new pde spherical torus is applied 
on top of a Minkowski space-time inside rH because the Gaussian pillbox does not 
(usually) contain anything if its radius is smaller than rH. So astronomers really are 
observing the inside of an electron (i.e.,what comes out of the new pde) in this fractal 
model! 
 
6.15 Relevance (Of These Two Metrics Of Section 1.1.5) to Shell Model of The 
Nuclear Force Just Outside rH 
Note my model is a flat de Sitter a®ia inside rH and perturbed Schwarzschild (i.e.,Kerr) 
just outside, the two metrics of section 3.1 and Part II (on 2AI+2AI+2AI) above.  The 
transition between the two is quite smooth. So at about rH we have a force that gets 
stronger as r increases. 
But this is what the simple harmonic oscillator does in this region. So my model gives the 
simple harmonic oscillator (transition to Schwarzschild metric) and the flat part inside 
that the Shell model people have to arbitrarily have to adhoc put in (they call it the 
flattening of the bottom of the simple harmonic potential energy). Anyway, the above 
fractal theory explains all of this. 
Also the object B perturbation metric is a perturbative Kerr rotation.  
 
7 Comoving Coordinate System: What We Observe Of The Ambient 
Metric 
7.1 Comoving Coordinate System  
Here we multiply eq. 4.6 result py=-i¶y/¶x by y* and integrate over volume to define 
the expectation value: 
                                         òy*pxydVº <px>=<p,t|px|p,t> of px.                                 (7.1.1) 
  In general for any QM operator A we write  <A>=<a,t|A|a,t>. Let A be a constant in 
time (from Merzbacher, pp.597). Taking the time derivative then:   

 

= =    º[H,A]                                         

In the above equation let A=a, from equation 9 Dirac equation Hamiltonian H, [H,a]=i
da/dt  (Merzbacher, pp.597).  
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The second and first integral solutions to the Heisenberg equations of motion (i.e., above  
[H,a]=i da/dt) is:        r=r(o)+c2p/H+ (hc/2iH)[e(i2Ht/h)-1](a(0)-cp/H).                 (7.1.2) 
                                               v(t)/c=cp/H +e(i2Ht/h)(a(0)-cp/H) 
Note there is no Klein paradox at r<Compton wavelength in this theory and also 
Schrodinger’s 1930 paper on the lack of a zitterbewegung does not apply to a region 
smaller than the Compton wavelength. So the above zitterbewegung analysis does apply 
in that region. The Ökoo = Ö(1-rH/r) modifies this a little in that from the source equations 
for kµnyou also need a feed back since the field itself, in the most compact form, also is a 
eq.4.4.1.  Goo energy density (source). 
 
7.2 r<rH ewt -1 Coordinate transformation of Zµn: Gravity Derived 
Summary: 
Fractal Scale Content Generation From Generalized Heisenberg Equations of 
Motion 
Specifically C in equation 1 applies to “observable” measurement error. But from the two 
“observable” fractal scales (N,N+1) we can infer the existence of a 3rd next smaller 
fractal N-1 scale using the generalized Heisenberg equations of motion giving us 
 (¶xoN)/¶xoN+1) (¶xoN)/¶xoN+1)TooN-TooN=TooN-1                                                                           (7.2.3) 
which is equation 7.4.4 below.  Thus we can derive the content of the rest of the fractal 
scales by this process. 
 
7.3 Derivation of The Terms in Equation 7.2.3 
For free falling frame no coordinate transformation is needed of source Too. For non free 
falling comoving frame with N+1fractal  eq.9  motion we do need a coordinate 
transformation to obtain the perturbation DT of Too caused by this motion (in the new 
coordinate system we also get 5.1.2: the modified Rij=source describing the evolution of 
the universe ln(rM+1/rbb)+2=[1/(eµ-1)-ln[eµ-1]]2 in our own coordinate frame).      

 
7.4 Dyadic Coordinate Transformation Of Tij  In Eq. 7.2.3                                                                         
The Dirac equation object has a radial center of mass of its zitterbewegung. That radius 
expands due to the ambient metric expansion of the next larger N+1th fractal scale 
(Discovered by Slipher. See his above instrumentation). We define a Zoo E&M energy-
momentum tensor 00 component replacement for the Goo Einstein tensor 00 component. 
The energy is associated with the Coulomb force here, not the gravitational force. The 

h



dyadic radial coordinate transformation of Zij associated with the expansion creates a new 
zoo. Thus transform the dyadic Zoo to the coordinate system commoving with the radial 
coordinate expansion and get Zoo®Zoo+zoo (section 3.1). The new zoo turns out to be the 
gravitational source with the G in it. The mass is that of the electron so we can then 
calculate the value of the gravitational constant G. From Ch.1 the object dr as see in the 
observer primed nonmoving frame is:     dr=Ökrrdr’= Ö(1/(1+2e))dr’=dr’/(1+e).  
1/Ö(1+.06)=1.0654. Also using S½ state of equation 2.6. e=.06006=mµ+me 
From equation 11.4 and eiwt oscillation in equation 11.4. w=2c/l so that one half of  l 
equals the actual Compton wavelength in the exponent of section 4.11. Divide the 
Compton wavelength 2prM by 2p to get the radius rM so that rM=lM/(2(2p))= h/(2mec2p)= 
6.626X10-34/(9.1094X10-31X2.9979X108X4p)=1.9308X10-13    
From the previous chapter the Heisenberg equations of motion give eiwt oscillation 
(zitterbewegung) both for velocity and position so we use the classical harmonic 
oscillator probability distribution of radial center of mass of the zitterbewegung cosine 
oscillation lobe.  So the COM (radial) is: xcm= (åxm)/M= 
=òòòr3cosrsinqdqdfdr/(òòòr2cosrsinqdqdfdr)  =1.036. As a fraction of half a wavelength (so 
pphase) rm we have                            1.036/p=1/3.0334                                   (7.4.1) 
Take Ht=13.74X109 years=1/2.306X10-18/s. Consistent with the old definition of the 0-0 
component of the old gravity energy momentum tensor Goo we define our single S½ state 
particle (E&M) energy momentum tensor 0-0 component From eq.3.1 Zoo  we have:  
c2Zoo/8pºe =0.06,. e=½Öa=square root of charge.     
Zoo/8pºe2/2(1+e)mpc2=8.9875X109(1.6X10-19)2/(2c2(1+e)1.6726X10-27)=0.065048/c2       
Also from equation 9 the ambient metric expansion component Dr is:     
                                                   eq.1.12 Dr=rA(ewt-1)   .                                         (7.4.2) 
To find the physical effects of the equation 11.4 expansion we must do a dyadic radial 
coordinate transformation (equation 7.4.3) on this single charge horizon (given numerical 
value of the Hubble constant Ht= 13.74 bLY in determining its rate) in eq.4.2. In doing 
the time derivatives we take the w as a constant in the linear t limit: 

with in particular Zoo→Z’ooºZoo+zoo                                               (7.4.3) 

After doing this Z’oo calculation the resulting (small) zoo is set equal to the Einstein tensor 
gravity source ansatz Goo=8pGme/c2 for this single charge source me allowing us to solve 
for the value of the Newtonian gravitational constant G here as well. We have then 
derived gravity for all mass since this single charged me electron vacuum source 
composes all mass on this deepest level as we noted in the section 4.2 discussion of the 
equivalence principle. Note Lorentz transformation similarities in section 2.3 between 
r=ro+Dr and ct=cto+cDt using   for v<<c with just a sign 
difference (in 1-D, + for time) between the time interval and displacement D interval 
transformations. Also the t in equation 10.2 and therefore 12.3 is for a light cone 
coordinate system (we are traveling near the speed of light relative to t=0 point of origin) 
so c2dt2=dr2 and so equation 11.4 does double duty as a r=ct time xo’ coordinate.  Also 
note we are trying to find Goo (our ansatz) and we have a large Zoo. Also with Zrr<<Zoo 
we needn’t incorporate Zrr. Note from the derivative of ewt-1 (from equation 11.4) we 
have slope=(ewt-1)/Ht=wewt. Also from equation 2ABwe have d(r)= d(ro(ewt-1))= (1/(ewt-
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1))d(ro). Plugging values of equation 7.4.1 2 and 7.4.2 and the resulting equation 4.7.1 
into equation 7.4.3 we have in S½ state in equation 4.3: 

,  

(7.4.4)                                                             
        

 

(Recall 3.03 value from eq.7.4.1.) So setting the perturbation zoo element equal to the 
ansatz and solving for G:    

 

Make the cancellations and get:                  
 2(.065048)[( 1.9308X10-13/(3X108X9.11X10-31X3.0334(1+.0654))] (2.306X10-18) = 
=2(.065048)(2.2X108)(2.306X10-18)  = 6.674X10-11 Nm2/kg2ºG   (7.4.5)   
from plugging in all the quantities in equation 7.4.5. This new zoo term is the classical 
8pGr/c2=Goo source for the Einstein’s equations and we have then derived gravity and 
incidentally also derived the value of the Newtonian gravitational constant since from our 
postulate the me  mass (our “single” postulated source) is the only contribution to the Zoo  
term. Note Dirac equation implies +E and -E solutions for –e and +e respectively and so 
in equation 7.4.5 we have e2=ee=q1Xq2 in eq.7.4.5. So when G is put into the Force law 
Gm1m2/r2 there is an additional m1Xm2 thus the resultant force is proportional to Gm1m2 
=(q1Xq2)m1m2  which is always positive since the paired negatives always are positive 
and so the gravitational force is always attractive. 
However just as with the speed of light, we cannot measure a changing G since our clock 
time changes proportionally due to the changing gravitational field.GM/c^2, if M is the 
mass of the universe, is always 1040X2e2/mec2 so G is invariant. 
To summarize we have then just done a coordinate transformation to the moving frame to 
find the contributing fields associated with the moving frame. Analogously one does a 
coordinate transformation to the charge comoving frame to show that current carrying 
wires have a magnetic field, also a ‘new’ force, around them. Also note that in the second 
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derivative of eq.7.1.2 d2r/dt2 =row2ewt= radial acceleration. Thus in equations 7.1.4 and 
7.1.5 (originating in section 2AB) we have a simple account of the cosmological radial 
acceleration expansion (discovered recently) so we don’t need any theoretical 
constructs such as ‘dark energy’ to account for it. 
If ro is the radius of the universe then row2ewt»10-10m/sec2=aM is the acceleration of all 
objects around us relative to a inertial reference frame and comprises a accelerating frame 
of reference. If we make it an inertial frame by adding gravitational perturbation we still 
have this accelerating expansion and so on. Thus in gravitational perturbations naM=a 
where n is an integer. 
Note below equation 7.4.5 above that t=13.8X109years and use the standard method to 
translate this time into a Hubble constant. Thus in the standard method this time translates 
into light years which are 13.8X109/3.26 =4.264X109 parsecs= 4.264X103 megaparsecs 
assuming speed c the whole time. So 3X105km/sec/4.264X103 megaparsecs = 
70.3km/sec/megaparsec= Hubble’s constant for this theory. 
7.5 Metric Quantized Hubble Constant 
    Metric quantization 4.2.3 means (change in speed)/distance is quantized.. Given  
6billion year object B vibrational metric quantization the radius curve  
 ln(rM+1/rbb)+2=[1/(eµ-1)-ln[eµ-1]]2 is not smooth but comes in jumps.  
 I looked at the metric quantization for the 2.5My metric quantization jump interval using 
those 3 Hubble "constants" 67,  70,  73.3  km/sec/megaparsec. 
 Recall that for megaparsec is 3.26Megalightyear=(2.5/.821)Megalightyear. 
But 2.5 million years is the time between one of those metric quantization jumps.  
So instead of the 3 detected Hubble constants 67km/sec/megaparsec and 
70km/sec/megaparsec and 73.3km/sec/megaparsec we have 
81.6km/sec/2.5megaly,  85.26km/sec/2.5megaly,  89.3km/sec/2.5megaly. the difference 
between the contemporary one, the last and the two others then is 
 
89.3km/sec/2.5megaly- 85.26km/sec/2.5megaly,=4km/sec/2.5megaly 
and 89.3km/sec/2.5megaly- 89.3km/sec/2.5megaly=8km/sec/2.5megaly. 



So the Hubble constant, with refernence to the 2.5my metric quantization jump time, 
appears quantized in units of 4km/sec,8km/sec, etc. Other larger denominator „averages“ 

are not accurate.  
 
                           7.6 Cosmological Constant In This Formulation 
In equation 4.6 rH/r term is small for r>>rH  (far away from one of these particles) and so 
is  nearly  flat space since e and De are small and nearly constant. Thus equation 6.4.5 
can be redone in the form of a Robertson Walker homogenous and isotropic space time.  
Given (from Sean Carroll) the approximation of a (homogenous and isotropic) Robertson 
Walker form of the metric we find that: 

 

L=cosmological constant, p=pressure, r=density, a =1/(1+z) where z is the red shift and 
‘a’ the scale factor. G the Newtonian gravitational constant and a” the second time 
derivative here using cdt in the derivative numerator. We take pressure=p=0 since there is 
no thermodynamic pressure on the matter in this model; the matter is commoving with 
the expanding inertial frame to get the a” contribution. The usual 10 times one proton per 
meter cubed density contribution for r gives it a contribution to the cosmological 
constant of 4.7X10-36/s2.  
Since from equation 7.6.1 a=ao(ewt-1) then a” = (w2/c2 )sinhwt=a(L/3)= (L/3)sinhwt and 
there results:  
 L=3(w2/c2 ) 
From section 12.1 above then w=1.99X10-18 with 1 year=3.15576X107 seconds, also 
c=3X108 m/s. So:  
L= 3(w2/c2)=1.32X10-52 /m2,  which is our calculated value of the cosmological constant. 
Alternatively we could use 1/s2 units and so multiply this result by c2 to obtain:   
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1.19X10-35/s2. Add to that the above matter (i.e.,r) contributions to get L=1.658X10-35/s2 
contribution.  
 
7.7 
Note that we have thereby derived the Newtonian gravitational constant G by using a  
radial coordinate transformation of the Too =e2 charge density component to the 
coordinate system commoving with the expansion of the N+1 th fractal scale  
(cosmological). 
Note that our new force we derived was charge and mass independent but the old force 
was charge dependent. Also note that the new force metric has universal geodesics that 
even curve space for photons. The old one had a q in the kij  (chap.17). If q=0 as with the 
photon there would be no effect on the trajectory of the photon whereas the same photon 
moving near a gravitational source would be deflected.  Recall again this is all caused by 
the taking of the derivative in the above coordinate transformation. 
So as a result of this coordinate transformation photons are deflected by the N+1 fractal 
scale metric and area not defelected by the Nth scale metric.  
Also the G does not change in the commoving coordinates for the same reason as the 
speed of light does not change as you enter a black hole, your watch slows down because 
of GR to compensate. 
References 
Merzbacher, Quantum Mechanics, 2nd Ed, Wiley, pp.597 
7.8 Comoving Interior Frame 
Recall from solution 2 (section 1.2)  that the new pde zitterbewegung E=1/Ökoo energy 
smudged out  r=<roeiw t > with w®iw inside rH. so m r=sinhwt. Do a coordinate 
transformation (Laplace Beltrami) to the coordinate system of the r>rH commoving 
observer (us) and that equation pops right out.  
 In the commoving De Sitter metric reference frame inside rH we are not in free space 
anymore so  the multiple of the Laplacian of the metric tensor in harmonic local 
coordinates whose components satisfy Rij =-(1/2)D(gij)  where D is the Laplace-Beltrami 
second derivative operator  is not zero. Geometrically, the Ricci curvature is the 
mathematical object that controls the growth rate of the volume of metric balls in a 
manifold Note the second derivative (Laplacian) of sinwt is –w2sinwt. Also recall that 
inside rH so that r<rH, then sinwt®sinhwt, which is rewritten as sinhµ to match with  
R22=e -l[1+½ r(µ’-l’)] with  µ=l (spherical symmetry). So the de Sitter metric 
submanifold is itself the source of this R22 which is a nontrivial effect in the very early, 
extremely high density, universe.  (Note that the contemporary G calculation in Ch.12 
just uses the de Sitter sinhµ (just as in Ch.12 coordinate transformation because this 
feedback effect no longer is dominant in this era).  So the usual spherically symmetric:  
R22=e -l[1+½ r(µ’-l’)]-1=0 ® de Sitter metric sinhµ, itself is the source, comoving 
coordinate system®  
R22=e -l[1+½ r(µ’-l’)]-1=sinhµ.  (applies only for µ»1, |sinµ|»1)                         (A) 
With µ=l this can be rewritten as:         eµdµ/(1-coshµ)=dr/r                                 (B) 
The integration is from µ=e=1 projection at 45° particles at r=smallest (see section 
1,C=0) to the present day mass of the muon= .06 (of tauon mass, C>0). Note our 
postulate of ONE is still needed to calculate the big bang Integrating equation B 



from  e=1 to the present e value we then get:                                                      
ln(rM+1/rbb)+2=[1/(eµ-1)-ln[eµ-1]]2                                     (7.8.1) 
        program FeedBack 
        DOUBLE PRECISION e,ex,expp,rM1,rd,rb,rbb,uu,u11,den,eu1,u 
        DOUBLE PRECISION NN,enddd,bb,ee,rmorbb,Ne,rr 
        INTEGER N,endd 
        open(unit=10,file='FeedBack_m',status='unknown') 
        !FeedbackEquation 
        !e^udu/(1-coshu)=dr/r                                  
        !ln(rM+1/rbb)+2=[1/(e^u-1)-ln[e^u-1]]2   
        e=2.718281828 
        u11=.06 
        endd=100 
        enddd=endd*1.0 
        uu=.06/enddd 
        Ne=1000.0 
        Do 1000 N=100,1000 
        Ne=Ne-1.0 
        rr=n/100.0 
        rbb=30.0*(10.0**6)*1600.0 
        rbb=1.0 
       ! rd=2.65*(10**13) 
        u=Ne*uu 
        eu1=(e**u)-1.0 
        ex=(2.0/eu1)-(2.0*LOG(eu1))-2.0 
        expp=(ex) 
        rM1=(e**expp)*rbb  !ln logarithm 
        rM1=e**ex 
        !rMorbb 
        !bb=log(ee)  
        if (ex.GT.36.0)THEN 
        goto 2001 
        endif 
        write(10,2000) rr,rM1 
 1000   CONTINUE 
 2000   format(f7.2,1x,1x,1x,f60.6) 
 2001   end 

Sin(1-u)=r  gives the same functionality as the above program does for µ»1 the sin(1-µ) 
And and the sine: sin(1-µ)»sinh(1-µ). For larger 1-µ we must use 1-µ®i(1-µ) given sect 
5.2 harmonic coordinates from the new pde in the sine wave bottom.  

 



Recall object B is close by so we must include the small Kerr metric oblation term 
acosq=.9602 in rbb2 = r2+a2cos2q that gives an added De when it is inserted.  
So substituting into ln (rM+1/rbb)+2=[1/(eµ-1)-ln[eµ-1]]2 using the rbb value=~30M miles to 
the present rM+1= 13.7X109LY value for the case with and without the oblation term gives 
ln(rM+1/rbb)=36.06  and current value e=.06, and De=.00058 from  the oblation term. Thus 
the present day mass of the muon gives us the size of the universe at the time of the big 
bang, it was not a point! Note that (from appendix A) all the 1081 baryons at rH            
(~10-15m) separation were packed into this (4p/3)rbb3 volume and so not violating baryon 
number conservation since from this fractal theory these objects originated from a 
previous collapse. Thus we do not need to be concerned with baryogenesis because the 
baryons survived the big bang. Equation B implies that the commoving time turns out to 
be 370by. So the universe is not 13.7by old but 370by. This long of time explains the 
thermalization of the CBR and the mature looking galaxies and black holes at 13by ago. 
The contemporaneous tangent line intersection with the r axis for r=roekt gives the 13by. 
Thus we have derived the values of the free lepton masses in our new pde and have a 
curved space, non perturbative curved space generalization of the Heisenberg equations 
of motion.  
This would be the Schwarzschild metric (a=0) without object B. Given the incomplete 
inertial fram dragging angular momentum then provides an oblation term. 
Recall that the new pde for r<rH gives iw®w in its Heisenberg equations of 
motion.(Ch.10)  Thus r=roewt or ln(r/ro)=wt=wtoÖ(1+e) where the sum of the free lepton 
masses in the new pde  is under the square root sign.  Recall this equation gives our 
expanding universe and the second derivative gives the acceleration in this expansion. 
Note the (section 1.2.1) 1081 particles give above r=rH if edges touching can be contained 
in volume of radius 1.746X1012 m Also the present radius of the universe is 
approximately 13.7X109LY=1.27X1027m. Given the oblation term a2cos2q ºD2 from the 
above rotation metric we have then 
ln(rM+1/Ö(rM2+D2))=ln(1.27X1027/1.746X1012)=34.22  if D=0. Given the muon mass =.06  
((1/16.8) tauon mass) we find that D=1.641X1012m so that 
acos(1.64X1012/1.746X1012)=20°, our polar angle from the rotation axis. 
Recall from the above nonperturbative derivation we got e=.060 without oblateness and 
with oblateness rL get the added rotation contribution De=.00058. Note here (i.e.,eq.5.1.2) 
that there is no big bang from a point. Instead it is from 434million km radius object, so 
with just enough volume to hold all the baryons (1081each of radius~.434Fermi) and so 
this type of “big bang” event can be easily computer modeled as a core collapse 
supernova like rebound (but too hot even for iron production). Note that the mass of the 
electron is determined by the drop in inertial dragging (giving that oblation term) due to 
nearby object B.  1, e, De/2 is the ratio of the tauon to muon to electron mass and so our 
new Dirac pde 9 gives us the three fundamental S state lepton masses with De the single 
ground state lepton with nonzero rest mass.  Note also De=meµ h from eq.9 and me µ e2 
µah since rH is an integration constant. . The main result though of this chapter is that the 
present numerical value of the lepton masses imply this huge fig.2a 1040X scale jump 
(from S state classical electron radius=10-18m to the rfinal cosmological radius) of equation 
5.1.2 from the electron equation 9 object to the cosmological scale equation 9 object 
implied by equation 5.1.2. The rebound time is 350by =very large >>14by solving the 



horizon problem since temperatures could (nearly) come to equilibrium during that time 
(From recent Hubble survey: "The galaxies look remarkably mature, which is not 
predicted by galaxy formation models to be the case that early on in the history of the 
universe." “lots of dust already in the early universe”, “CBR is the result of 
thermodynamic equilibrium” requiring slow expansion then, etc.). 
7.9 Summary 
In the external reference frame the koo=1-rH/r and the equation 9 (4AI) zitterbewegung 
gives a smudged out blob r=<roeikt> first solution (r>rH, new pde, eq.9, 4AI) and Rij=0 
from the second solution.  But in the commoving frame of reference inside r<rH in the 
new pde is not free space anymore and so Rij does not equal 0 anymore and so equals the 
above De Sitter dual choices sinh or cosh so the second solution requires  Rij=sinhu  (R22 
eq.A left side does not match with cosh). A second derivative of sinh is once again a sinh 
so this is a source in the Laplace-Beltrami second derivative operator-(De Sitter source). 
This result also comes out of the second solution but for the commoving internal observer 
frame of reference.  Recall that the multiple of the Laplacian of the metric tensor in 
harmonic local coordinates whose components satisfy Rij=-(1/2)D(gij) where D is the 
Laplace-Beltrami second derivative operator. In that regard geometrically, the Ricci 
curvature is the mathematical object that controls the growth rate of the volume of metric 
balls in a manifold. 
So Rij=sinhu comes out of the new pde with the second solution! This is equal to               
eudu/(1-coshu)=dr/r whose solution is ln(rM+1/rbb)+2=[1/(eu-1)-ln[eu-1]]2.  
This equation and the metric quantization sect. 6.8  stair step give the equation of motion 
stair v steps of our universe for the inside rH and so give that quantized Hubble constant.    
 
Note here also the muon (and so the pion) were 100X times heavier at the big bang 
making the nuclear force equal to the E&M force then. 
7.10  Construct The Standard Model Lagrangian                                                                                                      
Note we have derived from first principles (i.e.,from postulate 1) the new pde equation 
for the electron (2AI, eq.9), pde for the neutrino (eq.2AII)  Maxwell’s equations for the 
photon, the Proca equation for the Z and the W (Ch.3) and the found the mass for the Z 
and the W (4.2.1). We even found the Fermi 4 point from the object C perturbations.  The 
distance to object B determines mass and we found that it is equivalent to a scalar field 
(Higgs) source of mass in sect.4.1.5. We have no gluons or quarks or color in this model 
but we can at least derive the phenomenology these concepts predict with our 
2AI+2AI+2AI at r=rH strong force model (ie., 2AI+2AI+2AI r=rH, Ch.9,10) 
So from the postulate of 1 we can now construct the standard model Largrangian, or at 
least predict the associated phenomenology, from all these results for the Nth fractal 
scale. Here it is: 



 
Fig. 10 
The next fractal scale N+1 coming out of our eq.1 gives the cosmology and GR gravity, 
which is not included in the standard model.  In fact the whole model repeats on the N+1 
fractal scale. Object B provides ambient metric quantization states that have been 
observed implying new physics. So there is the promise of breakthrough physics from our 
new (postulate 1) model. 
 
7.11 Summary 
This is a first principles derivation of mathematics and theoretical physics. “Astronomers 
are observing from the inside of what particle physicists are studying from the outside, 
ONE object, the new pde (2AI) electron”. Recall the electron was the only object in the 
first quadrant (so positive integer), every other object is an excited state, caused by 
increasing noise C. So we started with postulate of 1 and ended with ONE after all this 
derivation (solving two equations for two unknowns) derivation, we derived ONE thing, 
which must be the same thing! So we really did just "postulate ONE" and nothing else, as 
we claimed at the beginning. That makes this theory remarkably comprehensive (all of 
theoretical physics and rel# math) and the origin of this theory remarkably simple: “one”.   
So we have only ONE simple postulate here. 
 
7.12 The Above Mainstream Model (fig.10) Has Many Free Parameters,  
This Fractal Model has None 
For example the Mandelbrot set {CM}=rH in dr-CM so we can always set CM=2ke2/mec2. 
c2medr=c2meCM=2ke2 to define our length units. In section 1.2.7 we show that with a 
single me (nonzero proper mass) we can start with arbitrary ke2/r energy units and have 
no free parameters among these values. Note this 2A1 electron has the only nonzero 
proper mass me (i.e.,so only CM) in free space making it the only fractal solution. In the 
time domain the h in E=h(1/t) just defines energy units (equation 4.6) in terms of event 
time intervals t.  The gyromagnetic ratio of me is derived from the rotated 4AI, eq.9 new 
pde. The muon mass comes from the distance to object B (Ch.5). The proton mass comes 
from the flux quantization h/2e (Sect.8.1). The other highest energy boson masses come 
from the Paschen Back effect given this proton mass (Ch.8). The strength of the strong 
force arrises from the ultrarelativistic field line compression in the 2AI+2AI+2AI model 



(Ch.8). The mass energies and quantum numbers of the many particles below about 
1.5GeV come out of the Frobenius solution (Ch.9) which is merely a solution to eq.9 
(i.e., 2AI).  Recall the CP violation is due to the fractalness (selfsimilarity with a spinning 
electron): we are inside a rotating object Kerr metric implying a cross term dfdt in it. So 
you can derive the CP violation magnitude that they use in the CKM matrix. Multiply 
through the Fermi interaction integral (from the Standard model output and this output 
from the theory) and integrate to get the Cabibbo angle eq.10.8.7). The pairing interaction 
force of superconductivity is even derived by substituting the kµµ  in the geodesic 
equations (sect.4.5). You can derive the neutrino masses for a nonhomogenous non 
isotropic space time (Ch.3). We derived the exact value of the pion mass (Ch.9). 
Note since quarks don’t exist in this model (they are merely those 2P3/2 trifolium lobes at 
r=rH) those 6 quark mass free parameters vanish. The Mandelbrot set 1040X scale change 
automatically sets the universe size and the gravitational constant size (sect.7.4) in 
comparison to classical electron mass and E&M force strength respectively.  
  If you do a tally that free parameter list has just shrunk from ~30 down to 0: so they 
are all derivable parameters, not free.. In contrast setting these parameters as free 
parameters is really postulating them because the parameter values are postulated. The 
equations they are used in constitute many more postulates (fig.10), so the number of 
potulates you get doing it that way goes out the roof, 100 or so? 
But you have to ask yourself: where did all these assumptions come from? You actually 
do not understand the fundamental physics at all if you require a lot of postulates, free 
parameters, etc., you are merely curve fitting. In contrast here we have only one simple 
postulate and get the whole shebang out all at once: that being the standard model 
particles and cosmology and gravity. We finally ‘understand’ in the deepest sense of that 
word! 
Note this model (Ch.1) also has none of the mainstream paradoxes either (Klein paradox, 
Dirac sea, 1096grams/cm3 vacuum, infinite mass and charge,.. in Ch.4) and not a single 
gauge but it still keeps the QED precission (eg., see Lamb shft calculation in 6.12). 
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